|
[1]
|
Yuan, P., Sun, T., Han, Z., Chen, Y. and Meng, Q. (2023) Uncovering the Genetic Links of Diabetic Erectile Dysfunction and Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Frontiers in Physiology, 14, Article ID: 1096677. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Chatterjee, B., Sarkar, M., Bose, S., Alam, M.T., Chaudhary, A.A., Dixit, A.K., et al. (2024) Micrornas: Key Modulators of Inflammation-Associated Diseases. Seminars in Cell & Developmental Biology, 154, 364-373. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ouyang, B., Han, D., Guo, Z., Deng, J., Li, W., Huang, L., et al. (2022) Altered Small Non-Coding RNA Expression Profiles of Extracellular Vesicles in the Prostatic Fluid of Patients with Chronic Pelvic Pain Syndrome. Experimental and Therapeutic Medicine, 23, Article No. 382. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Rosatti, S., Rojas, A.M.L., Moro, B., Suarez, I.P., Bologna, N.G., Chorostecki, U., et al. (2024) Principles of miRNA/miRNA Function in Plant mirna Processing. Nucleic Acids Research, 52, 8356-8369. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kim, H., Lee, Y. and Kim, V.N. (2024) The Biogenesis and Regulation of Animal microRNAs. Nature Reviews Molecular Cell Biology, 26, 276-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Liao, Z., Zheng, R. and Shao, G. (2022) Mechanisms and Application Strategies of miRNA-146a Regulating Inflammation and Fibrosis at Molecular and Cellular Levels (Review). International Journal of Molecular Medicine, 51, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tubita, V., Callejas‐Díaz, B., Roca‐Ferrer, J., Marin, C., Liu, Z., Wang, D.Y., et al. (2020) Role of microRNAs in Inflammatory Upper Airway Diseases. Allergy, 76, 1967-1980. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Herrnreiter, C.J., Luck, M.E., Cannon, A.R., Li, X. and Choudhry, M.A. (2024) Reduced Expression of miR-146a Potentiates Intestinal Inflammation Following Alcohol and Burn Injury. The Journal of Immunology, 212, 881-893. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhao, B., Zheng, J., Qiao, Y., Wang, Y., Luo, Y., Zhang, D., et al. (2021) Prostatic Fluid Exosome-Mediated microRNA-155 Promotes the Pathogenesis of Type IIIA Chronic Prostatitis. Translational Andrology and Urology, 10, 1976-1987. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Dülgeroğlu, Y. and Eroğlu, O. (2021) Serum Levels of miR-223-3p and miR-223-5p in Prostate Diseases. MicroRNA, 9, 303-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Fu, X., He, H., Li, C., Li, N., Jiang, S., Ge, H., et al. (2020) MicroRNA‐155 Deficiency Attenuates Inflammation and Oxidative Stress in Experimental Autoimmune Prostatitis in a TLR4‐Dependent Manner. The Kaohsiung Journal of Medical Sciences, 36, 712-720. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gronau, L., Duecker, R.P., Jerkic, S., Eickmeier, O., Trischler, J., Chiocchetti, A.G., et al. (2024) Dual Role of microRNA-146a in Experimental Inflammation in Human Pulmonary Epithelial and Immune Cells and Expression in Inflammatory Lung Diseases. International Journal of Molecular Sciences, 25, Article No. 7686. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hasanoğlu, S., Göncü, B., Yücesan, E., Atasoy, S., Kayali, Y. and Özten Kandaş, N. (2021) Investigating Differential miRNA Expression Profiling Using Serum and Urine Specimens for Detecting Potential Biomarkers for Early Prostate Cancer Diagnosis. Turkish Journal of Medical Sciences, 51, 1764-1774. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chung, K.Y., Quek, J.M., Neo, S.H. and Too, H.P. (2020) Polymer-Based Precipitation of Extracellular Vesicular miRNAs from Serum Improve Gastric Cancer miRNAs Biomarker Performance. The Journal of Molecular Diagnostics, 22, 610-618. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhao, G., Dai, Y., Xia, C., Xue, Y. and Xu, H. (2025) Serum Direct SMOS-qPCR: A Fast Approach for miRNAs Detection. Analytical Methods, 17, 2335-2341. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Khalilian, S., Abedinlou, H., Hussen, B.M., Imani, S.Z.H. and Ghafouri-Fard, S. (2022) The Emerging Role of miR-20b in Human Cancer and Other Disorders: Pathophysiology and Therapeutic Implications. Frontiers in Oncology, 12, Article ID: 985457. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wang, X., Tian, L. and Sun, Q. (2020) Diagnostic and Prognostic Value of Circulating miRNA-499 and miRNA-22 in Acute Myocardial Infarction. Journal of Clinical Laboratory Analysis, 34, 2410-2417. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhou, Y., Liu, Y., Zong, Z., Huang, H., Liang, L., Yang, X., et al. (2025) Rapid and Sensitive Detection of Exosomal microRNAs by Terahertz Metamaterials. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 330, Article ID: 125745. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Jin, W., Fei, X., Wang, X., Chen, F. and Song, Y. (2020) Circulating miRNAs as Biomarkers for Prostate Cancer Diagnosis in Subjects with Benign Prostatic Hyperplasia. Journal of Immunology Research, 2020, Article ID: 5873056. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Jo, H., Shim, K. and Jeoung, D. (2022) Potential of the miR-200 Family as a Target for Developing Anti-Cancer Therapeutics. International Journal of Molecular Sciences, 23, Article No. 5881. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Makada, H. and Singh, M. (2025) Hydrogels as Suitable miRNA Delivery Systems: A Review. Polymers, 17, Article No. 915. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, H. (2024) A Review of Nanotechnology in microRNA Detection and Drug Delivery. Cells, 13, Article No. 1277. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhang, P., Ouyang, Y., Sohn, Y.S., Nechushtai, R., Pikarsky, E., Fan, C., et al. (2021) pH-and miRNA-Responsive DNA-Tetrahedra/Metal-Organic Framework Conjugates: Functional Sense-and-Treat Carriers. ACS Nano, 15, 6645-6657. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Latifi, Z., Nikanfar, S., Khodavirdilou, R., Beirami, S.M., Khodavirdilou, L., Fattahi, A., et al. (2024) MicroRNAs as Diagnostic Biomarkers in Diabetes Male Infertility: A Systematic Review. Molecular Biology Reports, 52, Article No. 90. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Song, J., Wang, J., Liu, K., Xu, W., Sun, T. and Liu, J. (2022) The Role of microRNAs in Erectile Dysfunction: From Pathogenesis to Therapeutic Potential. Frontiers in Endocrinology, 13, Article ID: 1034043. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lou, L. and Zheng, W. (2022) MicroRNA 200a Contributes to the Smooth Muscle Cells Growth in Aged‐Related Erectile Dysfunction via Regulating Rho/ROCK Pathway. Andrologia, 54, e14503. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Meng, Q., Chen, Y., Cui, L., Wei, Y., Li, T. and Yuan, P. (2023) Comprehensive Analysis of Biological Landscape of Oxidative Stress-Related Genes in Diabetic Erectile Dysfunction. International Journal of Impotence Research, 36, 627-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Salgado-Hernández, S.V., Martínez-Retamoza, L., Ocadiz-Delgado, R., Pérez-Mora, S., Cedeño-Arboleda, G.E., Gómez-García, M.d.C., et al. (2024) miRNAs Dysregulated in Human Papillomavirus-Associated Benign Prostatic Lesions and Prostate Cancer. Cancers, 17, Article No. 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bolayırlı, I., Önal, B., Adıgüzel, M., Konukoğlu, D., Demirdağ, Ç., Kurtuluş, E., et al. (2022) The Clinical Significance of Circulating miR-21, miR-142, miR-143, and miR-146a in Patients with Prostate Cancer. Journal of Medical Biochemistry, 41, 191-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
KP, A., Kaliaperumal, K. and Sekar, D. (2024) microRNAs and Their Therapeutic Strategy in Phase I and Phase II Clinical Trials. Epigenomics, 16, 259-271. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Lu, D., Zhang, Q., Zheng, C., Li, J. and Yin, Z. (2024) DGNMDA: Dual Heterogeneous Graph Neural Network Encoder for miRNA-Disease Association Prediction. Bioengineering, 11, Article No. 1132. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Fang, Y., Wu, Q., Wang, F., Liu, Y., Zhang, H., Yang, C., et al. (2024) Aptamer‐RIBOTAC Strategy Enabling Tumor‐specific Targeted Degradation of MicroRNA for Precise Cancer Therapy. Small Methods, 9, e2400349. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Drobna-Śledzińska, M., Maćkowska-Maślak, N., Jaksik, R., Dąbek, P., Witt, M. and Dawidowska, M. (2022) CRISPRi for Specific Inhibition of miRNA Clusters and MiRNAs with High Sequence Homology. Scientific Reports, 12, Article No. 6297. [Google Scholar] [CrossRef] [PubMed]
|