腹膜透析患者并发症与FGF23的相关性研究
Study on the Correlation between Complications of Peritoneal Dialysis Patients and FGF23
DOI: 10.12677/acm.2025.15113262, PDF, HTML, XML,   
作者: 王洪垚:绍兴文理学院医学院,浙江 绍兴;谢海英*:绍兴市人民医院肾内科,浙江 绍兴
关键词: FGF23腹膜透析血管钙化肾性贫血骨质疏松炎症FGF23 Peritoneal Dialysis Vascular Calcification Renal Anemia Osteoporosis Inflammation
摘要: 腹膜透析(PD)是终末期肾病(ESRD)的重要替代治疗手段,但PD患者死亡率居高不下,与血管钙化、肾性骨病等并发症高发密切相关,明确并发症关键调控因子是改善预后的核心。PD患者血液中成纤维细胞生长因子23 (FGF23)水平显著高于健康人群,FGF23作为骨细胞分泌的强效磷调节因子,是矿物质代谢关键枢纽,其异常升高或与PD患者磷代谢紊乱、并发症风险升高相关。当前针对PD患者FGF23与并发症之间关系的研究尚显欠缺,此领域亟待深入探索,其研究成果有望为改善PD患者的预后提供新的契机。
Abstract: Peritoneal dialysis (PD) is an important renal replacement therapy modality for patients with end-stage renal disease (ESRD); however, the mortality rate of PD patients remains persistently high, which is closely associated with the high incidence of complications such as vascular calcification and renal osteodystrophy, and identifying the key regulatory factors of these complications is crucial for improving prognosis. Levels of fibroblast growth factor 23 (FGF23) in the blood of PD patients are significantly higher than those in healthy individuals; as a potent phosphorus-regulating factor secreted by osteocytes, FGF23 serves as a key hub in mineral metabolism, and its abnormal elevation may be related to phosphorus metabolism disorders and increased risk of complications in PD patients. Currently, research on the relationship between FGF23 and complications in PD patients is still insufficient, and this field urgently requires in-depth exploration, with findings from such studies expected to provide a new opportunity for improving the prognosis of PD patients.
文章引用:王洪垚, 谢海英. 腹膜透析患者并发症与FGF23的相关性研究[J]. 临床医学进展, 2025, 15(11): 1609-1616. https://doi.org/10.12677/acm.2025.15113262

1. 引言

腹膜透析(PD)主要利用患者自身腹膜促进血液在透析液中进行溶质和水分交换,达到稳定电解质、改善患者的微炎症状态、保护残余肾功能的目的,是ESRD患者维持生命的主要治疗措施之一,但PD患者的死亡率仍较高,考虑主要与贫血、血管钙化、矿物质和骨代谢紊乱、炎症等并发症相关。成纤维细胞生长因子23 (FGF23)的水平升高扮演着重要角色,已有相关研究表明透析龄增加、残肾功能下降、持续高磷血症及肾清除磷是导致血FGF23水平增高的重要因素[1]

FGF23是FGF家族成员,是一种由骨细胞和成骨细胞分泌产生的一种32-ku (25个氨基酸)的强效磷酸素,它作用于近端肾小管,致使刷状缘钠–磷共转运体表达量降低,削弱肾小管重吸收磷的能力,推动尿磷排出体外,最终提升尿磷水平,降低血清磷浓度。在慢性肾脏病中,肾单位质量减少会导致肾脏磷酸盐排泄减少,从而导致骨骼分泌的FGF23增加以代偿高磷血症[2]。随病情逐渐进展,Klotho在肾脏及甲状旁腺的表达呈降低趋势。即便存在高浓度FGF23,机体排磷能力仍会下降,最终引发血磷水平升高[3]。此外,FGF23通过双重机制调控维生素D代谢。首先,它显著抑制1α-羟化酶的表达,进而减少1,25-二羟维生素D3的合成。其次,FGF23上调24-羟化酶的转录活性,促进活性维生素D的分解代谢。这两种调节机制共同作用,导致循环中1,25(OH)2D3水平下降,突显了FGF23在维持维生素D代谢稳态中的核心调控地位[4]。最近的研究还揭示了该激素对肾脏系统以外的其他生理系统的多效性作用[5]。研究腹透患者FGF23与并发症的关系对于揭示疾病进展机制至关重要,当前研究不足亟需填补。这有望为改善腹透患者预后提供新的治疗策略。

2. FGF23与血管钙化

心血管疾病是PD患者死亡的主要原因,血管钙化(vascular calcification, VC)是促进心血管疾病发生发展的核心病理机制之一。血管钙化的发展并非一蹴而就,而是呈现出多步骤、动态变化的态势。涉及骨和软骨细胞分化、细胞外囊泡排放、细胞外基质重塑及钙磷代谢失衡,众多信号途径相互作用,推动其起始与进展[6]。其中钙磷代谢失衡被认为是其主要诱因。如前所述,由于肾功能的进一步下降及FGF23抗性,腹膜透析患者血管钙化患者的血清FGF23浓度,血磷水平升高。慢性肾脏病(CKD)患者常并发继发性甲状旁腺功能亢进(SHPT)。当甲状旁腺激素(PTH)长期处于高水平时,会一方面促使骨骼释放更多钙,另一方面增加肠道对钙的吸收量,这两个过程共同导致血钙水平升高。而高血钙会与高磷血症协同作用,推动钙磷物质在血管壁及其他软组织中沉积,最终引发血管钙化[7]。此外,Lau WL等[8]发现血管平滑肌细胞(VSMC)是磷酸盐诱导钙化的核心,高磷酸盐水平通过介导3型钠依赖性磷酸盐共转运蛋白Pit-1的活性诱导VSMCs向成骨细胞样细胞的转化。YAO等[9]通过研究表明,高磷水平状态下,会激活Wnt/β-catenin信号通路,使得该通路中的关键蛋白β-catenin被活化。活化后的β-catenin,能够对III型钠磷转运体发挥调控作用,诱导血管平滑肌细胞出现表型转换现象。随着这一系列细胞层面变化的累积,最终加速了血管钙化这一进程的发展。高水平FGF23亦会通过降低miR-221/222的水平,引发血管平滑肌细胞表型由收缩型向合成型的改变,进而导致CKD患者动脉壁增厚、硬化的发生[10]。另有学者认为FGF23本身可能也直接作用于心血管系统发挥作用有关[11]。上述研究表明,FGF23通过调控钙磷代谢等作用机制促进血管钙化。

3. FGF23与肾性贫血

对于腹膜透析患者而言,自身肾脏内分泌功能受损,可造成促红细胞生成素合成减少。红细胞的生成随之减少,进而引发肾性贫血。在中国,非透析慢性肾脏病(CKD)患者的贫血患病率为51.5%,其中CKD5期患者的贫血发生率超过90%,而接受透析的CKD患者贫血患病率高达98.2%。因此,贫血的治疗在CKD患者中显得尤为重要[12]。近年来,FGF23与肾性贫血之间的关联在血液透析领域已有一定的研究基础[13]-[16],但在腹膜透析领域,这一课题的研究相对匮乏。

3.1. FGF23与铁

接受透析治疗的患者,食欲差、失血、铁吸收及转运利用不足等因素相互交织,扰乱铁代谢稳态,导致铁缺乏频发。这既造成机体铁储备的绝对不足,又出现相对缺铁,难以满足透析应激与贫血代偿所需。临床显示,患者透析后缺铁性贫血发生率超过60% [17]。已经有一些研究已经描述了铁和FGF23之间的关系[18]-[20],铁缺乏可参与调控FGF23的转录和裂解,引起血清FGF23水平升高[21]。同样的,Wolf M等[22]通过小鼠模型也显示缺铁可增加骨中FGF23 mRNA和FGF23蛋白的表达。故,铁缺乏是CKD中FGF23升高的机制之一。

Jonathan A Wheeler等[23]通过双尾小鼠和人类的铁和铁敏感通路的研究阐明了新的方面FGF23的调节,铁缺乏通过HIF-1α和EPO独立激活Fgf 23 mRNA表达以及iFGF23。同样的,Qian Zhang等[24]发现铁缺乏时HIF-1α的上调可能激活FGF 23基因转录,HIF-1α是FGF 23的有效转录激活因子。此外,Emily G等[21]经过体外实验验证,采用铁螯合剂进行处理能够明显激活MAPK信号通路,随后促进成骨细胞内FGF23基因的转录水平上调。上述研究表明,缺铁不仅是腹膜透析患者发生贫血的原因之一,还是FGF23升高的强效驱动因素。

3.2. FGF23与EPO

红细胞生成素缺乏是慢性肾脏病患者贫血的主要原因,且CAPD患者存在EPO低反应性。Ingo Flamme等[25]研究了在静脉内注射重组人促红细胞生成素(rhEPO)后2小时,诱导FGF23血浆水平达到峰值水平。并且有研究表明,Fgf-23缺陷小鼠的骨髓、肝脏和肾脏中Epo mRNA表达显著增加,将FGF23注射到野生型小鼠中观察到循环中的EPO水平以及红细胞的生成均有所下降[26]。在肾衰竭的小鼠模型中,抑制FGF23信号传导增加了定向于红系谱系的造血干细胞,刺激了红细胞生成,并改善了贫血[27]。并且,低l,25(0H)2D3水平可通过下调EPO受体表达影响贫血[28]。以上研究表明阻断FGF23信号是一种刺激红细胞生成的新方法,FGF23与红细胞生成双向调节的机制尚不清楚,可能与HIF有关[25] [29]

在腹膜透析患者中血清FGF23浓度增加,FGF23也可以抑制近端小管的1α-羟化酶和上调24-羟化酶来减少1,25(OH)2D3间接刺激炎症反应[30],影响铁调素–铁转运蛋白(Hepcidin ferroportin)轴等加重贫血[31]。低水平Ca2+可能会引起PTH水平增高,导致患者贫血[32]。铁代谢、促红细胞生成素(EPO)和炎症过程对FGF23的生成与分解有着显著影响,反之,FGF23也参与调控铁代谢、红细胞生成以及炎症反应的平衡。PD患者普遍存在FGF23水平升高及其相关并发症,这些研究成果在PD患者群体中的意义尤为突出。

4. FGF23与骨质疏松

慢性肾脏病相关矿物质与骨代谢异常(CKD-MBD)是一种涉及多系统的临床病理状态,其特征性表现为矿物质代谢稳态的失调。该综合征的核心病理生理改变包括:血清钙磷平衡紊乱、甲状旁腺功能异常、FGF23信号通路活化等。这些代谢异常可进一步引发骨转换障碍,形成矿物质代谢与骨重塑之间的恶性循环,还会致使血管钙化以及其他软组织钙化现象发生[33],对于需接受肾脏替代治疗(体外透析或腹膜透析)的患者来说,它不仅是一种严重并发症,更是与死亡风险密切相关的重要因素[34]。其中骨质疏松症(osteoporosis, OP)在临床中颇为常见,其特征表现为骨量减少和骨组织微结构受损,进而增加骨脆性并易引发骨折。曹倩颖等[35]选择测定患者股骨近端的骨密度发现PD患者的骨质疏松发生率达52.20%,与其他学者对腹膜透析患者中骨质疏松的研究结果基本一致[36] [37],此外,接受透析治疗的患者骨折风险较无慢性肾脏病者高出四倍以上[38],说明我国腹膜透析患者骨质疏松的发生率较高。FGF23是近年来新发现可同时表达于骨和肾的重要因子。为CKD患者早期预防或治疗骨质疏松提供一个新的靶点。

随着肾功能的渐进性减退,患者体内出现矿物质代谢紊乱,尤其是钙磷代谢异常,这可能导致继发性甲状旁腺功能亢进(SHPT)和骨转化异常,进而诱发或加剧骨质疏松症(osteoporosis)的发展,增加CKD患者的病死率,高PTH和低1,25(OH)2D3水平是导致这种代谢紊乱的病理机制之一,然而,这一现象并不能全面阐释其复杂的病理机制[39]。FGF23是近期研究揭示的一种关键调节因子,它能够在骨骼和肾脏组织中双重表达,并在矿物质代谢中扮演着至关重要的角色。ESRD透析患者血清FGF23水平与钙磷代谢及临床预后密切相关[40]。有研究显示[41],腹透患者随着肾功能下降,骨质丢失程度加重,发生骨质疏松的风险增加。2009年美国肾脏病预后生存指南中的矿物质和骨代谢指南指出[42],FGF23是血磷的关键调控因子,能充当预测慢性肾脏病(CKD)发展进程,以及CKD透析患者死亡风险的生物学标志物,还有望在未来为矿物质与骨代谢的调控提供指引方向。通过对49名行维持性循环腹膜透析肾衰竭儿童,发现FGF23水平与类骨质厚度和类骨质矿化加速率呈负相关[43]。在老年慢性肾脏病(CKD)患者群体中,相较于无骨折组,骨折组的1,25(OH)2D水平呈现下降趋势,而FGF23水平则表现为上升趋势[44]。在PD患者中,随着肾功能的下降,FGF23升高,以上研究提示FGF23表达可能与腹透患者OP密切相关。研究FGF23在腹透患者骨质疏松中的作用有助于更深入地理解这种疾病的病理机制,并可能为开发新的治疗方法提供线索。

5. FGF23与炎症

炎症在PD患者中十分常见,腹膜组织长期接触高渗透压、高葡萄糖浓度及酸性乳酸盐环境的透析液,可导致糖基化终末产物的前体物质(GDP)在腹腔内逐渐积累,此类蓄积会触发机体多种蛋白质发生非糖基化反应,进一步助推糖基化终末产物(AGE)在体内形成堆积态势,对机体正常生理功能构成潜在威胁[45]。关于炎症和FGF23之间的相关性的报道存在矛盾[21] [46]-[48],但大多数人倾向于同意高FGF23水平与炎症相关。Karina等[49]发现实验性急性和慢性肾衰竭引起的高水平IL-6会导致高水平的颅骨mRNA和血清FGF23水平。其次,慢性炎症状态可通过多重信号通路调控FGF23基因表达。具体而言,促炎微环境能够:① 激活B淋巴细胞内NF-κB信号转导途径;② 促进活化T细胞核因子(NFAT)的核转位。这些转录因子可特异性识别并结合FGF23启动子区域的反应元件(RE),形成转录起始复合物,最终显著增强FGF23基因的转录活性[13]。并且,FGF23升高可以通过激活肝细胞上的FGFR4诱导炎症介质的产生。Zhang X等[50]研究通过对糖尿病肾病小鼠模型中的FGF23信号通路实施抑制,观察到小鼠肾脏的炎症反应有所缓解。

在慢性肾功能衰竭的病理进程中,Klotho蛋白表达下调与FGF23水平升高形成恶性循环。这种分子水平的失衡通过激活磷脂酶Cγ (PLCγ)/钙调磷酸酶(Calcineurin)/活化T细胞核因子(NFAT)信号级联反应,显著增强促炎因子的释放。临床研究证实,该信号通路的持续活化不仅加重系统性微炎症反应,还会加速靶器官损伤,最终导致患者临床预后显著恶化[51]。另有研究表明,FGF23通过与FGF受体2 (FGFR 2)的klotho非依赖性结合作用于嗜中性粒细胞。这种结合激活了中性粒细胞中的蛋白激酶A (PKA),随后抑制了信号中间体Rap 1的激活,并使中性粒细胞上的β2-整联蛋白失活,从而阻止了中性粒细胞募集到局部感染部位[52]。已有研究表明,在维持性血液透析(MHD)患者中,血清FGF23水平与C反应蛋白(CRP)之间存在显著正相关关系,同时微炎症状态与钙磷代谢紊乱密切相关[53]。这些研究表明,成纤维细胞生长因子23 (FGF23)水平的上升可能与炎症引发的死亡风险增加之间存在一种新的联系机制,FGF23与炎症因子之间的相互作用揭示了在慢性肾脏病(CKD)患者体内可能存在的一种恶性循环。这种循环中,FGF23和炎症因子的持续产生相互促进,提示其可能推动了PD患者面临的风险加剧,使得不良预后状况显著恶化。

综上,腹膜透析患者常存在FGF23水平升高的情况,其会引发恶性循环,造成肾单位持续受损。相关研究表明,血清FGF23水平一旦超过53 pg/mL,即可能推动CKD进展[10]。因此,定期监测FGF23水平并对其进行有效管控极为关键,可对患者预后的改善发挥积极作用。

NOTES

*通讯作者。

参考文献

[1] Han, N., Hong, S.H., Kim, Y.S., Kim, D.K., Kim, I., Ji, E., et al. (2017) Effect of Additive Calcium Administration on FGF23 Levels in Patients with Mild Chronic Kidney Disease Treated with Calcitriol: A Randomized, Open-Labeled Clinical Trial. Therapeutics and Clinical Risk Management, 13, 999-1007. [Google Scholar] [CrossRef
[2] Evenepoel, P., Meijers, B., Viaene, L., et al. (2010) Fibroblast Growth Factor-23 in Early Chronic Kidney Disease: Additional Support in Favor of a Phosphate-Centric Paradigm for the Patho-genesis of Secondary Hyperparathyroidism. Clinical Journal of the American Society of Nephrology, 5, 1268-1276.
[3] 杨悦悦, 常沁涛. FGF23在慢性肾脏病心血管并发症中的研究进展[J]. 安徽医学, 2025, 46(10): 1327-1331.
[4] Rausch, S. and Föller, M. (2022) The Regulation of FGF23 under Physiological and Pathophysiolog-ical Conditions. European Journal of Physiology, 474, 281-292. [Google Scholar] [CrossRef
[5] Martínez-Heredia, L., Canelo-Moreno, J.M., García-Fontana, B. and Muñoz-Torres, M. (2024) Non-Classical Effects of FGF23: Molecular and Clinical Features. International Journal of Molecular Sciences, 25, Article 4875. [Google Scholar] [CrossRef
[6] Chen, Y., Mao, C., Gu, R., Zhao, R., Li, W., Ma, Z., et al. (2022) Nidogen-2 Is a Novel Endogenous Ligand of LGR4 to Inhibit Vascular Calcification. Circulation Research, 131, 1037-1054. [Google Scholar] [CrossRef
[7] Zununi Vahed, S., Mostafavi, S., Hosseiniyan Khatibi, S.M., Shoja, M.M. and Ardalan, M. (2020) Vascular Calcification: An Important Understanding in Nephrology. Vascular Health and Risk Management, 16, 167-180. [Google Scholar] [CrossRef
[8] Lau, W.L., Festing, M. and Giachelli, C. (2010) Phosphate and Vascu-lar Calcification: Emerging Role of the Sodium-Dependent Phosphate Co-Transporter Pit-1. Thrombosis and Haemosta-sis, 104, 464-470. [Google Scholar] [CrossRef
[9] Yao, L., Sun, Y., Sun, W., Xu, T., Ren, C., Fan, X., et al. (2015) High Phosphorus Level Leads to Aortic Calcification via Β-Catenin in Chronic Kidney Disease. American Journal of Neph-rology, 41, 28-36. [Google Scholar] [CrossRef
[10] Vergara, N., de Mier, M.V.P., Rodelo-Haad, C., Revilla-González, G., Membrives, C., Díaz-Tocados, J.M., et al. (2023) The Direct Effect of Fibroblast Growth Factor 23 on Vascular Smooth Muscle Cell Phenotype and Function. Nephrology Dialysis Transplantation, 38, 322-343. [Google Scholar] [CrossRef
[11] Wesseling-Perry, K. and Jüppner, H. (2013) The Osteocyte in CKD: New Concepts Regarding the Role of FGF23 in Mineral Metabolism and Systemic Complications. Bone, 54, 222-229. [Google Scholar] [CrossRef
[12] 任琳. 腹膜透析患者合并贫血的相关因素分析[D]: [硕士学位论文]. 合肥: 安徽医科大学, 2020.
[13] 兰秀君. 维持性血液透析患者血FGF23水平与肾性贫血的相关性研究[D]: [硕士学位论文]. 泸州: 西南医科大学, 2018.
[14] Usui, T., Zhao, J., Fuller, D.S., Hanafusa, N., Hasegawa, T., Fujino, H., et al. (2021) Association of Erythropoietin Resistance and Fibroblast Growth Factor 23 in Dialysis Patients: Results from the Japanese Dialysis Outcomes and Practice Patterns Study. Nephrology, 26, 46-53. [Google Scholar] [CrossRef
[15] Honda, H., Michihata, T., Shishido, K., Takahashi, K., Takahashi, G., Ho-saka, N., et al. (2017) High Fibroblast Growth Factor 23 Levels Are Associated with Decreased Ferritin Levels and In-creased Intravenous Iron Doses in Hemodialysis Patients. PLOS ONE, 12, e0176984. [Google Scholar] [CrossRef
[16] Baloglu, I., Ozer, H., Ozturk, Y., Erdur, M.F., Tonbul, H.Z. and Turkmen, K. (2022) The Relationship between FGF23 and Anemia in HD and Renal Transplant Patients. Interna-tional Urology and Nephrology, 54, 1117-1122. [Google Scholar] [CrossRef
[17] Batchelor, E.K., Kapitsinou, P., Pergola, P.E., Kovesdy, C.P. and Jalal, D.I. (2020) Iron Deficiency in Chronic Kidney Disease: Updates on Pathophysiology, Diagnosis, and Treat-ment. Journal of the American Society of Nephrology, 31, 456-468. [Google Scholar] [CrossRef
[18] Farrow, E.G., Yu, X., Summers, L.J., et al. (2011) Iron Deficiency Drives an Autosomal Dominant Hypophosphatemic Rickets (ADHR) Phenotype in Fibroblast Growth Factor-23 (Fgf23) Knock-In Mice. Proceedings of the National Academy of Sciences of the United States of America, 108, E1146-E1155.
[19] Imel, E.A., Peacock, M., Gray, A.K., Padgett, L.R., Hui, S.L. and Econs, M.J. (2011) Iron Modifies Plasma FGF23 Differently in Autosomal Dominant Hypophosphatemic Rickets and Healthy Humans. The Journal of Clinical Endocrinology & Metabolism, 96, 3541-3549. [Google Scholar] [CrossRef
[20] Wolf, M., Koch, T.A. and Bregman, D.B. (2013) Effects of Iron Deficiency Anemia and Its Treatment on Fibroblast Growth Factor 23 and Phosphate Homeostasis in Women. Journal of Bone and Mineral Research, 28, 1793-1803. [Google Scholar] [CrossRef
[21] David, V., Martin, A., Isakova, T., Spaulding, C., Qi, L., Ramirez, V., et al. (2016) Inflammation and Functional Iron Deficiency Regulate Fibroblast Growth Factor 23 Production. Kidney Interna-tional, 89, 135-146. [Google Scholar] [CrossRef
[22] Wolf, M. and White, K.E. (2014) Coupling Fibroblast Growth Factor 23 Production and Cleavage: Iron Deficiency, Rickets, and Kidney Disease. Current Opinion in Nephrology and Hyperten-sion, 23, 411-419.
[23] Wheeler, J.A. and Clinkenbeard, E.L. (2019) Regulation of Fibroblast Growth Factor 23 by Iron, EPO, and HIF. Current Molecular Biology Reports, 5, 8-17. [Google Scholar] [CrossRef
[24] Zhang, Q., Doucet, M., Tomlinson, R.E., Han, X., Quarles, L.D., Collins, M.T., et al. (2016) The Hypoxia-Inducible Factor-1α Activates Ectopic Production of Fibroblast Growth Factor 23 in Tumor-Induced Osteomalacia. Bone Research, 4, Article 16011. [Google Scholar] [CrossRef
[25] Flamme, I., Ellinghaus, P., Urrego, D. and Krüger, T. (2017) FGF23 Expression in Rodents Is Directly Induced via Erythropoietin after Inhibition of Hypoxia Inducible Factor Proline Hy-droxylase. PLOS ONE, 12, e0186979. [Google Scholar] [CrossRef
[26] Coe, L.M., Madathil, S.V., Casu, C., Lanske, B., Rivella, S. and Sitara, D. (2014) FGF-23 Is a Negative Regulator of Prenatal and Postnatal Erythropoiesis. Journal of Biological Chemistry, 289, 9795-9810. [Google Scholar] [CrossRef
[27] Agoro, R., Montagna, A., Goetz, R., Aligbe, O., Singh, G., Coe, L.M., et al. (2018) Inhibition of Fibroblast Growth Factor 23 (FGF23) Signaling Rescues Renal Anemia. The FASEB Journal, 32, 3752-3764. [Google Scholar] [CrossRef
[28] Grabner, A., Amaral, A.P., Schramm, K., Singh, S., Sloan, A., Yanucil, C., et al. (2015) Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metabolism, 22, 1020-1032. [Google Scholar] [CrossRef
[29] Del Vecchio, L. and Locatelli, F. (2018) Investigational Hypox-ia-Inducible Factor Prolyl Hydroxylase Inhibitors (HIF-PHI) for the Treatment of Anemia Associated with Chronic Kid-ney Disease. Expert Opinion on Investigational Drugs, 27, 613-621. [Google Scholar] [CrossRef
[30] Hasegawa, H., Nagano, N., Urakawa, I., Yamazaki, Y., Iijima, K., Fujita, T., et al. (2010) Direct Evidence for a Causative Role of FGF23 in the Abnormal Renal Phosphate Handling and Vitamin D Metabolism in Rats with Early-Stage Chronic Kidney Disease. Kidney International, 78, 975-980. [Google Scholar] [CrossRef
[31] Francis, C. and David, V. (2016) Inflammation Regulates Fi-broblast Growth Factor 23 Production. Current Opinion in Nephrology and Hypertension, 25, 325-332. [Google Scholar] [CrossRef
[32] 金毅, 杨立川. 肾性贫血患者血清铁蛋白、TSAT、Cys C及维生素B12水平变化及临床意义[J]. 川北医学院学报, 2022, 37(8): 1067-1069+1085.
[33] 中国慢性肾脏病矿物质和骨异常诊治指南概要[J]. 肾脏病与透析肾移植杂志, 2019, 28(1): 52-57.
[34] Ketteler, M., Block, G.A., Evenepoel, P., Fukagawa, M., Herzog, C.A., McCann, L., et al. (2017) Executive Summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: What’s Changed and Why It Matters. Kid-ney International, 92, 26-36. [Google Scholar] [CrossRef
[35] 曹倩颖, 史亚男, 杨帆, 等. 血清骨硬化蛋白、骨特异碱性磷酸酶联合检测对腹膜透析患者骨质疏松的诊断价值[J]. 中国血液净化, 2024, 23(8): 581-585.
[36] 汤静, 陈蕴, 王冬雪, 等. 腹膜透析患者骨代谢与骨质疏松、腹主动脉钙化的相关性[J]. 中国骨质疏松杂志, 2023, 29(1): 52-57.
[37] 姜林森, 冯胜, 卢颖, 等. 尿毒症腹膜透析患者骨质疏松及危险因素[J]. 中国骨质疏松杂志, 2015, 21(6): 715-718.
[38] Vilaca, T., Salam, S., Schini, M., Harnan, S., Sutton, A., Poku, E., et al. (2020) Risks of Hip and Nonvertebral Fractures in Patients with CKD G3a-G5d: A Systematic Review and Me-ta-Analysis. American Journal of Kidney Diseases, 76, 521-532. [Google Scholar] [CrossRef
[39] Danese, M.D., Kim, J., Doan, Q.V., Dylan, M., Griffiths, R. and Chertow, G.M. (2006) PTH and the Risks for Hip, Vertebral, and Pelvic Fractures among Patients on Dialysis. American Journal of Kidney Diseases, 47, 149-156. [Google Scholar] [CrossRef
[40] 何贵珍. 终末期肾病透析患者血清FGF23水平与钙磷代谢及临床相关性[D]: [硕士学位论文]. 南昌: 南昌大学, 2020.
[41] 叶寅寅, 张道友, 汪裕伟. 腹膜透析患者骨密度测定与分析[J]. 皖南医学院学报, 2016, 35(5): 432-434.
[42] Bia, M., Adey, D.B., Bloom, R.D., Chan, L., Kulkarni, S. and Tomlanovich, S. (2010) KDOQI US Commentary on the 2009 KDIGO Clinical Practice Guideline for the Care of Kidney Transplant Recipients. American Journal of Kidney Diseases, 56, 189-218. [Google Scholar] [CrossRef
[43] Wesseling-Perry, K., Pereira, R.C., Wang, H., Elashoff, R.M., Sahney, S., Gales, B., et al. (2009) Relationship between Plasma Fibroblast Growth Factor-23 Concentration and Bone Mineralization in Children with Renal Failure on Peritoneal Dialysis. The Journal of Clinical Endocrinology & Metabo-lism, 94, 511-517. [Google Scholar] [CrossRef
[44] Kanda, E., Yoshida, M. and Sasaki, S. (2012) Ap-plicability of Fibroblast Growth Factor 23 for Evaluation of Risk of Vertebral Fracture and Chronic Kidney Dis-ease-Mineral Bone Disease in Elderly Chronic Kidney Disease Patients. BMC Nephrology, 13, Article No. 122. [Google Scholar] [CrossRef
[45] 王涵. 微炎症状态与腹膜透析[J]. 肾脏病与透析肾移植杂志, 2012, 21(2): 183-189.
[46] Braithwaite, V., Prentice, A.M., Doherty, C. and Prentice, A. (2012) FGF23 Is Correlated with Iron Status but Not with Inflammation and Decreases after Iron Supplementation: A Supplementation Study. Inter-national Journal of Pediatric Endocrinology, 2012, Article No. 27. [Google Scholar] [CrossRef
[47] Munoz Mendoza, J., Isakova, T., Cai, X., Bayes, L.Y., Faul, C., Scialla, J.J., et al. (2017) Inflammation and Elevated Levels of Fibroblast Growth Factor 23 Are Independent Risk Fac-tors for Death in Chronic Kidney Disease. Kidney International, 91, 711-719. [Google Scholar] [CrossRef
[48] Singh, S., Grabner, A., Yanucil, C., Schramm, K., Czaya, B., Krick, S., et al. (2016) Fibroblast Growth Factor 23 Directly Targets Hepatocytes to Promote Inflammation in Chronic Kidney Disease. Kidney International, 90, 985-996. [Google Scholar] [CrossRef
[49] Durlacher-Betzer, K., Hassan, A., Levi, R., Axelrod, J., Silver, J. and Naveh-Many, T. (2018) Interleukin-6 Contributes to the Increase in Fibroblast Growth Factor 23 Expression in Acute and Chronic Kidney Disease. Kidney International, 94, 315-325. [Google Scholar] [CrossRef
[50] Zhang, X., Guo, K., Xia, F., Zhao, X., Huang, Z. and Niu, J. (2018) FGF23C-Tail Improves Diabetic Nephropathy by Attenuating Renal Fibrosis and Inflammation. BMC Biotechnology, 18, Article No. 33. [Google Scholar] [CrossRef
[51] 高洪志, 邓跃毅, 胡聃. FGF23/FGFR4介导的PLCγ/Calcineurin/NFAT信号通路在慢性肾衰竭微炎症状态方面的研究进展[J]. 中国中西医结合肾病杂志, 2020, 21(11): 1019-1021.
[52] Rossaint, J., Unruh, M. and Zarbock, A. (2017) Fibroblast Growth Factor 23 Actions in In-flammation: A Key Factor in CKD Outcomes. Nephrology Dialysis Transplantation, 32, 1448-1453. [Google Scholar] [CrossRef
[53] 牟洪宾, 周刚, 赵传燕, 等. FGF23、Klotho蛋白及Lp-PLA2水平与血液透析患者微炎症状态、钙磷代谢紊乱的关系分析[J]. 湖南师范大学学报(医学版), 2022, 19(1): 224-227.