结直肠无蒂锯齿状病变的诊疗进展
A Review of Progress in Diagnosis and Therapy of Colorectal Sessile Serrated Lesions
摘要: 结直肠无蒂锯齿状病变是结直肠癌锯齿状通路的关键前驱病变,具有高度恶变潜能,是导致间期结直肠癌的重要原因,近年来临床重要性日益凸显。因此,本文系统综述了无蒂锯齿状病变的最新研究进展。在分子层面,其特征主要为BRAF突变、CpG岛甲基化表型和微卫星不稳定性;在诊断方面,其内镜下常表现为扁平、边界不清、覆盖黏液帽的形态,诊断挑战巨大,而窄带成像、联动彩色成像等图像增强内镜以及新兴的人工智能技术有望显著提升其检出率与诊断准确性。在治疗上,应根据病变大小个体化选择切除方式,如冷圈套息肉切除术适用于<10 mm的病变,内镜下黏膜切除术及其衍生技术适用于更大病变,内镜下黏膜剥离术则用于复杂疑难病例。术后需根据病变大小、数量及是否伴异型增生制定风险分层随访策略。未来研究需致力于深化无蒂锯齿状病变的分子机制探索、优化内镜诊疗技术并推动人工智能的临床整合、规范切除后随访,从而最终有效降低由其引发的结直肠癌负担。
Abstract: Colorectal sessile serrated lesions are critical precursor lesions in the serrated pathway of colorectal cancer, characterized by high malignant potential and recognized as a significant cause of interval colorectal cancer. Their clinical importance has become increasingly prominent in recent years. Therefore, this article provides a systematic review of the latest research advances in sessile serrated lesions. At the molecular level, sessile serrated lesions are primarily characterized by BRAF mutations, the CpG island methylator phenotype, and microsatellite instability. Regarding diagnosis, sessile serrated lesions often present endoscopically as flat, ill-defined lesions covered by a mucus cap, posing significant diagnostic challenges. However, image-enhanced endoscopic techniques such as narrow-band imaging and linked color imaging, along with emerging artificial intelligence technologies, show great promise in significantly improving their detection rate and diagnostic accuracy. For treatment, the choice of resection technique should be individualized based on lesion size. Cold snare polypectomy is suitable for lesions <10 mm, endoscopic mucosal resection and its derivatives for larger lesions, and endoscopic submucosal dissection for complex and difficult cases. Postoperative risk-stratified follow-up strategies should be established based on lesion size, number, and the presence of dysplasia. Future research should focus on elucidating the molecular mechanisms of sessile serrated lesions, optimizing endoscopic diagnosis and treatment techniques, promoting the clinical integration of artificial intelligence, and standardizing post-resection follow-up. These efforts are essential to ultimately reduce the burden of colorectal cancer attributable to these lesions.
文章引用:章典, 胡伟玲. 结直肠无蒂锯齿状病变的诊疗进展[J]. 临床医学进展, 2025, 15(11): 1625-1637. https://doi.org/10.12677/acm.2025.15113264

1. 引言

结直肠癌(colorectal cancer, CRC)是女性第二大常见成人癌症,男性第三大常见癌症[1]。作为我国最常见的恶性肿瘤之一,随着近年来发病率和致死率的逐步上升,已成为影响国民健康的重要公共卫生问题。传统观点认为,结直肠腺癌主要由腺瘤性息肉发展而来[2]。但随着分子生物学研究进展和内镜技术发展,许多研究发现结直肠癌是由结肠上皮中特定基因突变发展而来,并概括了从正常组织到恶性肿瘤发生的3条主要途径:染色体不稳定途径、微卫星不稳定途径和锯齿状通路[3]。相比于传统的腺瘤–癌通路,锯齿状通路发展而来的CRC具有更快的发展速度和更高的恶性程度,估计约有三分之一的结直肠癌病例与此途径相关[4]。2019年世界卫生组织(WHO)在最新的消化系统肿瘤分类中,重新规范了这类病变的命名体系。首先明确将以往称为“无蒂锯齿状腺瘤或息肉”的病变更名为无蒂锯齿状病变(sessile serrated lesions, SSL),并系统归纳了锯齿状病变的术语与分类,分为增殖性息肉(hyperplastic Polyps, HP)、无蒂锯齿状病变、传统锯齿状腺瘤(traditional Serrated Adenoma, TSA)以及未分类锯齿状腺瘤这几个类别[5]

在这些病变中,SSL具有特殊的临床地位。它作为锯齿状通路的关键前驱病变,虽仅占所有结肠息肉的少数,却具有高度恶变潜能,是导致“间期”结直肠癌及部分进展迅速、转移风险高的肿瘤的重要原因[6]。然而,SSL在内镜下诊断仍面临挑战,其形态易与HP混淆[7],但二者在恶变风险上差异显著——HP极少恶变,SSL则可能迅速发展为异型增生或浸润癌。这种诊断上的困难与实际风险的差异,凸显了提高内镜识别水平、加强病变全流程管理在结直肠癌防治工作中的紧迫性与必要性。提升对SSL的识别能力,加强其检测、切除与监测,已成为当前结直肠癌筛查与早诊早治工作的核心环节,对降低结直肠癌发病与死亡风险具有重要意义。

2. 结直肠无蒂锯齿状病变的危险因素

SSL的发生发展与多种危险因素相关,这些因素可分为不可控与可控两大类。在不可控因素中,人口学特征呈现独特分布模式:与经典腺瘤不同,SSL的发生风险虽在50岁以上人群中有所升高,但并未呈现显著的随年龄增长趋势,且性别分布差异不明显[8]-[11]。种族背景则显示出明显相关性,白种人群的患病风险显著高于黑种人与亚洲人群,同时结直肠癌或锯齿状息肉家族史也被确认为重要的风险预测指标[11]-[13]

在可干预的生活方式因素中,吸烟展现出与SSL发病最稳定的正向关联。多项大规模流行病学研究证实,吸烟者罹患SSL的风险提升约2.5至3倍,这种关联在不同研究设计中均得到验证[14] [15]。酒精摄入,特别是长期过量饮酒,也与SSL风险增加存在一定相关性,风险比值介于1.1至1.8之间[16]。饮食结构方面,高脂饮食、红肉及加工肉制品的频繁摄入可能促进SSL发生,其潜在机制或与烹饪过程中产生的杂环胺类化合物有关,但具体通路仍需深入探索[17]

代谢因素与SSL的关联性研究呈现复杂图景。多项研究表明肥胖与SSL风险存在正相关,体重指数升高可能使风险增加约30% [14],然而部分研究未能复现这一结果,使得体重与SSL的确切关系尚存争议[16] [18]。血脂异常,特别是甘油三酯水平升高,被多项独立研究确认为潜在风险因素[19]。2型糖尿病也与SSL发生存在一定关联,但其独立作用程度仍需更多证据支持[20]

在保护性因素方面,阿司匹林及其他非甾体抗炎药物的规律使用显示出明确的预防价值。多项临床试验和荟萃分析证实,这类药物可使SSL发病风险降低约30%~40%,尤其对近端结肠病变的保护效应更为显著[12] [21]。关于微量营养素补充的研究则结论不一,虽然钙剂[22]与叶酸[21]可能具有一定保护作用,但目前证据强度仍不足以形成明确推荐。

综上所述,SSL的风险评估应综合考虑种族背景、家族遗传、生活方式及代谢特征等多维因素。针对吸烟、饮酒、高脂饮食等可干预风险因素的管控,结合适当药物预防策略,可能为高风险人群提供有效的初级预防途径。未来研究需进一步厘清各因素间的交互作用,并建立针对不同人群的精准风险预测模型。

3. 结直肠无蒂锯齿状病变的机制与特征

3.1. 分子生物学机制

结直肠癌的发生发展存在多条分子通路,其中锯齿状病变通路是仅次于经典“腺瘤–癌”途径的重要致癌机制。该通路的核心分子特征包括高频BRAF基因突变、CpG岛甲基化表型(CIMP)及微卫星不稳定性(MSI) [23],共同构成了从正常黏膜经微泡型增生性息肉、无蒂锯齿状病变(SSL),最终进展为结直肠癌的典型演化路径。表观遗传调控异常在此过程中发挥关键作用,尤其是CIMP-H型甲基化可通过沉默诸如HMLH1等错配修复基因[24] [25],导致基因组高度不稳定[26],进而驱动SSL经异型增生阶段发展为恶性肿瘤[27]。尽管KRAS突变在传统腺瘤及部分增生性息肉中较为常见,其在SSL中发生率较低,使得BRAF突变与CIMP的组合成为该通路的重要分子指征[28]

在生物标志物研究方面,除上述经典分子事件外,近年来陆续发现一批具有鉴别诊断潜力的新型标记物。例如,组织蛋白酶E(CTSE)与膜联蛋白A10 (ANXA10)在SSL组织中呈现高表达[29];S100P通过DNA低甲基化过度表达加快细胞生长,促使SSL进展到癌[30];细胞外基质蛋白AGRIN特异性表达于SSL黏膜肌层,显示出极高的组织特异性[31]。此外,三叶因子-1 (TFF1)及过氧化物还原蛋白-1 (Prdx1)也被证实参与SSL的凋亡抑制与氧化应激反应过程,具备作为体内检测靶点的潜力[32]。在转录组层面,包括CRYBA2、FSCN1、MUC6、SEMG1、TRNP1、ZIC2和ZIC5在内的七基因表达组合,能够有效区分SSL与形态相似的增生性息肉[33],其中MUC6的表达缺失被认为是SSL的独特性状之一[34]。值得注意的是,FSCN1、ZIC2等基因同时与Wnt/β-catenin等信号通路及患者预后密切相关,进一步强化了其临床转化价值[35] [36]

肠道菌群在锯齿状通路中的作用也日益受到关注。研究显示,核梭杆菌(Fusobacterium nucleatum)在右侧结肠的BRAF突变/CIMP-H/MSI-H型病变中富集,并与共识分子分型中的CMS1亚型密切相关,提示特定微生物群落可能通过调节局部微环境促进锯齿状肿瘤进展[37] [38]

尽管目前上述分子标志物在临床常规应用中仍面临验证样本量不足、标准化方法缺失等挑战,但它们作为驱动SSL发生发展的核心引擎,为精准诊断奠定了关键的生物学基础。理解BRAF突变、CIMP等经典分子特征,不仅能够解释SSL好发于近端结肠及其独特镜下形态的内在原因;诸如AGRIN、ANXA10等新型标志物的发现,更预示着未来可通过免疫组织化学或分子影像学技术,为内镜下难以定性的病变提供客观诊断依据。随着多组学整合分析及微生物宏基因组研究的深入,通过进一步阐明SSL的分子基础并开发高特异性生物标志物面板,有望显著提升结肠镜筛查中对这类高度恶变潜能病变的识别与干预能力,最终实现从分子机制到临床诊断实践的有效转化,降低间期结直肠癌的发生风险。

3.2. 组织学特征

SSL作为结直肠癌的重要前体病变,在2019年第五版WHO消化系统肿瘤分类中被明确定义为必须存在整体扭曲的隐窝结构。其诊断标准较既往更为精准,仅需满足至少一项关键形态特征即可确立诊断,包括隐窝沿黏膜肌层水平生长、隐窝基底部扩张、全隐窝锯齿状形态或隐窝不对称增殖[5]。这一修订取代了以往需要连续多个异常隐窝的诊断要求[39],凸显了对具有明确结构畸变的单个隐窝的诊断价值的认可。值得注意的是,对称性隐窝扩张或简单分支等非特异性改变不再纳入诊断依据[5]

在解剖分布上,SSL好发于近端结肠,约占所有锯齿状息肉的15%~25% [40]。组织学上,SSL与HP的关键区别在于其独特的隐窝结构异常,这种异常源于隐窝底部增殖中心的细胞迁移模式改变,导致细胞失去有序的管腔迁移特性[41]

当SSL进展至伴异型增生阶段(SSLD)时,其形态学表现呈现显著异质性[39]。目前公认存在两种主要亚型:肠型异型增生在细胞学特征上与传统腺瘤相似,表现为假复层排列的嗜碱性细胞;而锯齿状异型增生则具有独特的立方细胞形态、嗜酸性胞质及泡状核特征[5] [42]。尽管有学者提出更为细致的四分型方案,但WHO分类尚未正式采纳,且目前不推荐对SSLD进行异型增生分级[43]。若病变中出现符合传统腺瘤标准的高度异型增生或黏膜内癌成分,则应在诊断报告中明确描述。

尽管SSL在结直肠癌前体病变中占比不高,但由于其具有潜在的快速进展特性,准确识别和规范诊断对于结直肠癌的早期防治具有重要临床意义。当前诊断实践中的挑战主要源于活检标本的局限性及部分病变的不典型形态特征,因此对于内镜下发现的较大扁平病变建议实施完整切除,以确保病理评估的准确性。未来仍需进一步探索SSL与常规腺瘤在高级别异型增生阶段的形态学与分子特征差异,以完善针对晚期锯齿状病变的监测与治疗策略。

4. 结直肠无蒂锯齿状病变的诊断与挑战

4.1. 内镜下特征

SSL在内镜下具有一系列特征性表现,这些特征是临床识别与鉴别诊断的重要依据。SSL形态上多呈平坦或轻微隆起状,边界模糊不清,色泽与周围黏膜相近或略显苍白,直径大多超过5毫米[44]。其表面常覆盖着具有诊断提示意义的黏液帽,并呈现独特的“云雾状”外观,病灶边缘常附着黏液泡沫或粪便残渣[45] [46]

有研究证实,普通内镜下的大小超过5毫米、存在黏液帽和边界模糊这三个特征被证实是SSL的独立预测因子,三者结合的诊断准确性可达约78% [47]。SSL覆盖黏液帽和开放型的腺窝开口(pit pattern分型II-O型)是SSL与增生性息肉内窥镜下的重要区别[48] [49]。值得关注的是,SSL的异型增生转变可通过特定内镜特征进行预判。除了病灶直径增大外,巴黎分型中的0-Is型病变、III型或IV型腺管开口模式,以及NBI下显示的不规则血管构象,都与异型增生风险密切相关[50]。其中,不规则血管模式对并发癌变的识别具有极高的敏感性与特异性[48]

由于SSL形态扁平、颜色与周围组织相近、边界不清,上述内镜特征往往较为隐匿,传统结肠镜检查的检出率仍然存在较大差异,普通内镜下难以明确地诊断或鉴别SSL。

4.2. 影像增强内镜(IEE)的诊断应用

尽管SSL具有相对典型的内镜下特征,但其隐匿性仍导致常规检查漏诊率高,这使得影像增强内镜技术成为精准诊断的关键。随着内镜技术的快速发展,多种先进的成像模式被应用于SSL的检测与鉴别诊断,显著提升了病变的检出率与诊断准确性。

在传统白光内镜(WLI)基础上,图像增强内镜(IEE)技术通过优化组织对比度和血管可视化,为SSL识别提供了重要支持。窄带成像(Narrow-band imaging, NBI)作为广泛应用的技术之一,能够清晰显示SSL特征性的曲张微血管(VMV)和粗大分支血管(TBV)模式,同时可观察到腺体开口内的小黑点——这一特征与隐窝扩张的组织学改变密切相关[48]。更为重要的是,NBI联合放大内镜对识别SSL伴异型增生或癌变具有极高价值,能有效识别镜下特征例如中央凹陷和发红以及pit pattern分型等[51]

新一代IEE技术进一步拓展了诊断能力[52]。蓝光成像(Blue laser imaging, BLI)及其关联模式在SSL诊断中展现出与NBI相当的准确性,特别是在显示病变表面毛细血管和分支结构方面[53]。联动彩色成像(Linked color imaging, LCI)通过增强病变与周围黏膜的颜色对比度,使覆盖黏液帽的SSL呈现出特征性的集中红色,与背景黏膜形成鲜明对比。多项随机对照试验证实,LCI在SSL检测方面显著优于传统WLI,检出率提升近一倍,且与NBI具有相当的诊断效能[54] [55]

纹理和颜色增强成像(Texture and color enhancement imaging, TXI)作为2020年推出的新技术,能够选择性增强图像暗区亮度并突出细微的组织差异[56]。初步研究显示,TXI在锯齿状息肉成像方面优于WLI,但在血管模式显示上仍略逊于NBI。值得注意的是,不同IEE技术各有侧重:LCI和TXI擅长整体轮廓的展现和颜色对比的增强,而NBI和BLI则在微血管结构的精细显示方面更具优势[57]

除了电子染色技术,传统的色素内镜在SSL诊断中仍具有重要价值[58]。通过染料喷洒使病变表面结构显影,色素内镜能够清晰显示SSL的边界轮廓和II-O型腺管开口特征,这对较小病变的识别尤为有益[59]。放大内镜结合色素染色可达到最高的诊断准确性[60],但因其操作复杂、需要专业培训且设备成本较高,在基层医院的普及受到限制[61]。在临床实践中,结合多种特征可有效提高SSL诊断准确性。病变直径大于5毫米、边界模糊、表面黏液帽、云雾状外观以及位于近端结肠等特征的组合,对SSL诊断具有重要提示意义。近聚焦NBI (NF-NBI)作为一种折衷方案,兼具弱放大和电子染色功能,操作相对简便,在基层医院具有较好的推广价值[62]

近年来,人工智能(AI)辅助诊断系统的发展为SSL检测带来了新的突破。基于深度学习的计算机辅助诊断系统在息肉表征和分类方面已能达到与内镜专家相当的水平[63],对SSL识别的精确度可达0.86 [64],展现出良好的临床应用前景。然而,AI系统在鉴别SSL与微泡型增生性息肉(MVHP)方面仍面临挑战,这主要源于两类病变在形态学上的相似性[65]

4.3. 操作者因素与质量控制

先进的诊断技术最终需要由内镜医师来驾驭,因此操作者经验和对SSL的认识程度同样影响检出率。研究表明,延长退镜时间至9分钟可显著提高SSL检出率,从1.3%提升至4.0% [66]。将锯齿状病变检出率纳入结肠镜检查质量指标,并对内镜医师进行持续培训和反馈,被证实是提高SSL识别率的重要措施[67]

在此背景下,SSL的内镜诊断体系已逐步从单一白光观察,演进为融合多种影像增强内镜与人工智能的综合评估模式。未来发展方向应包括:优化各类IEE技术的适用场景,推动AI辅助诊断的临床整合,加强内镜医师专项技能训练,并建立统一的质量控制标准,从而系统提升SSL的早期诊断水平,有效预防间期癌发生。

需要强调的是,IEE与AI技术的实际应用在不同级别医疗机构中不可一概而论。在大型三级甲等医院或内镜中心,具备引进并成熟应用全套IEE及AI系统的技术与财力,这类机构应致力于技术深耕与模式输出,即建立标准化的诊断流程与培训体系,并开展前瞻性研究以验证新技术的临床效用与成本效益。对于广大的基层医院,全面配置高端设备既不经济也难以持续,其策略应侧重于实用性与可持续性。例如,优先推广操作简便、成本较低的近聚焦窄带成像(NF-NBI)技术;或通过区域医疗中心建立的AI云诊断平台,使基层医院能将内镜图像实时上传并获取辅助诊断报告,从而实现“基层检查、云端诊断”的协作模式。

尽管IEE与AI辅助诊断系统在SSL的识别中展现出巨大潜力,但在推广和应用时仍然面临诸多挑战。首先是技术壁垒与质量控制。无论是IEE还是AI,其诊断效能均高度依赖于操作医师的技能水平与规范操作,基层医师的相关培训亟待加强。其次是卫生经济学考量。高昂的设备购置与维护成本,以及AI系统持续更新的费用,需要在政策层面进行成本效益评估与支持。最后是诊断标准的统一性与人机协作的流程优化。如何将AI的判读结果无缝整合到医师的诊断决策流程中,并建立相应的责任认定机制,是技术真正落地前必须解决的制度性问题。

4.4. 非侵入性检查方法

当前针对结直肠癌的非侵入性筛查方法在检测SSL方面均存在明显局限性。传统的粪便潜血试验和免疫化学测试难以有效识别锯齿状息肉,因为这类病变通常不具有活跃的出血特性。尽管新近发展的多靶点粪便DNA测试展现出一定潜力[68],但其对于大型SSL的检出率仍然很低,仅能发现其中一小部分。同样,计算机断层扫描结肠造影(CTC)对于SSL这类扁平病变的检测效果也不理想,其诊断效能在很大程度上依赖于病变的形态学特征[69]。有研究直接比较了CTC与多靶点粪便DNA测试对高风险SSL的检出能力,结果显示CTC的检出率更高[70]。因此,对于拒绝接受结肠镜检查或倾向于选择无创筛查方式的患者而言,CTC可能是一个相对更优的替代方案。

4.5. 从精准诊断到个体化治疗

精准的诊断最终是为了指导有效的临床干预。对SSL内镜下特征的深刻理解及通过各项技术对其恶性潜能的准确评估,直接决定了治疗决策的制定:是选择即时切除还是定期随访?是采用简单的冷圈套切除术还是需要更彻底的内镜下黏膜剥离术?因此,下一部分将重点探讨,如何基于当前的诊断信息,制定个体化的治疗与长期随访策略,以闭环管理模式最大程度地降低SSL相关的癌变风险。

5. 治疗和随访策略

5.1. 内镜下切除方法

对结直肠SSL进行完全切除,是阻断其癌变进程、预防结直肠癌发生的核心治疗目标。其内镜下切除技术原则上与处理常规腺瘤的技术相通,具体术式的选择主要取决于病变的大小、形态以及是否伴有异型增生。

对于直径小于10 mm的小型SSL,冷圈套息肉切除术(Cold snare polypectomy, CSP)因其操作简便、安全性高而被确立为标准的治疗方式。大量研究证实,与传统热圈套切除术(hot snare polypectomy, HSP)相比,CSP在完全切除率上与之相当,却能显著降低延迟性出血和穿孔的风险,且不会引起息肉切除术后综合征,对于正在服用抗血栓药物的患者尤为安全[71]。欧洲胃肠道内镜学会的指南也明确推荐使用CSP来切除6~9 mm的无蒂息肉[72]

当病变直径增大至10 mm或以上时,治疗策略变得更为多样。内镜下黏膜切除术(Endoscopic mucosal resection, EMR)是处理此类较大病变的有效方法,尤其适用于伴有发育不良的SSL。近年来,冷圈套EMR (cold snare-EMR, CS-EMR)因其在SSL治疗中显示出极低的复发率和延迟出血风险,被认为是热圈套EMR (hot snare-EMR, HS-EMR)的理想替代方案,这主要得益于SSL黏膜层较薄的组织学特性[73] [74]。与此同时,单纯使用CSP或其分片切除模式(p-CSP)治疗 ≥ 10 mm甚至≥20 mm的大型SSL的探索也取得了积极成果。研究表明,p-CSP在技术成功率上与EMR相当,但在避免延迟出血和深部壁层损伤等严重不良事件方面展现出显著优势,使其有望成为大型SSL治疗的新标准[75] [76]。然而,p-CSP作为分片切除技术,其固有的局限性在于无法对切缘进行准确的病理学评估,这为判断是否达到完全切除带来了困难[77]。另一种创新技术是水下内镜黏膜切除术(Underwater Endoscopic Mucosal Resection, UEMR),该技术通过将肠腔充水,利用浮力使黏膜层与深部肌层自然分离,从而无需黏膜下注射即可进行切除[78]。研究显示,对于直径20~40 mm的大型良性结直肠息肉,UEMR在整体切除率方面优于传统EMR,且手术时间更短、复发率更低,被认为是切除此类大息肉的理想技术之一[79]

对于最大、最复杂的病变,特别是直径超过20 mm、伴有异型增生或怀疑有黏膜下浸润的“难治性”SSL,内镜下黏膜剥离术(Endoscopic submucosal dissection, ESD)被视作金标准。 ESD能够实现病变的整块切除,提供完整的标本以供精确的病理学评估,从而实现极高的初始治愈率和极低的局部复发率[80]。然而,ESD技术难度大、操作时间长、费用高昂,且出血和穿孔的发生率相对较高,限制了其在基层医院的普及。

为了在疗效、安全性和技术可行性之间取得平衡,一种名为“预切开EMR”(pre-cut EMR)的改良技术被提出。该技术结合了EMR和ESD的优点,在黏膜下注射后,使用圈套器头端对病变边缘进行预切开,再行圈套切除。这种方法显著降低了操作难度、手术时间和穿孔率,同时无需昂贵的专用刀具,为ESD技术尚不成熟的医院治疗较大面积的SSL提供了一个高质量的替代方案[81]

值得注意的是,由于SSL通常呈扁平状且边界模糊,尤其对于直径较大的病变,其不完全切除的风险显著高于传统腺瘤。因此,内镜医师的技能和经验、根据病变特征合理选择切除方式,是确保SSL被完全切除、预防术后残留和复发的关键[82]。此外,若术后病理提示存在浸润性癌,则需进一步评估并进行外科手术淋巴结清扫[83]

5.2. 随访策略

SSL切除后的内镜监测是预防其癌变的重要管理策略,国际主要指南的随访建议均基于病变大小、数量及是否伴异型增生来制定风险分层。对于低风险病变,即直径小于10 mm且无异型增生的SSL,若检出总数少于3个,英国胃肠病学会(BSG)建议每5年进行一次结肠镜复查。而当此类小息肉数量达到3个或以上时,其随访间隔则应缩短至每3年一次。对于高风险病变,其监测频率显著提高。直径达到或超过10 mm,或已伴有异型增生的SSL,在切除后通常建议每3年接受一次结肠镜检查[6] [84]。尤其是对于直径大于20 mm且行分片切除的大型病灶,鉴于其不完全切除与局部复发风险较高,指南推荐在术后3~6个月进行首次早期复查,以评估切除部位情况,并于一年后再次随访,此后的监测计划则需根据复查结果个体化制定[84] [85]

美国结直肠癌多学会工作组(US Multi-Society Task Force on Colorectal Cancer, USMSTF)的共识与上述原则基本一致,但针对多发小息肉的监测提供了更细致的区分:对于1~2个小于10 mm的SSL,建议5~10年后复查;3~4个者,建议3~5年后复查;若有5~10个,则应将间隔缩短至3年[86]。这种严密的术后监测体系旨在及时发现并处理局部复发,从而有效降低结直肠癌的发病率和病死率。

6. 总结与展望

无蒂锯齿状病变作为结直肠癌锯齿状通路的关键前驱病变,具有高度恶变潜能,是导致间期癌的重要原因。本文系统阐述了SSL在分子机制、组织学特征、危险因素、内镜诊断、治疗及随访等方面的最新进展。分子层面,BRAF突变、CIMP和MSI构成了其核心特征;内镜诊断中,图像增强技术与人工智能辅助系统显著提升了识别能力;治疗上则应依据病变大小与风险等级,个体化选用冷圈套息肉切除术、内镜下黏膜切除术、水下EMR或内镜下黏膜剥离术等术式。

尽管成果显著,SSL的全程管理仍面临诸多挑战。首先,需进一步探索其癌变分子机制,并推动新型生物标志物的临床转化。其次,应优化内镜诊断流程,普及图像增强技术,并深度融合AI以提高检出率与诊断客观性。再者,治疗策略需持续精细化,平衡根治性与安全性,并发展适宜技术以惠及基层。最后,必须强化内镜医师的专项培训,建立基于风险的标准化随访体系。通过多层面的协同进步,方能最终实现对SSL的精准防控,有效降低由其引发的结直肠癌的疾病负担。

为实现SSL的精准防控,我们进一步提出构建“多维度整合风险评估模型”的构想。该模型旨在融合三类核心信息以实现危险度分层与干预策略个体化:(1) 临床风险模块:纳入年龄、种族、吸烟史、结直肠癌家族史等因素,形成基础风险评分;(2) 内镜特征模块:利用AI图像分析技术量化病变大小、形态、边界与微血管结构,评估其宏观恶性潜能;(3) 分子病理模块:在条件允许时,对活检或切除标本进行检测,将BRAF突变状态、CIMP水平、MSI状态以及特定标志物(如MLH1甲基化)纳入评估体系,提供决定病变生物学行为的关键信息。通过上述模块的加权整合,可将患者划分为“低危”、“中危”、“高危”等级别,从而引导临床决策。例如,对兼具吸烟史、内镜下高危特征及CIMP-H分子表型的病变归类为“高危”,推荐更积极的治疗与密切随访。这一模型的建立与验证,是迈向SSL精准诊疗的关键一步,也将为最终降低其相关结直肠癌疾病负担提供系统性解决方案。

NOTES

*通讯作者。

参考文献

[1] Li, J., Ma, X., Chakravarti, D., Shalapour, S. and DePinho, R.A. (2021) Genetic and Biological Hallmarks of Colorectal Cancer. Genes & Development, 35, 787-820. [Google Scholar] [CrossRef] [PubMed]
[2] Xiong, L., Yang, X., Liu, H., Wu, X., Cai, T., Yuan, M., et al. (2025) Glutamic-Pyruvic Transaminase 1 Deficiency-Mediated Metabolic Reprogramming Facilitates Colorectal Adenoma-Carcinoma Progression. Science Translational Medicine, 17, eadp9805. [Google Scholar] [CrossRef] [PubMed]
[3] Sullivan, B.A., Noujaim, M. and Roper, J. (2022) Cause, Epidemiology, and Histology of Polyps and Pathways to Colorectal Cancer. Gastrointestinal Endoscopy Clinics of North America, 32, 177-194. [Google Scholar] [CrossRef] [PubMed]
[4] Leggett, B. and Whitehall, V. (2010) Role of the Serrated Pathway in Colorectal Cancer Pathogenesis. Gastroenterology, 138, 2088-2100. [Google Scholar] [CrossRef] [PubMed]
[5] Nagtegaal, I.D., Odze, R.D., Klimstra, D., Paradis, V., Rugge, M., Schirmacher, P., et al. (2020) The 2019 WHO Classification of Tumours of the Digestive System. Histopathology, 76, 182-188. [Google Scholar] [CrossRef] [PubMed]
[6] Huang, C.S., Farraye, F.A., Yang, S. and O’Brien, M.J. (2011) The Clinical Significance of Serrated Polyps. American Journal of Gastroenterology, 106, 229-240. [Google Scholar] [CrossRef] [PubMed]
[7] Schramm, C., Kaiser, M., Drebber, U., Gruenewald, I., Franklin, J., Kuetting, F., et al. (2016) Factors Associated with Reclassification of Hyperplastic Polyps after Pathological Reassessment from Screening and Surveillance Colonoscopies. International Journal of Colorectal Disease, 31, 319-325. [Google Scholar] [CrossRef] [PubMed]
[8] IJspeert, J.E.G., Bevan, R., Senore, C., Kaminski, M.F., Kuipers, E.J., Mroz, A., et al. (2017) Detection Rate of Serrated Polyps and Serrated Polyposis Syndrome in Colorectal Cancer Screening Cohorts: A European Overview. Gut, 66, 1225-1232. [Google Scholar] [CrossRef] [PubMed]
[9] Ijspeert, J.E.G., de Wit, K., van der Vlugt, M., et al. (2016) Prevalence, Distribution and Risk of Sessile Serrated Adenomas/Polyps at a Center with a High Adenoma Detection Rate and Experienced Pathologists. Endoscopy, 48, 740-746. [Google Scholar] [CrossRef] [PubMed]
[10] Schramm, C., Janhsen, K., Hofer, J., Toermer, H., Stelzer, A., Stenschke, F., et al. (2018) Detection of Clinically Relevant Serrated Polyps during Screening Colonoscopy: Results from Seven Cooperating Centers within the German Colorectal Screening Program. Endoscopy, 50, 993-1000. [Google Scholar] [CrossRef] [PubMed]
[11] Peery, A.F., Crockett, S.D., Murphy, C.C., Lund, J.L., Dellon, E.S., Williams, J.L., et al. (2019) Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. Gastroenterology, 156, 254-272.e11. [Google Scholar] [CrossRef] [PubMed]
[12] Bouwens, M.W.E., Winkens, B., Rondagh, E.J.A., Driessen, A.L., Riedl, R.G., Masclee, A.A.M., et al. (2013) Simple Clinical Risk Score Identifies Patients with Serrated Polyps in Routine Practice. Cancer Prevention Research, 6, 855-863. [Google Scholar] [CrossRef] [PubMed]
[13] Teriaky, A., Driman, D.K. and Chande, N. (2012) Outcomes of a 5-Year Follow-Up of Patients with Sessile Serrated Adenomas. Scandinavian Journal of Gastroenterology, 47, 178-183. [Google Scholar] [CrossRef] [PubMed]
[14] He, X., Wu, K., Ogino, S., Giovannucci, E.L., Chan, A.T. and Song, M. (2018) Association between Risk Factors for Colorectal Cancer and Risk of Serrated Polyps and Conventional Adenomas. Gastroenterology, 155, 355-373.e18. [Google Scholar] [CrossRef] [PubMed]
[15] Davenport, J.R., Su, T., Zhao, Z.G., et al. (2018) Modifiable Lifestyle Factors Associated with Risk of Sessile Serrated Polyps, Conventional Adenomas and Hyperplastic Polyps. Gut, 67, 456-465.
[16] Bailie, L., Loughrey, M.B. and Coleman, H.G. (2017) Lifestyle Risk Factors for Serrated Colorectal Polyps: A Systematic Review and Meta-Analysis. Gastroenterology, 152, 92-104. [Google Scholar] [CrossRef] [PubMed]
[17] Mosley, D., Su, T., Murff, H.J., Smalley, W.E., Ness, R.M., Zheng, W., et al. (2020) Meat Intake, Meat Cooking Methods, and Meat-Derived Mutagen Exposure and Risk of Sessile Serrated Lesions. The American Journal of Clinical Nutrition, 111, 1244-1251. [Google Scholar] [CrossRef] [PubMed]
[18] Burnett-Hartman, A.N., Passarelli, M.N., Adams, S.V., Upton, M.P., et al. (2013) Differences in Epidemiologic Risk Factors for Colorectal Adenomas and Serrated Polyps by Lesion Severity and Anatomical Site. American Journal of Epidemiology, 177, 625-637. [Google Scholar] [CrossRef] [PubMed]
[19] Wang, X., Zou, Y., Zhang, R., Teng, C., Ren, X., Zhang, H., et al. (2022) The Relationship between Serum Lipid Levels and Colorectal Serrated Lesions: A Systematic Review and Meta-Analysis. Frontiers in Physiology, 13, Article 984586. [Google Scholar] [CrossRef] [PubMed]
[20] Lui, R.N., Kyaw, M.H., Lam, T.Y.T., Ching, J.Y.L., Chan, V.C.W., Wong, M.C.S., et al. (2021) Prevalence and Risk Factors for Sessile Serrated Lesions in an Average Risk Colorectal Cancer Screening Population. Journal of Gastroenterology and Hepatology, 36, 1656-1662. [Google Scholar] [CrossRef] [PubMed]
[21] Wallace, K., Grau, M.V., Ahnen, D., Snover, D.C., Robertson, D.J., Mahnke, D., et al. (2009) The Association of Lifestyle and Dietary Factors with the Risk for Serrated Polyps of the Colorectum. Cancer Epidemiology, Biomarkers & Prevention, 18, 2310-2317. [Google Scholar] [CrossRef] [PubMed]
[22] Crockett, S.D., Barry, E.L., Mott, L.A., Ahnen, D.J., Robertson, D.J., Anderson, J.C., et al. (2019) Calcium and Vitamin D Supplementation and Increased Risk of Serrated Polyps: Results from a Randomised Clinical Trial. Gut, 68, 475-486. [Google Scholar] [CrossRef] [PubMed]
[23] Barault, L., Charon-Barra, C., Jooste, V., de la Vega, M.F., Martin, L., Roignot, P., et al. (2008) Hypermethylator Phenotype in Sporadic Colon Cancer: Study on a Population-Based Series of 582 Cases. Cancer Research, 68, 8541-8546. [Google Scholar] [CrossRef] [PubMed]
[24] Kang, G.H. (2011) Four Molecular Subtypes of Colorectal Cancer and Their Precursor Lesions. Archives of Pathology & Laboratory Medicine, 135, 698-703. [Google Scholar] [CrossRef] [PubMed]
[25] Bae, J.M., Kim, J.H. and Kang, G.H. (2016) Molecular Subtypes of Colorectal Cancer and Their Clinicopathologic Features, with an Emphasis on the Serrated Neoplasia Pathway. Archives of Pathology & Laboratory Medicine, 140, 406-412. [Google Scholar] [CrossRef] [PubMed]
[26] Kim, J.H. and Kang, G.H. (2014) Molecular and Prognostic Heterogeneity of Microsatellite-Unstable Colorectal Cancer. World Journal of Gastroenterology, 20, 4230-4243. [Google Scholar] [CrossRef] [PubMed]
[27] O’Brien, M.J., Yang, S., Mack, C., Xu, H., Huang, C.S., Mulcahy, E., et al. (2006) Comparison of Microsatellite Instability, CpG Island Methylation Phenotype, BRAF and KRAS Status in Serrated Polyps and Traditional Adenomas Indicates Separate Pathways to Distinct Colorectal Carcinoma End Points. American Journal of Surgical Pathology, 30, 1491-1501. [Google Scholar] [CrossRef] [PubMed]
[28] Satorres, C., García-Campos, M. and Bustamante-Balén, M. (2021) Molecular Features of the Serrated Pathway to Colorectal Cancer: Current Knowledge and Future Directions. Gut and Liver, 15, 31-43. [Google Scholar] [CrossRef] [PubMed]
[29] Wang, X., Zhou, Y., Ning, L., Chen, J., Chen, H. and Li, X. (2023) Knockdown of ANXA10 Induces Ferroptosis by Inhibiting Autophagy-Mediated TFRC Degradation in Colorectal Cancer. Cell Death & Disease, 14, Article No. 588. [Google Scholar] [CrossRef] [PubMed]
[30] Takahashi, S., Okamoto, K., Tanahashi, T., Fujimoto, S., Nakagawa, T., Bando, M., et al. (2021) S100P Expression via DNA Hypomethylation Promotes Cell Growth in the Sessile Serrated Adenoma/Polyp-Cancer Sequence. Digestion, 102, 789-802. [Google Scholar] [CrossRef] [PubMed]
[31] Rickelt, S., Condon, C., Mana, M., Whittaker, C., Pfirschke, C., Roper, J., et al. (2020) Agrin in the Muscularis Mucosa Serves as a Biomarker Distinguishing Hyperplastic Polyps from Sessile Serrated Lesions. Clinical Cancer Research, 26, 1277-1287. [Google Scholar] [CrossRef] [PubMed]
[32] Sugai, T., Osakabe, M., Eizuka, M., Tanaka, Y., Yamada, S., Yanagawa, N., et al. (2022) Genome-Wide Analysis of mRNA Expression Identified the Involvement of Trefoil Factor 1 in the Development of Sessile Serrated Lesions. PathologyResearch and Practice, 236, Article 153987. [Google Scholar] [CrossRef] [PubMed]
[33] Kanth, P., Boylan, K.E., Bronner, M.P., Boucher, K.M., Hazel, M.W., Yao, R., et al. (2019) Molecular Biomarkers of Sessile Serrated Adenoma/Polyps. Clinical and Translational Gastroenterology, 10, e00104. [Google Scholar] [CrossRef] [PubMed]
[34] Tanaka, Y., Eizuka, M., Uesugi, N., Kawasaki, K., Yamano, H., Suzuki, H., et al. (2020) Traditional Serrated Adenoma Has Two Distinct Genetic Pathways for Molecular Tumorigenesis with Potential Neoplastic Progression. Journal of Gastroenterology, 55, 846-857. [Google Scholar] [CrossRef] [PubMed]
[35] Marra, G. (2021) An “Expressionistic” Look at Serrated Precancerous Colorectal Lesions. Diagnostic Pathology, 16, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
[36] Li, Z., Shi, J., Zhang, N., Zheng, X., Jin, Y., Wen, S., et al. (2022) FSCN1 Acts as a Promising Therapeutic Target in the Blockade of Tumor Cell Motility: A Review of Its Function, Mechanism, and Clinical Significance. Journal of Cancer, 13, 2528-2539. [Google Scholar] [CrossRef] [PubMed]
[37] Kang, X., Zhang, R., Kwong, T.N., Lui, R.N., Wu, W.K., Sung, J.J., et al. (2021) Serrated Neoplasia in the Colorectum: Gut Microbiota and Molecular Pathways. Gut Microbes, 13, 1-12.
[38] Quaglio, A.E.V., Grillo, T.G., Oliveira, E.C.S.D., Stasi, L.C.D. and Sassaki, L.Y. (2022) Gut Microbiota, Inflammatory Bowel Disease and Colorectal Cancer. World Journal of Gastroenterology, 28, 4053-4060. [Google Scholar] [CrossRef] [PubMed]
[39] Scoazec, J.Y. and Couvelard, A. (2011) Pour Le Réseau Tenpath (Réseau National d’Expertise Pour le Diagnostic Anatomopathologique des Tumeurs Neuroendocrines Malignes de L’Adulte, Sporadiques et Familiales). The New WHO Classification of Digestive Neuroendocrine Tumors. Annales de Pathologie, 31, 88-92.
[40] Edwardson, N., Adsul, P., Gonzalez, Z., Pankratz, V.S., Parasher, G., English, K., et al. (2023) Sessile Serrated Lesion Detection Rates Continue to Increase: 2008-2020. Endoscopy International Open, 11, E107-E116. [Google Scholar] [CrossRef] [PubMed]
[41] 谢旋宇, 李恩. 结直肠无蒂锯齿状病变的特征和临床问题[J]. 岭南现代临床外科, 2023, 23(1): 88-94.
[42] Cenaj, O., Gibson, J. and Odze, R.D. (2018) Clinicopathologic and Outcome Study of Sessile Serrated Adenomas/Polyps with Serrated versus Intestinal Dysplasia. Modern Pathology, 31, 633-642. [Google Scholar] [CrossRef] [PubMed]
[43] Liu, C., Walker, N.I., Leggett, B.A., Whitehall, V.L., Bettington, M.L. and Rosty, C. (2017) Sessile Serrated Adenomas with Dysplasia: Morphological Patterns and Correlations with MLH1 Immunohistochemistry. Modern Pathology, 30, 1728-1738. [Google Scholar] [CrossRef] [PubMed]
[44] Shi, W., Zhang, Y., Ding, H., Xie, F., Chen, Y., Wong, M.C.S., et al. (2023) Discriminating Endoscopic Features of Sessile Serrated Lesions. Chinese Medical Journal, 136, 1237-1239. [Google Scholar] [CrossRef] [PubMed]
[45] Kahi, C.J., Vemulapalli, K.C., Snover, D.C., Abdel Jawad, K.H., Cummings, O.W. and Rex, D.K. (2015) Findings in the Distal Colorectum Are Not Associated with Proximal Advanced Serrated Lesions. Clinical Gastroenterology and Hepatology, 13, 345-351. [Google Scholar] [CrossRef] [PubMed]
[46] Langner, C. (2015) Serrated and Non-Serrated Precursor Lesions of Colorectal Cancer. Digestive Diseases, 33, 28-37. [Google Scholar] [CrossRef] [PubMed]
[47] Nishizawa, T., Yoshida, S., Toyoshima, A., Yamada, T., Sakaguchi, Y., Irako, T., et al. (2021) Endoscopic Diagnosis for Colorectal Sessile Serrated Lesions. World Journal of Gastroenterology, 27, 1321-1329. [Google Scholar] [CrossRef] [PubMed]
[48] Chino, A., Osumi, H., Kishihara, T., Morishige, K., Ishikawa, H., Tamegai, Y., et al. (2016) Advantages of Magnifying Narrow-Band Imaging for Diagnosing Colorectal Cancer Coexisting with Sessile Serrated Adenoma/Polyp. Digestive Endoscopy, 28, 53-59. [Google Scholar] [CrossRef] [PubMed]
[49] Nakao, Y., Saito, S., Ohya, T., Aihara, H., Arihiro, S., Kato, T., et al. (2013) Endoscopic Features of Colorectal Serrated Lesions Using Image-Enhanced Endoscopy with Pathological Analysis. European Journal of Gastroenterology & Hepatology, 25, 981-988. [Google Scholar] [CrossRef] [PubMed]
[50] Burgess, N.G., Pellise, M., Nanda, K.S., Hourigan, L.F., Zanati, S.A., Brown, G.J., et al. (2016) Clinical and Endoscopic Predictors of Cytological Dysplasia or Cancer in a Prospective Multi-Centre Study of Large Sessile Serrated Adenomas/Polyps. Gut, 65, 437-446. [Google Scholar] [CrossRef] [PubMed]
[51] Murakami, T., Sakamoto, N. and Nagahara, A. (2019) Clinicopathological Features, Diagnosis, and Treatment of Sessile Serrated Adenoma/Polyp with Dysplasia/Carcinoma. Journal of Gastroenterology and Hepatology, 34, 1685-1695. [Google Scholar] [CrossRef] [PubMed]
[52] Yoshida, N., Hisabe, T., Ikematsu, H., Ishihara, H., Terasawa, M., Inaba, A., et al. (2020) Comparison between Linked Color Imaging and Blue Laser Imaging for Improving the Visibility of Flat Colorectal Polyps: A Multicenter Pilot Study. Digestive Diseases and Sciences, 65, 2054-2062. [Google Scholar] [CrossRef] [PubMed]
[53] Higurashi, T., Ashikari, K., Tamura, S., Takatsu, T., Misawa, N., Yoshihara, T., et al. (2022) Comparison of the Diagnostic Performance of NBI, Laser-BLI and LED-BLI: A Randomized Controlled Noninferiority Trial. Surgical Endoscopy, 36, 7577-7587. [Google Scholar] [CrossRef] [PubMed]
[54] Suzuki, S., Aniwan, S., Chiu, H., Laohavichitra, K., Chirapongsathorn, S., Yamamura, T., et al. (2023) Linked-Color Imaging Detects More Colorectal Adenoma and Serrated Lesions: An International Randomized Controlled Trial. Clinical Gastroenterology and Hepatology, 21, 1493-1502.e4. [Google Scholar] [CrossRef] [PubMed]
[55] Li, J., Zhang, D., Wei, Y., Chen, K., Wu, R., Peng, K., et al. (2023) Colorectal Sessile Serrated Lesion Detection Using Linked Color Imaging: A Multicenter, Parallel Randomized Controlled Trial. Clinical Gastroenterology and Hepatology, 21, 328-336.e2. [Google Scholar] [CrossRef] [PubMed]
[56] Abe, S., Makiguchi, M.E., Nonaka, S., Suzuki, H., Yoshinaga, S. and Saito, Y. (2022) Emerging Texture and Color Enhancement Imaging in Early Gastric Cancer. Digestive Endoscopy, 34, 714-720. [Google Scholar] [CrossRef] [PubMed]
[57] Nishizawa, T., Toyoshima, O., Yoshida, S., Uekura, C., Kurokawa, K., Munkhjargal, M., et al. (2021) TXI (Texture and Color Enhancement Imaging) for Serrated Colorectal Lesions. Journal of Clinical Medicine, 11, Article 119. [Google Scholar] [CrossRef] [PubMed]
[58] Leung, J.W., Yen, A.W., Jia, H., et al. (2019) A Prospective RCT Comparing Combined Chromoendoscopy with Water Exchange (CWE) vs Water Exchange (WE) vs Air Insufflation (AI) in Adenoma Detection in Screening Colonoscopy. United European Gastroenterology Journal, 7, 477-487. [Google Scholar] [CrossRef] [PubMed]
[59] Kimura, T., Yamamoto, E., Yamano, H., Suzuki, H., Kamimae, S., Nojima, M., et al. (2012) A Novel Pit Pattern Identifies the Precursor of Colorectal Cancer Derived from Sessile Serrated Adenoma. American Journal of Gastroenterology, 107, 460-469. [Google Scholar] [CrossRef] [PubMed]
[60] Uraoka, T., Higashi, R., Horii, J., Harada, K., Hori, K., Okada, H., et al. (2015) Prospective Evaluation of Endoscopic Criteria Characteristic of Sessile Serrated Adenomas/Polyps. Journal of Gastroenterology, 50, 555-563. [Google Scholar] [CrossRef] [PubMed]
[61] Nishizawa, T., Watanabe, H., Yoshida, S., Matsuno, T., Nakagawa, H., Tamada, K., et al. (2024) Hyperplastic Polyp-Like Adenoma: A Subtype of Colonic Adenoma with a Proliferative Zone Confined to the Lower Two-Thirds of the Crypt. Scandinavian Journal of Gastroenterology, 59, 378-383. [Google Scholar] [CrossRef] [PubMed]
[62] Messick, C.A., Church, J., Bennett, A. and Kalady, M.F. (2012) Serrated Polyps: New Classifications Highlight Clinical Importance. Colorectal Disease, 14, 1328-1337. [Google Scholar] [CrossRef] [PubMed]
[63] Houwen, B.B.S.L., Hazewinkel, Y., Giotis, I., Vleugels, J.L.A., Mostafavi, N.S., van Putten, P., et al. (2023) Computer-aided Diagnosis for Optical Diagnosis of Diminutive Colorectal Polyps Including Sessile Serrated Lesions: A Real-Time Comparison with Screening Endoscopists. Endoscopy, 55, 756-765. [Google Scholar] [CrossRef] [PubMed]
[64] Li, T., Glissen Brown, J.R., Tsourides, K., Mahmud, N., Cohen, J.M. and Berzin, T.M. (2020) Training a Computer-Aided Polyp Detection System to Detect Sessile Serrated Adenomas Using Public Domain Colonoscopy Videos. Endoscopy International Open, 8, E1448-E1454. [Google Scholar] [CrossRef] [PubMed]
[65] Nemoto, D., Guo, Z., Peng, B., Zhang, R., Nakajima, Y., Hayashi, Y., et al. (2022) Computer-aided Diagnosis of Serrated Colorectal Lesions Using Non-Magnified White-Light Endoscopic Images. International Journal of Colorectal Disease, 37, 1875-1884. [Google Scholar] [CrossRef] [PubMed]
[66] Zhao, S., Yang, X., Wang, S., Meng, Q., Wang, R., Bo, L., et al. (2022) Impact of 9-Minute Withdrawal Time on the Adenoma Detection Rate: A Multicenter Randomized Controlled Trial. Clinical Gastroenterology and Hepatology, 20, e168-e181. [Google Scholar] [CrossRef] [PubMed]
[67] Bleijenberg, A.G.C., van Leerdam, M.E., Bargeman, M., Koornstra, J.J., van Herwaarden, Y.J., Spaander, M.C., et al. (2020) Substantial and Sustained Improvement of Serrated Polyp Detection after a Simple Educational Intervention: Results from a Prospective Controlled Trial. Gut, 69, 2150-2158. [Google Scholar] [CrossRef] [PubMed]
[68] Eckmann, J.D., Ebner, D.W. and Kisiel, J.B. (2020) Multi-Target Stool DNA Testing for Colorectal Cancer Screening: Emerging Learning on Real-World Performance. Current Treatment Options in Gastroenterology, 18, 109-119. [Google Scholar] [CrossRef] [PubMed]
[69] IJspeert, J.E.G., Nolthenius, C.J.T., Kuipers, E.J., van Leerdam, M.E., Nio, C.Y., Thomeer, M.G.J., et al. (2016) Ct-colonography vs. Colonoscopy for Detection of High-Risk Sessile Serrated Polyps. American Journal of Gastroenterology, 111, 516-522. [Google Scholar] [CrossRef] [PubMed]
[70] Deiss-Yehiely, N., Graffy, P.M., Weigman, B., Hassan, C., Matkowskyj, K.A., Pickhardt, P.J., et al. (2022) Detection of High-Risk Sessile Serrated Lesions: Multitarget Stool DNA versus CT Colonography. American Journal of Roentgenology, 218, 670-676. [Google Scholar] [CrossRef] [PubMed]
[71] Winston, K., Maulahela, H., Raharjo, D.E., et al. (2023) A Comparative Analysis of the Efficacy and Safety of Hot Snare Polypectomy and Cold Snare Polypectomy for Removing Small Colorectal Polyps: A Systematic Review and Meta-Analysis. Cureus, 15, e38713.
[72] Ferlitsch, M., Moss, A., Hassan, C., Bhandari, P., Dumonceau, J., Paspatis, G., et al. (2017) Colorectal Polypectomy and Endoscopic Mucosal Resection (EMR): European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Endoscopy, 49, 270-297. [Google Scholar] [CrossRef] [PubMed]
[73] Thoguluva Chandrasekar, V., Spadaccini, M., Aziz, M., Maselli, R., Hassan, S., Fuccio, L., et al. (2019) Cold Snare Endoscopic Resection of Nonpedunculated Colorectal Polyps Larger than 10 mm: A Systematic Review and Pooled-Analysis. Gastrointestinal Endoscopy, 89, 929-936.e3. [Google Scholar] [CrossRef] [PubMed]
[74] Thoguluva Chandrasekar, V., Aziz, M., Patel, H.K., Sidhu, N., Duvvuri, A., Dasari, C., et al. (2020) Efficacy and Safety of Endoscopic Resection of Sessile Serrated Polyps 10 Mm or Larger: A Systematic Review and Meta-Analysis. Clinical Gastroenterology and Hepatology, 18, 2448-2455.e3. [Google Scholar] [CrossRef] [PubMed]
[75] Li, D.F., van Overbeke, L., Ohata, K., et al. (2022) Efficacy and Safety of Cold Snare Polypectomy for Sessile Serrated Polyps ≥ 10 mm: A Systematic Review and Meta-Analysis. Digestive and Liver Disease, 54, 1486-1493. [Google Scholar] [CrossRef] [PubMed]
[76] van Hattem, W.A., Shahidi, N., Vosko, S., Hartley, I., Britto, K., Sidhu, M., et al. (2021) Piecemeal Cold Snare Polypectomy versus Conventional Endoscopic Mucosal Resection for Large Sessile Serrated Lesions: A Retrospective Comparison across Two Successive Periods. Gut, 70, 1691-1697. [Google Scholar] [CrossRef] [PubMed]
[77] Guan, H., Zeng, C. and Chen, Y. (2022) Letter to Editor: Piecemeal Cold Snare Polypectomy versus Conventional Endoscopic Mucosal Resection for Large Sessile Serrated Lesions. Gut, 71, Article 440. [Google Scholar] [CrossRef] [PubMed]
[78] Binmoeller, K.F., Weilert, F., Shah, J., Bhat, Y. and Kane, S. (2012) “Underwater” EMR without Submucosal Injection for Large Sessile Colorectal Polyps (with Video). Gastrointestinal Endoscopy, 75, 1086-1091. [Google Scholar] [CrossRef] [PubMed]
[79] Nagl, S., Ebigbo, A., Goelder, S.K., Roemmele, C., Neuhaus, L., Weber, T., et al. (2021) Underwater vs Conventional Endoscopic Mucosal Resection of Large Sessile or Flat Colorectal Polyps: A Prospective Randomized Controlled Trial. Gastroenterology, 161, 1460-1474.e1. [Google Scholar] [CrossRef] [PubMed]
[80] Terasaki, M., Tanaka, S., Oka, S., Nakadoi, K., Takata, S., Kanao, H., et al. (2012) Clinical Outcomes of Endoscopic Submucosal Dissection and Endoscopic Mucosal Resection for Laterally Spreading Tumors Larger than 20 mm. Journal of Gastroenterology and Hepatology, 27, 734-740. [Google Scholar] [CrossRef] [PubMed]
[81] 张龙杰, 段淑芬. 圈套器头端预切开内镜下黏膜切除术在结肠无蒂锯齿状病变的临床研究[J]. 现代消化及介入诊疗, 2022, 27(3): 322-325.
[82] Pellise, M., Burgess, N.G., Tutticci, N., Hourigan, L.F., Zanati, S.A., Brown, G.J., et al. (2017) Endoscopic Mucosal Resection for Large Serrated Lesions in Comparison with Adenomas: A Prospective Multi-Centre Study of 2000 Lesions. Gut, 66, 644-653. [Google Scholar] [CrossRef] [PubMed]
[83] Murakami, T., Kurosawa, T., Fukushima, H., Shibuya, T., Yao, T. and Nagahara, A. (2022) Sessile Serrated Lesions: Clinicopathological Characteristics, Endoscopic Diagnosis, and Management. Digestive Endoscopy, 34, 1096-1109. [Google Scholar] [CrossRef] [PubMed]
[84] East, J.E., Atkin, W.S., Bateman, A.C., Clark, S.K., Dolwani, S., Ket, S.N., et al. (2017) British Society of Gastroenterology Position Statement on Serrated Polyps in the Colon and Rectum. Gut, 66, 1181-1196. [Google Scholar] [CrossRef] [PubMed]
[85] Shichijo, S., Yamaguchi, S., Nakamatsu, D., Inoue, T., Nakahara, M., Ogiyama, H., et al. (2022) Local Recurrence after Endoscopic Resection of Sessile Serrated Lesions: A Multicenter Prospective Study by the Osaka Gut Forum. Journal of Gastroenterology and Hepatology, 37, 2306-2312. [Google Scholar] [CrossRef] [PubMed]
[86] Gupta, S., Lieberman, D., Anderson, J.C., Burke, C.A., Dominitz, J.A., Kaltenbach, T., et al. (2020) Recommendations for Follow-Up after Colonoscopy and Polypectomy: A Consensus Update by the US Multi-Society Task Force on Colorectal Cancer. American Journal of Gastroenterology, 115, 415-434. [Google Scholar] [CrossRef] [PubMed]