|
[1]
|
Han, N., Hong, S.H., Kim, Y.S., Kim, D.K., Kim, I., Ji, E., et al. (2017) Effect of Additive Calcium Administration on FGF23 Levels in Patients with Mild Chronic Kidney Disease Treated with Calcitriol: A Randomized, Open-Labeled Clinical Trial. Therapeutics and Clinical Risk Management, 13, 999-1007. [Google Scholar] [CrossRef]
|
|
[2]
|
Evenepoel, P., Meijers, B., Viaene, L., et al. (2010) Fibroblast Growth Factor-23 in Early Chronic Kidney Disease: Additional Support in Favor of a Phosphate-Centric Paradigm for the Patho-genesis of Secondary Hyperparathyroidism. Clinical Journal of the American Society of Nephrology, 5, 1268-1276.
|
|
[3]
|
杨悦悦, 常沁涛. FGF23在慢性肾脏病心血管并发症中的研究进展[J]. 安徽医学, 2025, 46(10): 1327-1331.
|
|
[4]
|
Rausch, S. and Föller, M. (2022) The Regulation of FGF23 under Physiological and Pathophysiolog-ical Conditions. European Journal of Physiology, 474, 281-292. [Google Scholar] [CrossRef]
|
|
[5]
|
Martínez-Heredia, L., Canelo-Moreno, J.M., García-Fontana, B. and Muñoz-Torres, M. (2024) Non-Classical Effects of FGF23: Molecular and Clinical Features. International Journal of Molecular Sciences, 25, Article 4875. [Google Scholar] [CrossRef]
|
|
[6]
|
Chen, Y., Mao, C., Gu, R., Zhao, R., Li, W., Ma, Z., et al. (2022) Nidogen-2 Is a Novel Endogenous Ligand of LGR4 to Inhibit Vascular Calcification. Circulation Research, 131, 1037-1054. [Google Scholar] [CrossRef]
|
|
[7]
|
Zununi Vahed, S., Mostafavi, S., Hosseiniyan Khatibi, S.M., Shoja, M.M. and Ardalan, M. (2020) Vascular Calcification: An Important Understanding in Nephrology. Vascular Health and Risk Management, 16, 167-180. [Google Scholar] [CrossRef]
|
|
[8]
|
Lau, W.L., Festing, M. and Giachelli, C. (2010) Phosphate and Vascu-lar Calcification: Emerging Role of the Sodium-Dependent Phosphate Co-Transporter Pit-1. Thrombosis and Haemosta-sis, 104, 464-470. [Google Scholar] [CrossRef]
|
|
[9]
|
Yao, L., Sun, Y., Sun, W., Xu, T., Ren, C., Fan, X., et al. (2015) High Phosphorus Level Leads to Aortic Calcification via Β-Catenin in Chronic Kidney Disease. American Journal of Neph-rology, 41, 28-36. [Google Scholar] [CrossRef]
|
|
[10]
|
Vergara, N., de Mier, M.V.P., Rodelo-Haad, C., Revilla-González, G., Membrives, C., Díaz-Tocados, J.M., et al. (2023) The Direct Effect of Fibroblast Growth Factor 23 on Vascular Smooth Muscle Cell Phenotype and Function. Nephrology Dialysis Transplantation, 38, 322-343. [Google Scholar] [CrossRef]
|
|
[11]
|
Wesseling-Perry, K. and Jüppner, H. (2013) The Osteocyte in CKD: New Concepts Regarding the Role of FGF23 in Mineral Metabolism and Systemic Complications. Bone, 54, 222-229. [Google Scholar] [CrossRef]
|
|
[12]
|
任琳. 腹膜透析患者合并贫血的相关因素分析[D]: [硕士学位论文]. 合肥: 安徽医科大学, 2020.
|
|
[13]
|
兰秀君. 维持性血液透析患者血FGF23水平与肾性贫血的相关性研究[D]: [硕士学位论文]. 泸州: 西南医科大学, 2018.
|
|
[14]
|
Usui, T., Zhao, J., Fuller, D.S., Hanafusa, N., Hasegawa, T., Fujino, H., et al. (2021) Association of Erythropoietin Resistance and Fibroblast Growth Factor 23 in Dialysis Patients: Results from the Japanese Dialysis Outcomes and Practice Patterns Study. Nephrology, 26, 46-53. [Google Scholar] [CrossRef]
|
|
[15]
|
Honda, H., Michihata, T., Shishido, K., Takahashi, K., Takahashi, G., Ho-saka, N., et al. (2017) High Fibroblast Growth Factor 23 Levels Are Associated with Decreased Ferritin Levels and In-creased Intravenous Iron Doses in Hemodialysis Patients. PLOS ONE, 12, e0176984. [Google Scholar] [CrossRef]
|
|
[16]
|
Baloglu, I., Ozer, H., Ozturk, Y., Erdur, M.F., Tonbul, H.Z. and Turkmen, K. (2022) The Relationship between FGF23 and Anemia in HD and Renal Transplant Patients. Interna-tional Urology and Nephrology, 54, 1117-1122. [Google Scholar] [CrossRef]
|
|
[17]
|
Batchelor, E.K., Kapitsinou, P., Pergola, P.E., Kovesdy, C.P. and Jalal, D.I. (2020) Iron Deficiency in Chronic Kidney Disease: Updates on Pathophysiology, Diagnosis, and Treat-ment. Journal of the American Society of Nephrology, 31, 456-468. [Google Scholar] [CrossRef]
|
|
[18]
|
Farrow, E.G., Yu, X., Summers, L.J., et al. (2011) Iron Deficiency Drives an Autosomal Dominant Hypophosphatemic Rickets (ADHR) Phenotype in Fibroblast Growth Factor-23 (Fgf23) Knock-In Mice. Proceedings of the National Academy of Sciences of the United States of America, 108, E1146-E1155.
|
|
[19]
|
Imel, E.A., Peacock, M., Gray, A.K., Padgett, L.R., Hui, S.L. and Econs, M.J. (2011) Iron Modifies Plasma FGF23 Differently in Autosomal Dominant Hypophosphatemic Rickets and Healthy Humans. The Journal of Clinical Endocrinology & Metabolism, 96, 3541-3549. [Google Scholar] [CrossRef]
|
|
[20]
|
Wolf, M., Koch, T.A. and Bregman, D.B. (2013) Effects of Iron Deficiency Anemia and Its Treatment on Fibroblast Growth Factor 23 and Phosphate Homeostasis in Women. Journal of Bone and Mineral Research, 28, 1793-1803. [Google Scholar] [CrossRef]
|
|
[21]
|
David, V., Martin, A., Isakova, T., Spaulding, C., Qi, L., Ramirez, V., et al. (2016) Inflammation and Functional Iron Deficiency Regulate Fibroblast Growth Factor 23 Production. Kidney Interna-tional, 89, 135-146. [Google Scholar] [CrossRef]
|
|
[22]
|
Wolf, M. and White, K.E. (2014) Coupling Fibroblast Growth Factor 23 Production and Cleavage: Iron Deficiency, Rickets, and Kidney Disease. Current Opinion in Nephrology and Hyperten-sion, 23, 411-419.
|
|
[23]
|
Wheeler, J.A. and Clinkenbeard, E.L. (2019) Regulation of Fibroblast Growth Factor 23 by Iron, EPO, and HIF. Current Molecular Biology Reports, 5, 8-17. [Google Scholar] [CrossRef]
|
|
[24]
|
Zhang, Q., Doucet, M., Tomlinson, R.E., Han, X., Quarles, L.D., Collins, M.T., et al. (2016) The Hypoxia-Inducible Factor-1α Activates Ectopic Production of Fibroblast Growth Factor 23 in Tumor-Induced Osteomalacia. Bone Research, 4, Article 16011. [Google Scholar] [CrossRef]
|
|
[25]
|
Flamme, I., Ellinghaus, P., Urrego, D. and Krüger, T. (2017) FGF23 Expression in Rodents Is Directly Induced via Erythropoietin after Inhibition of Hypoxia Inducible Factor Proline Hy-droxylase. PLOS ONE, 12, e0186979. [Google Scholar] [CrossRef]
|
|
[26]
|
Coe, L.M., Madathil, S.V., Casu, C., Lanske, B., Rivella, S. and Sitara, D. (2014) FGF-23 Is a Negative Regulator of Prenatal and Postnatal Erythropoiesis. Journal of Biological Chemistry, 289, 9795-9810. [Google Scholar] [CrossRef]
|
|
[27]
|
Agoro, R., Montagna, A., Goetz, R., Aligbe, O., Singh, G., Coe, L.M., et al. (2018) Inhibition of Fibroblast Growth Factor 23 (FGF23) Signaling Rescues Renal Anemia. The FASEB Journal, 32, 3752-3764. [Google Scholar] [CrossRef]
|
|
[28]
|
Grabner, A., Amaral, A.P., Schramm, K., Singh, S., Sloan, A., Yanucil, C., et al. (2015) Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metabolism, 22, 1020-1032. [Google Scholar] [CrossRef]
|
|
[29]
|
Del Vecchio, L. and Locatelli, F. (2018) Investigational Hypox-ia-Inducible Factor Prolyl Hydroxylase Inhibitors (HIF-PHI) for the Treatment of Anemia Associated with Chronic Kid-ney Disease. Expert Opinion on Investigational Drugs, 27, 613-621. [Google Scholar] [CrossRef]
|
|
[30]
|
Hasegawa, H., Nagano, N., Urakawa, I., Yamazaki, Y., Iijima, K., Fujita, T., et al. (2010) Direct Evidence for a Causative Role of FGF23 in the Abnormal Renal Phosphate Handling and Vitamin D Metabolism in Rats with Early-Stage Chronic Kidney Disease. Kidney International, 78, 975-980. [Google Scholar] [CrossRef]
|
|
[31]
|
Francis, C. and David, V. (2016) Inflammation Regulates Fi-broblast Growth Factor 23 Production. Current Opinion in Nephrology and Hypertension, 25, 325-332. [Google Scholar] [CrossRef]
|
|
[32]
|
金毅, 杨立川. 肾性贫血患者血清铁蛋白、TSAT、Cys C及维生素B12水平变化及临床意义[J]. 川北医学院学报, 2022, 37(8): 1067-1069+1085.
|
|
[33]
|
中国慢性肾脏病矿物质和骨异常诊治指南概要[J]. 肾脏病与透析肾移植杂志, 2019, 28(1): 52-57.
|
|
[34]
|
Ketteler, M., Block, G.A., Evenepoel, P., Fukagawa, M., Herzog, C.A., McCann, L., et al. (2017) Executive Summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: What’s Changed and Why It Matters. Kid-ney International, 92, 26-36. [Google Scholar] [CrossRef]
|
|
[35]
|
曹倩颖, 史亚男, 杨帆, 等. 血清骨硬化蛋白、骨特异碱性磷酸酶联合检测对腹膜透析患者骨质疏松的诊断价值[J]. 中国血液净化, 2024, 23(8): 581-585.
|
|
[36]
|
汤静, 陈蕴, 王冬雪, 等. 腹膜透析患者骨代谢与骨质疏松、腹主动脉钙化的相关性[J]. 中国骨质疏松杂志, 2023, 29(1): 52-57.
|
|
[37]
|
姜林森, 冯胜, 卢颖, 等. 尿毒症腹膜透析患者骨质疏松及危险因素[J]. 中国骨质疏松杂志, 2015, 21(6): 715-718.
|
|
[38]
|
Vilaca, T., Salam, S., Schini, M., Harnan, S., Sutton, A., Poku, E., et al. (2020) Risks of Hip and Nonvertebral Fractures in Patients with CKD G3a-G5d: A Systematic Review and Me-ta-Analysis. American Journal of Kidney Diseases, 76, 521-532. [Google Scholar] [CrossRef]
|
|
[39]
|
Danese, M.D., Kim, J., Doan, Q.V., Dylan, M., Griffiths, R. and Chertow, G.M. (2006) PTH and the Risks for Hip, Vertebral, and Pelvic Fractures among Patients on Dialysis. American Journal of Kidney Diseases, 47, 149-156. [Google Scholar] [CrossRef]
|
|
[40]
|
何贵珍. 终末期肾病透析患者血清FGF23水平与钙磷代谢及临床相关性[D]: [硕士学位论文]. 南昌: 南昌大学, 2020.
|
|
[41]
|
叶寅寅, 张道友, 汪裕伟. 腹膜透析患者骨密度测定与分析[J]. 皖南医学院学报, 2016, 35(5): 432-434.
|
|
[42]
|
Bia, M., Adey, D.B., Bloom, R.D., Chan, L., Kulkarni, S. and Tomlanovich, S. (2010) KDOQI US Commentary on the 2009 KDIGO Clinical Practice Guideline for the Care of Kidney Transplant Recipients. American Journal of Kidney Diseases, 56, 189-218. [Google Scholar] [CrossRef]
|
|
[43]
|
Wesseling-Perry, K., Pereira, R.C., Wang, H., Elashoff, R.M., Sahney, S., Gales, B., et al. (2009) Relationship between Plasma Fibroblast Growth Factor-23 Concentration and Bone Mineralization in Children with Renal Failure on Peritoneal Dialysis. The Journal of Clinical Endocrinology & Metabo-lism, 94, 511-517. [Google Scholar] [CrossRef]
|
|
[44]
|
Kanda, E., Yoshida, M. and Sasaki, S. (2012) Ap-plicability of Fibroblast Growth Factor 23 for Evaluation of Risk of Vertebral Fracture and Chronic Kidney Dis-ease-Mineral Bone Disease in Elderly Chronic Kidney Disease Patients. BMC Nephrology, 13, Article No. 122. [Google Scholar] [CrossRef]
|
|
[45]
|
王涵. 微炎症状态与腹膜透析[J]. 肾脏病与透析肾移植杂志, 2012, 21(2): 183-189.
|
|
[46]
|
Braithwaite, V., Prentice, A.M., Doherty, C. and Prentice, A. (2012) FGF23 Is Correlated with Iron Status but Not with Inflammation and Decreases after Iron Supplementation: A Supplementation Study. Inter-national Journal of Pediatric Endocrinology, 2012, Article No. 27. [Google Scholar] [CrossRef]
|
|
[47]
|
Munoz Mendoza, J., Isakova, T., Cai, X., Bayes, L.Y., Faul, C., Scialla, J.J., et al. (2017) Inflammation and Elevated Levels of Fibroblast Growth Factor 23 Are Independent Risk Fac-tors for Death in Chronic Kidney Disease. Kidney International, 91, 711-719. [Google Scholar] [CrossRef]
|
|
[48]
|
Singh, S., Grabner, A., Yanucil, C., Schramm, K., Czaya, B., Krick, S., et al. (2016) Fibroblast Growth Factor 23 Directly Targets Hepatocytes to Promote Inflammation in Chronic Kidney Disease. Kidney International, 90, 985-996. [Google Scholar] [CrossRef]
|
|
[49]
|
Durlacher-Betzer, K., Hassan, A., Levi, R., Axelrod, J., Silver, J. and Naveh-Many, T. (2018) Interleukin-6 Contributes to the Increase in Fibroblast Growth Factor 23 Expression in Acute and Chronic Kidney Disease. Kidney International, 94, 315-325. [Google Scholar] [CrossRef]
|
|
[50]
|
Zhang, X., Guo, K., Xia, F., Zhao, X., Huang, Z. and Niu, J. (2018) FGF23C-Tail Improves Diabetic Nephropathy by Attenuating Renal Fibrosis and Inflammation. BMC Biotechnology, 18, Article No. 33. [Google Scholar] [CrossRef]
|
|
[51]
|
高洪志, 邓跃毅, 胡聃. FGF23/FGFR4介导的PLCγ/Calcineurin/NFAT信号通路在慢性肾衰竭微炎症状态方面的研究进展[J]. 中国中西医结合肾病杂志, 2020, 21(11): 1019-1021.
|
|
[52]
|
Rossaint, J., Unruh, M. and Zarbock, A. (2017) Fibroblast Growth Factor 23 Actions in In-flammation: A Key Factor in CKD Outcomes. Nephrology Dialysis Transplantation, 32, 1448-1453. [Google Scholar] [CrossRef]
|
|
[53]
|
牟洪宾, 周刚, 赵传燕, 等. FGF23、Klotho蛋白及Lp-PLA2水平与血液透析患者微炎症状态、钙磷代谢紊乱的关系分析[J]. 湖南师范大学学报(医学版), 2022, 19(1): 224-227.
|