肺功能检查在心力衰竭患者中的临床应用与研究进展
Clinical Application and Research Progress of Pulmonary Function Examination in Patients with Heart Failure
DOI: 10.12677/acm.2025.15113268, PDF, HTML, XML,   
作者: 韩逸初, 任景怡*, 孟 真:中日友好医院/北京协和医学院/中国医学科学院,北京
关键词: 心力衰竭肺功能检查心肺交互作用Heart Failure Pulmonary Function Test Cardiopulmonary Interaction
摘要: 随着人口老龄化加剧,全球心力衰竭(Heart Failure, HF)负担显著加重,我国患者超890万,但5年生存率不足50%,且临床上存在“心肺分离”的问题——HF指南暂未将肺功能检查纳入常规,而HF患者常伴有的呼吸困难、肺功能异常与HF的发生、发展密切相关。本文系统梳理HF患者肺功能异常的流行病学特征、肺功能检查在HF中的临床应用价值及异常肺功能对HF的双向作用机制。现有研究表明,HF患者肺功能异常率可高达60%以上,以限制型通气障碍为主,且为HF发病及不良预后的独立预测因子;肺功能检查可用于HF的诊断鉴别、病情评估、治疗监测及康复指导等方面,其异常机制涉及血流动力学异常、肺血管重构等多重环节。由此可见,肺功能检查对HF“心肺一体化”管理具有重要临床价值,需进一步推动其在HF诊疗中的规范化应用,并探索相关干预策略以改善患者预后。
Abstract: With the intensification of population aging, the global burden of heart failure (HF) has increased significantly. The number of HF patients in China exceeds 8.9 million, yet the 5-year survival rate is less than 50%. Clinically, there exists a problem of “cardiopulmonary dissociation”—HF guidelines have not yet incorporated pulmonary function tests (PFTs) into routine practice, while dyspnea and abnormal pulmonary function, which are frequently observed in HF patients, are closely associated with the onset and progression of HF. This article systematically reviews the epidemiological characteristics of abnormal pulmonary function in HF patients, the clinical application value of PFTs in HF, and the bidirectional mechanism of action between abnormal pulmonary function and HF. Existing studies have shown that the prevalence of abnormal pulmonary function in HF patients can be as high as over 60%, mainly dominated by restrictive ventilatory dysfunction, and it serves as an independent predictor of HF incidence and adverse prognosis. PFTs can be applied in diagnostic differentiation, disease severity assessment, treatment monitoring, and rehabilitation guidance of HF, with the underlying mechanisms of pulmonary function abnormalities involving multiple links such as hemodynamic abnormalities and pulmonary vascular remodeling. Thus, PFTs hold significant clinical value for the “integrated cardiopulmonary management” of HF. It is necessary to further promote the standardized application of PFTs in the diagnosis and treatment of HF and explore relevant intervention strategies to improve patient prognosis.
文章引用:韩逸初, 任景怡, 孟真. 肺功能检查在心力衰竭患者中的临床应用与研究进展[J]. 临床医学进展, 2025, 15(11): 1659-1671. https://doi.org/10.12677/acm.2025.15113268

1. 引言

随着人口老龄化进程的不断加剧,全球HF疾病负担持续加重。据估计,全球HF的患病人数超过5600万人[1]-[3]。2022年中国心血管健康与疾病报告指出,我国目前HF患者人数超过890万人次[4]。与HF的高患病率形成鲜明对比的是,即使近年来人们对HF的认识不断加深、治疗手段不断更新,诊断为HF后的5年生存率仍不超过50% [1]-[3];在为期3年的China-HF第二阶段队列研究中,仍有2.8%的HF住院患者院内死亡或放弃治疗[5]。大多数HF患者就诊时都伴随着呼吸困难的症状,这不仅严重影响HF患者的生活质量,而且一定程度上导致了HF的高住院率以及高死亡率。研究表明,呼吸功能障碍在HF的发生、发展中扮演着重要角色[6]。临床评估呼吸功能的核心手段为肺功能检查,其主要分为静态肺功能检查与心肺运动试验(Cardiopulmonary Exercise Testing, CPET)两大类,二者从不同维度反映呼吸系统的生理状态。前者主要包括肺总量(Total Lung Capacity, TLC)、肺活量(Vital Capacity, VC)、用力肺活量(Forced Vital Capacity, FVC)、残气量(Residual Volume, RV)、第一秒用力呼气容积(Forced Expiratory Volume in 1 Second, FEV1)及FEV1/FVC比值等指标,这些参数有助于判断肺容量和通气功能类型[7] [8]。其中,限制性通气功能障碍通常表现为TLC降低,FEV1/FVC比值正常或升高,而阻塞性通气功能障碍则以FEV1/FVC比值降低为特征[7];CPET则通过测定峰值摄氧量(Peak Oxygen Uptake, Peak VO2)、通气/二氧化碳产量斜率(Ventilation/Carbon Dioxide Output Slope, VE/VCO2 slope)、无氧阈(Anaerobic Threshold, AT)等指标,综合评估心肺系统在运动过程中的反应和储备能力,这对于HF患者的运动耐力分级和预后判断尤为重要[9]。结合静态和动态肺功能检查,不仅有助于明确HF患者的通气障碍类型,还能为临床管理和风险分层提供科学依据。尽管呼吸病学指南已推荐在基层医疗机构广泛开展肺功能检查与操作质控,但截至目前,我国HF指南暂未将肺功能检查纳入HF的常规检查项目。这提示了在临床实践中,仍存在着“心肺分离”的问题[10] [11]

2. HF患者肺功能异常的流行病学

HF患者常表现出肺功能的异常。限制性通气功能障碍与阻塞性通气功能障碍都与HF的发生、发展密切相关。在The Jackson Heart研究中,对4210名没有HF病史的参与者进行基线肺功能测定,结果显示20.0%的患者有限制性通气功能障碍,8.1%的患者有阻塞性通气功能障碍。对这些参与者进行中位时间8年的随访,8.0%的限制性通气功能障碍参与者及10.6%的阻塞性通气功能障碍参与者发展为HF,而在通气功能正常的参与者中,这一比例仅有3.8% [12]。Rika Kawakami等[13]对657例急性失代偿性心力衰竭(Acute Decompensated Heart Failure, ADHF)住院患者进行肺功能检测,63.0%的患者存在异常,其中,限制性通气功能障碍、阻塞性通气功能障碍和混合性通气障碍的比率分别为36.7%、13.1%和13.2%;随着年龄的增大,肺功能异常的几率也随之增高(P < 0.001)。在一项针对射血分数降低型心力衰竭(Heart Failure with Reduced Ejection Fraction, HFrEF)患者的研究中,Hao-Chih Chang等[14]发现,HFrEF患者普遍存在肺功能检查异常,88%的参与者患有限制性、阻塞性或混合性通气功能障碍。其中,合并肺动脉高压的参与者,TLC、FVC和FEV1等肺功能指标比未合并肺动脉高压的参与者更差;在不合并肺动脉高压的HFrEF患者中,TLC、FVC和FEV1每降低1个标准差,患者的死亡风险分别增加约34%、36%和28% (P < 0.05)。此外,HF患者合并慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease, COPD) (表现为阻塞性通气功能障碍)的情况较非HF患者更多见。社区人群中,GOLD II级及以上的COPD患病率约为5%~10%,而HF患者并发COPD的比例可达10%~40% [15]

3. 肺功能检查在HF患者中的临床应用

当前,肺功能检查应用于HF患者时,其作用早已远远超出了排除肺部疾病的范畴。近年来,多项研究证实,肺功能检查不仅可以评估HF患者的整体心肺功能状态,还能指导个体化治疗,并预测发生再入院或心血管死亡的风险,成为“心肺一体化评估”的重要环节。

3.1. 鉴别诊断

HF和COPD均以呼吸困难为主要症状,临床表现高度重叠,因而依靠症状学难以区分。静态肺功能检查在二者的鉴别诊断中具有重要价值。HF患者多表现为限制性通气障碍,即FEV1/FVC比值正常或略高;而COPD患者则表现为典型的阻塞性通气障碍(FEV1/FVC < 0.70) [15]。此外,弥散功能指标一氧化碳弥散量(Diffusing Capacity of the Lung for Carbon Monoxide, DLCO)在两者中的表现亦有显著差异。HF患者DLCO下降的主要原因是肺水肿及肺泡–毛细血管膜增厚,而COPD患者DLCO下降则源于肺泡结构的破坏[16]。研究显示,HF患者经利尿等容量管理治疗后,DLCO可明显改善,而COPD患者治疗后的改善有限。因此,动态追踪肺功能变化,尤其是DLCO的变化,有助于区分HF与COPD,避免将HF急性期误诊为COPD,从而减少不必要的气道药物使用[17]

此外,肺功能检查还可结合影像学和生物标志物进一步提高鉴别诊断的准确性。国际指南和研究推荐,在疑似HF患者中,常规应联合应用肺功能检查、心脏超声和B型利钠肽(BNP, B-Type Natriuretic Peptide)/N端B型利钠肽原(NT-proBNP, N-Terminal pro-B-Type Natriuretic Peptide)检测,以实现更高的诊断准确率和更好的风险分层[18] [19]。例如,Hawkins等[19]指出,肺功能检查和心脏超声应作为每位疑似HF患者的基础评估手段,而BNP/NT-proBNP的极高或极低值对HF的诊断具有很高的阳性和阴性预测价值。由此可见,肺功能检查已成为心肺一体化评估的重要组成部分,为HF的鉴别诊断提供了客观依据。

3.2. 评估病情及预后

肺功能参数不仅反映HF的严重程度,还与患者的预后密切相关。Abhishek Kumar Verma等[20]发现,随着NYHA分级的升高,FEV1、FVC等静态肺功能指标显著下降(P < 0.001)。同时,在该队列中,LVEF与FEV1、FVC均呈正相关(Pearson相关系数r = −0.253,−0.209,p < 0.05;回归斜率b = 0.94,0.66,p < 0.05),这提示心功能越差,肺功能损害越重。在ADHF患者中,肺功能异常是HF再住院或心血管死亡的独立预测因子(HR 1.402, 95% CI 1.039~1.914; P = 0.027),尤其在射血分数保留型心力衰竭(Heart Failure with Preserved Ejection Fraction, HFpEF)患者中更为显著[13]

动态肺功能检查(如CPET)在评估HF患者运动耐量、心肺储备及预后方面具有独特优势。峰值摄氧量(Peak VO2)是反映心肺协同供氧能力的核心指标,已被广泛用于判断HF患者是否适宜心脏移植或植入心室辅助装置。同时,Peak VO2与HF患者的长期生存率密切相关,低Peak VO2提示预后不良[9]。此外,VE/VCO2斜率是评估通气效率的核心指标,是HF患者发生不良结局的强效预测因子[21] [22]

3.3. 治疗监测

肺功能指标能够敏感反映HF患者在接受容量管理,利尿剂、血管扩张剂等药物治疗及经导管主动脉瓣置换术(Transcatheter Aortic Valve Replacement, TAVR)和心脏再同步化治疗(Cardiac Resynchronization Therapy, CRT)等器械治疗后的肺部充血和气道通畅性的改善,有助于动态评估治疗效果,及时调整治疗方案[23]-[26]。Karacop等[23]对80例重度主动脉瓣狭窄合并HF患者进行TAVR术前后肺功能对比,发现术后FVC、FEV1、TLC、DLCO等多项肺功能指标均显著提升。Cundrle等[24]发现,HF患者实施CRT后,TLC和FVC均显著增加,且肺功能的提升与BNP、左心房容积等HF严重程度指标的改善同步。这些研究提示了HF患者的肺功能障碍可被心功能改善部分逆转。Faggiano等[25]则证实,重度HF患者强化药物治疗后,FVC、FEV1显著提升且多普勒二尖瓣血流监测显示左心室充盈指标改善,而此时超声心动图测量的心腔维度及左心室收缩功能等传统心功能指标尚未发生变化,这提示了在重症HF的治疗监测中,肺功能指标可作为“早期疗效标志物”,即使左室收缩功能尚未出现明显改善,肺功能的显著提升已能提示治疗对血流动力学与肺部病理状态的积极影响,为临床早期判断治疗有效性、及时调整方案提供重要依据。此外,文红等[26]对慢性心力衰竭(Chronic Heart Failure, CHF)患者的研究也发现,经过系统治疗后,FEV1、FVC和DLCO均有不同程度的提升,进一步证实肺功能检查可作为HF治疗效果的客观评估工具。

3.4. 康复与个体化管理

康复训练是HF综合管理的重要组成部分,可显著降低再住院风险、改善生活质量。CPET在HF患者康复训练中具有核心作用,通过测量peak VO2、AT、VE/VCO2斜率等参数,全面评估心肺功能和运动耐量,为制定个性化运动处方提供科学依据[9] [27] [28]。CPET不仅可在康复训练前评估患者的运动能力上限,确保训练强度安全有效,尤其适用于合并多种共病的HF患者[28]-[30];在康复训练过程中,CPET可动态监测患者运动能力的改善,表现为peak VO2、AT等指标提升及HF相关生物标志物(如BNP、NT-proBNP)的下降[30]。多项研究表明,基于CPET指导的康复训练能显著提高HF患者的运动耐量和生活质量,降低再住院和死亡风险[27] [30]。CPET同样适用于老年HF患者,即使运动强度有限,基于AT的评估也能为制定康复训练强度提供依据[31]。由此可见,CPET不仅是HF康复训练的“金标准”评估工具,也是优化HF个体化康复管理、改善预后的重要途径[9] [28]

此外,肺功能检查中的呼吸肌功能测试可以测定最大吸气压(Maximal Inspiratory Pressure, PImax),该指标低于70%预计值可以定义为呼吸肌无力,此部分HF患者需优先纳入康复训练[32];例如,吸气肌训练(Inspiratory Muscle Training, IMT)可显著提高PImax和6分钟步行距离,并降低HF患者的再住院风险[33] [34]

3.5. 技术与方法学进展

近年来,肺功能检查技术不断进步,便携式设备的普及使得在心脏科开展肺功能评估成为可能。多项研究表明,便携式肺功能仪器具有准确性高、操作简便、体积小、易于推广等优点,能够在非呼吸专科实现常规肺功能检测。这些设备不仅能准确测量FVC、FEV1等关键参数,还可通过无线或蓝牙技术实现数据实时传输和远程监测,极大提升了心脏专科患者的肺功能评估可及性和连续性[17] [35] [36]

4. HF导致肺功能受损的机制

HF导致肺功能受损的机制复杂,涉及血流动力学异常、肺血管重构、炎症与氧化应激、右心室功能障碍等多重环节。

4.1. 血流动力学异常和肺水肿

HF导致肺水肿的核心机制在于血流动力学异常。左室收缩或舒张功能障碍时,左心房和肺静脉压力升高,肺循环淤血,肺毛细血管静水压升高,液体从血管内渗出至肺泡,形成肺水肿。这一过程不仅见于HFrEF,在HFpEF中同样常见,尤其在容量负荷增加或运动等应激状态时更易发生[37] [38]

此外,HF时心输出量下降,肾脏灌注不足,肾素–血管紧张素–醛固酮系统(Renin-Angiotensin-Aldosterone System, RAAS)系统及交感神经系统(Sympathetic Nervous System, SNS)被激活,同时抗利尿激素(Antidiuretic Hormone, ADH)及内皮素-1 (Endothelin-1, ET-1)分泌上调,导致钠水潴留、血容量增加,进一步升高中心静脉压和肺毛细血管静水压[39];异常的Starling力(即肺毛细血管静水压升高和血浆胶体渗透压下降形成的合力)促进液体外渗。即使HF患者BNP、心房钠肽(Atrial Natriuretic Peptide, ANP)水平升高,但其利钠、利尿作用被上述神经内分泌系统的持续激活所抵消,最终导致持续性容量超负荷和肺水肿。此外,HF相关的炎症反应和内皮功能障碍可进一步增加毛细血管通透性,使液体更易渗出,加重肺水肿[39] [40]。慢性肺水肿还可导致肺间质纤维化和肺顺应性下降,进一步损害气体交换功能,加重HF患者的肺功能损害。

分子机制方面,动物实验发现急性HF时肺毛细血管内皮糖萼(Glypican-1, Gpc1)受压力激活,导致内皮型一氧化氮合酶(Endothelial Nitric Oxide Synthase, eNOS)解偶联和RhoA蛋白(RhoA GTPase, RhoA)硝化,内皮屏障功能受损,促进肺水肿形成[41]。此外,HF时,瞬时受体电位香草酸亚型4离子通道(Transient Receptor Potential Vanilloid 4 Ion Channel, TRPV4离子通道)在肺组织中表达上调,促进毛细血管渗漏和肺水肿;同时,研究证实TRPV4阻断剂在急、慢性HF模型中均具有预防肺水肿形成和逆转已形成肺水肿的双重作用[42]。这些分子机制共同作用,导致肺水肿,加重HF患者的肺功能损害。

4.2. 肺血管重构与肺动脉高压

HF患者长期左心室功能障碍会逆向传导压力,导致肺静脉压力持续升高,这一压力异常直接诱发了肺血管重构与继发性肺动脉高压(Pulmonary Hypertension, PH)。具体来看,肺血管重构并非局限于肺动脉——除肺动脉壁因平滑肌细胞增生出现增厚外,肺静脉及不确定小血管(Indeterminate Vessels, IV)的内膜增厚程度甚至更为明显;这些多部位的血管结构改变,最终会导致血管腔狭窄、血管顺应性下降,进而使肺动脉压力升高。同时,肺血管重构的严重程度与DLCO的降低密切相关,提示血管重构是HF患者肺功能受损的重要结构基础。此外,肺动脉高压会进一步加重右心负荷,促进右心室功能衰竭,进而影响肺循环动力学稳定,最终导致气体交换障碍[43]。动物实验证实,肺血管重构和肺动脉高压状态下,血管壁细胞异常增殖与肺间质纤维化、炎症反应协同作用,导致肺活量和气体弥散能力受损,进而加重HF患者的肺功能损害,最终导致患者的运动耐力减退[44]。因此,肺血管重构与肺动脉高压不仅是HF患者肺功能受损的重要机制,也是影响其生活质量和预后的关键因素。

分子机制方面,首先,肺血管内皮细胞功能障碍和肺动脉平滑肌细胞异常增殖、抗凋亡及表型转化是肺血管重构的核心环节,涉及JAK/STAT信号通路(Janus Kinase/Signal Transducer and Activator of Transcription Signaling Pathway, JAK/STAT Signaling Pathway)的激活,促进细胞增殖、迁移和纤维化,导致血管壁增厚、腔隙狭窄和顺应性下降。在肺血管内皮细胞功能障碍的具体机制中,肺血管内皮钙信号障碍是内皮功能障碍的直接分子基础并间接参与肺血管重构,而丝状肌动蛋白(Filamentous Actin, F-actin)的聚集不仅是介导钙信号障碍的关键因素,还直接参与肺血管结构重塑,二者协同作用,共同构成HF时肺血管内皮功能障碍及肺血管重构的分子基础[45]。此外,糖酵解增强及线粒体功能障碍导致肺血管内皮细胞能量供应异常,进一步加剧细胞异常增殖和血管重构。巨噬细胞、B细胞、Th17细胞等免疫细胞通过分泌炎症因子,激活上述信号通路,促进血管重构[46] [47]

4.3. 慢性炎症和氧化应激

CHF的发生发展过程中常伴有慢性持续性炎症和氧化应激,二者在肺功能损害中发挥着关键作用。HF时心泵功能受损及肺循环高压,促使肺组织中炎症因子(如IL-1β、IL-6、TNF-α等)持续升高,导致白细胞浸润及NLRP3炎症小体(NOD-Like Receptor Pyrin Domain-Containing 3 Inflammasome, NLRP3 Inflammasome)激活[48]-[50];上述炎症因子不仅加重心功能障碍,还直接促进肺部炎症反应和结构重塑,表现为肺间质纤维化、肺顺应性下降,进而气体交换障碍[51]。值得注意的是,机体并非仅被动承受炎症损害,在CHF动物模型中,失代偿组大鼠肺组织Corin/PCSK6轴(Corin/Proprotein Convertase Subtilisin/Kexin Type 6 Axis, Corin/PCSK6 Axis)和利钠肽系统(Natriuretic Peptide System, NPS)表达上调,同时作为核心炎症因子的IL-6活化,提示该轴与系统的活化可能是机体对CHF (尤其是重症CHF)炎症环境的代偿性尝试,理论上可通过调节体液平衡、抑制过度炎症反应减轻组织损伤[52]。氧化应激则主要源于线粒体功能障碍和活性氧(Reactive Oxygen Species, ROS)的过度生成,进一步激活核因子κB通路(Nuclear Factor-kappa B Pathway, NF-κB通路),促进炎症因子的表达,加剧炎症反应和细胞凋亡,损伤肺泡上皮细胞,破坏气体交换屏障,降低肺顺应性,导致气体弥散能力下降。该通路的激活还会加剧ROS的生成,形成恶性循环[53]-[55]。慢性炎症和氧化应激还可互相促进,二者对肺组织持续的氧化损伤还可加重肺血管重构,加剧肺功能的不可逆损害。此外,动物实验证明空气污染(如PM2.5)等环境因素也可通过增强炎症反应和氧化应激,加速HF患者肺功能损害的进程[56]。慢性炎症和氧化应激通过多条分子通路协同作用,导致HF患者肺功能进行性下降,是心肺相互作用的重要机制,与HF患者的预后恶化紧密相关。

4.4. 右心室功能不全与肺循环异常

HF患者肺功能受损的另一重要机制是右心室(Right Ventricle, RV)功能不全和肺循环异常。首先,HF常导致肺动脉压力升高,即RV后负荷增加,导致RV-肺动脉耦合失调[57]-[60]。RV-肺耦合(可通过TAPSE/PASP进行无创评估)是评估RV收缩功能与肺动脉负荷匹配程度的关键参数。RV-肺动脉耦合失调不仅预示着RV泵血能力下降,还与HF患者通气血流比值失调、运动耐力降低,以及不良预后密切相关[61]-[63]。上述肺循环异常(如肺动脉压力持续升高、血流分布紊乱)进一步加重RV负担,形成恶性循环,导致肺泡毛细血管灌注减少、弥散能力下降和供氧不足[57]

5. 不同HF亚型肺功能异常的对比分析

5.1. 肺功能异常模式差异

HFrEF患者的肺功能异常以限制性通气功能障碍为主,TLC、FVC等容量指标下降更为明显,这一特征与左室收缩功能障碍导致的肺淤血程度更严重直接相关。HFpEF患者则以限制性与阻塞性通气障碍并存的混合模式更常见,TLC下降程度相对温和,且合并COPD的比例更高,提示此类患者共病负担较重。弥散功能方面,HFrEF患者的DLCO下降主要与肺水肿相关,经针对性治疗后改善程度较明显;HFpEF患者的DLCO下降则主要与肺血管重构相关,治疗后改善空间有限。通气效率(VE/VCO2斜率)指标在两种亚型中均呈升高趋势,但机制存在差异:HFrEF患者的VE/VCO2斜率升高主要源于血流受限引起的通气–血流比值降低,而HFpEF患者则以通气相对过剩为主要原因,通气–血流比值升高[64]-[66]

5.2. 病理生理机制差异

HFrEF的肺功能异常核心为左室收缩功能障碍导致的被动性肺淤血和肺泡水肿,进而引发限制性通气功能障碍和DLCO下降,肺血管重构较轻。分子机制以TRPV4离子通道激活致毛细血管渗漏为主[67] [68]。HFpEF则以左室舒张功能障碍为核心,肺静脉压力逆向传导,导致肺血管重构和间质纤维化,DLCO下降与血管重构程度密切相关,分子机制以JAK/STAT通路激活为主[46] [67]

5.3. 治疗反应差异

HFrEF患者对利尿剂等治疗反应更快,肺功能改善幅度大;HFpEF患者则改善缓慢且有限,尤其是DLCO和肺容量指标。而康复训练对两亚型均有益,疗效相当[64]-[66] [69]

6. 肺功能障碍对HF的影响

6.1. 肺功能障碍升高HF的发病风险

多项研究证实,肺功能障碍是HF发病的独立危险因素,其相关程度甚至与高血压、糖尿病、吸烟等传统心血管危险因素相当。NHLBI队列对31677名无心血管病史的美国成年人进行了时长21年的随访,过程中共发生3344例HF事件。根据肺功能检查将肺功能异常的受试者分为阻塞型通气障碍(FEV1/FVC < 0.70)和限制型通气障碍(FEV1/FVC ≥ 0.70, FVC < 80%)两类。结果显示,两种通气障碍均显著增加HF的发病风险,风险比(Hazard Ratio, HR)分别为1.17 (95% CI 1.07~1.27)和1.43 (95% CI 1.27~1.62) [70]。针对其他人群的研究也得到了类似的结论,Jackson Heart Study对4210名非裔美国人进行了中位时间为8年的随访,发现FVC值与HF风险呈非线性负相关,且阻塞型、限制型两种肺功能异常参与者发生HF的HR分别为1.7和1.5 [12]。ARIC研究则指出,FEV1 (年降幅 > 1.9%)和FVC (年降幅 > 2.1%)的快速下降均显著增加发生HF的风险(HR = 1.17, 95% CI: 1.04~1.33;和HR = 1.27, 95% CI: 1.12~1.44) [71]。此外,一项对2125名70~79岁健康老年人进行的前瞻性队列研究发现,肺功能异常(包括阻塞型和限制型)是HF的独立危险因素,且FVC和FEV1的下降与老年人HF风险呈线性相关[72]。由此可见,肺功能异常可作为HF的发生风险标志,广泛适用于一般人群和不同种族的群体。

6.2. 肺功能障碍对HF患者预后的影响

肺功能障碍不仅增加HF的发病风险,还显著影响HF患者的预后。Kawakami等[13]纳入了657例ADHF的患者,其中,肺功能异常的发生率高达63.0%,该组HF再住院及心血管死亡风险显著高于正常肺功能组(HR 1.40, 95% CI 1.04~1.91)。亚组分析显示,在HFpEF患者中,限制型和混合型通气障碍对不良结局的预测价值尤为突出,HR高达2.3~2.8,而在HFrEF患者中则不显著。

肺功能障碍还与HF患者的全因死亡率升高密切相关。Huang等[73]对1,194例HFpEF患者的随访研究显示,VC、FVC、RV/TLC和FEV1等指标的下降均为HFpEF患者全因死亡的独立预测因子。

6.3. 肺功能障碍反作用于心脏的病理生理机制

6.3.1. 原发性肺疾病介导的肺功能异常对心脏的直接损害

肺功能障碍不仅是HF的被动结果,现有研究表明,肺部疾病本身可以通过多种机制直接损害心功能,并与HF形成恶性循环。以COPD为代表的原发性肺疾病,常导致肺通气及弥散功能受损,进而引发低氧血症、肺血管阻力升高和全身炎症反应。低氧状态下,交感神经持续激活,心率加快、心肌耗氧量增加以及线粒体功能障碍进一步诱发心肌细胞凋亡。肺小动脉重构导致右心室后负荷增加,长期可致右心衰竭,右心室压力升高又反向影响左心室充盈,形成“右心–左心”损害链。此外,慢性肺部炎症可释放炎症因子,促进心肌纤维化,进而导致心肌收缩与舒张功能下降[74] [75]

6.3.2. HF继发性肺功能异常对心功能障碍的反向加重效应

HF本身也会反向加重肺功能障碍。HF患者常发生肺水肿和肺血管重构,这些改变不仅导致气体交换障碍和低氧血症,还会进一步激活交感神经系统,增加心肌耗氧量,形成“HF–肺水肿–低氧血症–心功能进一步恶化”的闭环。HF引起的肺血管压力升高可诱发继发性肺动脉高压,进一步加重右心室负担,影响心脏整体泵血功能。肺功能障碍与HF之间的双向作用机制,使得两者相互促进,形成恶性循环[76] [77]

6.4. 针对肺功能的干预措施对HF的潜在益处

针对肺功能障碍的干预措施对HF患者具有潜在益处。肺部康复训练如吸气肌训练可改善呼吸肌力量和通气效率,间接减轻心脏负担;药物干预方面,抗炎药物和肺血管扩张剂有助于缓解炎症和降低肺血管阻力,延缓心肌重塑;对于合并低氧血症的患者,长期氧疗和无创通气支持可改善氧合状态,减少心律失常和心功能恶化的风险。重视和干预异常的肺功能对于HF患者的综合管理具有重要意义[74] [75]

7. 结语与展望

随着全球HF疾病负担的持续加重,其高患病率与低生存率的矛盾日益突出,而临床上“心肺分离”的现状——即HF指南尚未将肺功能检查纳入常规评估,与HF患者普遍存在的肺功能异常及呼吸困难症状形成鲜明反差,成为制约HF“心肺一体化”管理的关键瓶颈。本综述系统梳理了HF与肺功能异常的关联:从流行病学特征看,HF患者肺功能异常率高达60%以上,以限制性通气障碍为主,且阻塞性与限制性通气障碍均为HF发病的独立危险因素,尤其在老年、合并肺动脉高压的HF患者中,肺功能损害更显著;从临床应用价值看,肺功能检查已超越“排除肺部疾病”的传统定位,成为HF鉴别诊断、病情与预后评估、治疗监测及康复管理的核心工具,便携式设备的普及更突破了非呼吸专科的应用限制。机制层面,HF致肺功能受损是多环节协同作用的结果:血流动力学异常引发的肺淤血与肺水肿是基础诱因,肺静脉压力升高诱发的肺血管重构与继发性肺动脉高压是关键病理环节,慢性炎症与氧化应激的持续损害是重要推手,而右心室功能不全与肺循环异常形成的恶性循环则进一步加剧气体交换障碍。由此可见,肺功能检查在HF诊疗中具有不可替代的临床价值,是实现HF“心肺一体化”评估与管理的核心环节。未来需进一步推动其在HF指南中的规范化纳入,完善不同亚型HF (HFrEF/HFpEF)肺功能评估的标准流程,并基于肺功能异常的分子机制探索针对性干预策略,最终通过“评估–干预–监测”的闭环管理,改善HF患者的肺功能与长期预后。

基金项目

北京市研究型病房项目(2022-yjxbf-03-03),中日友好医院菁英计划(zrjy2023-qm14)。

NOTES

*通讯作者。

参考文献

[1] Khan, M.S., Shahid, I., Bennis, A., Rakisheva, A., Metra, M. and Butler, J. (2024) Global Epidemiology of Heart Failure. Nature Reviews Cardiology, 21, 717-734. [Google Scholar] [CrossRef] [PubMed]
[2] Ziaeian, B. and Fonarow, G.C. (2016) Epidemiology and Aetiology of Heart Failure. Nature Reviews Cardiology, 13, 368-378. [Google Scholar] [CrossRef] [PubMed]
[3] Bui, A.L., Horwich, T.B. and Fonarow, G.C. (2010) Epidemiology and Risk Profile of Heart Failure. Nature Reviews Cardiology, 8, 30-41. [Google Scholar] [CrossRef] [PubMed]
[4] The WCOT (2023) Report on Cardiovascular Health and Diseases in China 2022: An Updated Summary. Biomedical and Environmental Sciences, 36, 669-701.
[5] Zhang, Y., Gao, C., Greene, S.J., Greenberg, B.H., Butler, J., Yu, J., et al. (2023) Clinical Performance and Quality Measures for Heart Failure Management in China: The China‐Heart Failure Registry Study. ESC Heart Failure, 10, 342-352. [Google Scholar] [CrossRef] [PubMed]
[6] McDonagh, T., Metra, M., Adamo, M., Gardner, R.S, Baumbach, A., Böhm, M., et al. (2023) 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Russian Journal of Cardiology, 42, Article 4901. [Google Scholar] [CrossRef
[7] Stanojevic, S., Kaminsky, D.A., Miller, M.R., Thompson, B., Aliverti, A., Barjaktarevic, I., et al. (2021) ERS/ATS Technical Standard on Interpretive Strategies for Routine Lung Function Tests. European Respiratory Journal, 60, Article 2101499. [Google Scholar] [CrossRef] [PubMed]
[8] Hall, G.L., Filipow, N., Ruppel, G., Okitika, T., Thompson, B., Kirkby, J., et al. (2021) Official ERS Technical Standard: Global Lung Function Initiative Reference Values for Static Lung Volumes in Individuals of European Ancestry. European Respiratory Journal, 57, Article 2000289. [Google Scholar] [CrossRef] [PubMed]
[9] Malhotra, R., Bakken, K., D’Elia, E. and Lewis, G.D. (2016) Cardiopulmonary Exercise Testing in Heart Failure. JACC: Heart Failure, 4, 607-616. [Google Scholar] [CrossRef] [PubMed]
[10] 中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 中华医学会呼吸病学分会肺功能专业组, 中华医学会《中华全科医师杂志》编辑委员会, 呼吸系统疾病基层诊疗指南编写专家组. 常规肺功能检查基层指南(2018年) [J]. 中华全科医师杂志, 2019, 18(6): 511-518.
[11] 中华医学会心血管病学分会, 中国医师协会心血管内科医师分会, 中国医师协会心力衰竭专业委员会, 中华心血管病杂志编辑委员会. 中国心力衰竭诊断和治疗指南2024 [J]. 中华心血管病杂志, 2024, 52(3): 235-275.
[12] Jankowich, M., Elston, B., Liu, Q., Abbasi, S., Wu, W., Blackshear, C., et al. (2018) Restrictive Spirometry Pattern, Cardiac Structure and Function, and Incident Heart Failure in African Americans. The Jackson Heart Study. Annals of the American Thoracic Society, 15, 1186-1196. [Google Scholar] [CrossRef] [PubMed]
[13] Kawakami, R., Nakada, Y., Hashimoto, Y., Ueda, T., Nakagawa, H., Nishida, T., et al. (2021) Prevalence and Prognostic Significance of Pulmonary Function Test Abnormalities in Hospitalized Patients with Acute Decompensated Heart Failure with Preserved and Reduced Ejection Fraction. Circulation Journal, 85, 1426-1434. [Google Scholar] [CrossRef] [PubMed]
[14] Chang, H., Huang, W., Yu, W., Cheng, H., Guo, C., Chiang, C., et al. (2022) Prognostic Role of Pulmonary Function in Patients with Heart Failure with Reduced Ejection Fraction. Journal of the American Heart Association, 11, e023422. [Google Scholar] [CrossRef] [PubMed]
[15] Hawkins, N.M., Virani, S. and Ceconi, C. (2013) Heart Failure and Chronic Obstructive Pulmonary Disease: The Challenges Facing Physicians and Health Services. European Heart Journal, 34, 2795-2807. [Google Scholar] [CrossRef] [PubMed]
[16] Nakamura, K., Kanzaki, H., Okada, A., Amaki, M., Takahama, H., Hasegawa, T., et al. (2019) Independent Prognostic Value of Pulmonary Diffusing Capacity in Nonsmoking Patients with Chronic Heart Failure. International Heart Journal, 60, 366-373. [Google Scholar] [CrossRef] [PubMed]
[17] Magnussen, H., Canepa, M., Zambito, P.E., Brusasco, V., Meinertz, T. and Rosenkranz, S. (2017) What Can We Learn from Pulmonary Function Testing in Heart Failure? European Journal of Heart Failure, 19, 1222-1229. [Google Scholar] [CrossRef] [PubMed]
[18] Bayes‐Genis, A., Docherty, K.F., Petrie, M.C., Januzzi, J.L., Mueller, C., Anderson, L., et al. (2023) Practical Algorithms for Early Diagnosis of Heart Failure and Heart Stress Using NT‐proBNP: A Clinical Consensus Statement from the Heart Failure Association of the esc. European Journal of Heart Failure, 25, 1891-1898. [Google Scholar] [CrossRef] [PubMed]
[19] Hawkins, N.M., Petrie, M.C., Jhund, P.S., Chalmers, G.W., Dunn, F.G. and McMurray, J.J.V. (2009) Heart Failure and Chronic Obstructive Pulmonary Disease: Diagnostic Pitfalls and Epidemiology. European Journal of Heart Failure, 11, 130-139. [Google Scholar] [CrossRef] [PubMed]
[20] Abhishek, K.V., Nath, R.K, Sharma, A.K. and Aggarwal, P. (2025) Study of Different Types of Respiratory Abnormalities in Stable Chronic Heart Failure Patients. The Journal of Heart Valve Disease, 30, 47-53.
[21] Jaussaud, J., Aimable, L. and Douard, H. (2011) The Time for a New Strong Functional Parameter in Heart Failure: The VE/VCO2 Slope. International Journal of Cardiology, 147, 189-190. [Google Scholar] [CrossRef] [PubMed]
[22] Cornelis, J., Taeymans, J., Hens, W., Beckers, P., Vrints, C. and Vissers, D. (2015) Prognostic Respiratory Parameters in Heart Failure Patients with and without Exercise Oscillatory Ventilation—A Systematic Review and Descriptive Meta-Analysis. International Journal of Cardiology, 182, 476-486. [Google Scholar] [CrossRef] [PubMed]
[23] Karacop, H.B. and Karacop, E. (2021) Improvement of Pulmonary Function in Heart Failure Patients with Restrictive Patterns Undergoing Transcatheter Aortic Valve Replacement. International Journal of General Medicine, 14, 5159-5165. [Google Scholar] [CrossRef] [PubMed]
[24] Cundrle, I., Johnson, B.D., Somers, V.K., Scott, C.G., Rea, R.F. and Olson, L.J. (2013) Effect of Cardiac Resynchronization Therapy on Pulmonary Function in Patients with Heart Failure. The American Journal of Cardiology, 112, 838-842. [Google Scholar] [CrossRef] [PubMed]
[25] Faggiano, P., Lombardi, C., Sorgato, A., Ghizzoni, G., Spedini, C. and Rusconi, C. (1993) Pulmonary Function Tests in Patients with Congestive Heart Failure: Effects of Medical Therapy. Cardiology, 83, 30-35. [Google Scholar] [CrossRef] [PubMed]
[26] 文红, 欧雪珍, 卫展扬, 罗海波, 邓念强. 慢性心功能不全住院患者治疗前后肺功能的改变[J]. 暨南大学学报(医学版), 2011, 32(6): 647-649.
[27] Juarez, M., Castillo-Rodriguez, C., Soliman, D., Del Rio-Pertuz, G. and Nugent, K. (2024) Cardiopulmonary Exercise Testing in Heart Failure. Journal of Cardiovascular Development and Disease, 11, Article 70. [Google Scholar] [CrossRef] [PubMed]
[28] Corrà, U., Agostoni, P.G., Anker, S.D., Coats, A.J.S., Crespo Leiro, M.G., de Boer, R.A., et al. (2017) Role of Cardiopulmonary Exercise Testing in Clinical Stratification in Heart Failure. a Position Paper from the Committee on Exercise Physiology and Training of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 20, 3-15. [Google Scholar] [CrossRef] [PubMed]
[29] Kabbadj, K., Taiek, N., El Hjouji, W., El Karrouti, O. and El Hangouche, A.J. (2024) Cardiopulmonary Exercise Testing: Methodology, Interpretation, and Role in Exercise Prescription for Cardiac Rehabilitation. US Cardiology Review, 18, e22. [Google Scholar] [CrossRef] [PubMed]
[30] Baccanelli, G., Tomaselli, M., Ferri, U., Giglio, A., Munforti, C., Parati, G., et al. (2023) Effects of Cardiac Rehabilitation on Cardiopulmonary Test Parameters in Heart Failure: A Real World Experience. International Journal of Cardiology Cardiovascular Risk and Prevention, 17, Article 200178. [Google Scholar] [CrossRef] [PubMed]
[31] Yano, Y., Suematsu, Y., Matsuda, T., Tsukahara, K., Shirosaki, M., Matsuo, S., et al. (2024) Usefulness of the Cardiopulmonary Exercise Test up to the Anaerobic Threshold for Pati-Ents Aged ≥ 80 Years with Cardiovascular Disease on Cardiac Rehabilitation. Journal of Rehabilitation Medicine, 56, jrm19453. [Google Scholar] [CrossRef] [PubMed]
[32] de Souza, Y., Suzana, M.E., Medeiros, S., Macedo, J. and da Costa, C.H. (2021) Respiratory Muscle Weakness and Its Association with Exercise Capacity in Patients with Chronic Obstructive Pulmonary Disease. The Clinical Respiratory Journal, 16, 162-166. [Google Scholar] [CrossRef] [PubMed]
[33] Gomes Neto, M., Martinez, B.P., Reis, H.F. and Carvalho, V.O. (2017) Pre-and Postoperative Inspiratory Muscle Training in Patients Undergoing Cardiac Surgery: Systematic Review and Meta-Analysis. Clinical Rehabilitation, 31, 454-464. [Google Scholar] [CrossRef] [PubMed]
[34] Azambuja, A.D.C.M., de Oliveira, L.Z. and Sbruzzi, G. (2020) Inspiratory Muscle Training in Patients with Heart Failure: What Is New? Systematic Review and Meta-Analysis. Physical Therapy, 100, 2099-2109. [Google Scholar] [CrossRef] [PubMed]
[35] Zhou, J., Li, X., Wang, X., Yu, N. and Wang, W. (2022) Accuracy of Portable Spirometers in the Diagnosis of Chronic Obstructive Pulmonary Disease a Meta-Analysis. npj Primary Care Respiratory Medicine, 32, Article No. 15. [Google Scholar] [CrossRef] [PubMed]
[36] Zhang, H., Li, L., Jiao, D., Yang, Y., Pan, C., Ye, L., et al. (2020) An Interrater Reliability Study of Pulmonary Function Assessment with a Portable Spirometer. Respiratory Care, 65, 665-672. [Google Scholar] [CrossRef] [PubMed]
[37] Reddy, Y.N.V., Obokata, M., Wiley, B., Koepp, K.E., Jorgenson, C.C., Egbe, A., et al. (2019) The Haemodynamic Basis of Lung Congestion during Exercise in Heart Failure with Preserved Ejection Fraction. European Heart Journal, 40, 3721-3730. [Google Scholar] [CrossRef] [PubMed]
[38] Guazzi, M. (2014) Pulmonary Hypertension in Heart Failure Preserved Ejection Fraction. Circulation: Heart Failure, 7, 367-377. [Google Scholar] [CrossRef] [PubMed]
[39] Navas, J.P. and Martinez-Maldonado, M. (1993) Pathophysiology of Edema in Congestive Heart Failure. Heart Disease and Stroke, 2, 325-329.
[40] Abassi, Z., Khoury, E.E., Karram, T. and Aronson, D. (2022) Edema Formation in Congestive Heart Failure and the Underlying Mechanisms. Frontiers in Cardiovascular Medicine, 9, Article ID: 933215. [Google Scholar] [CrossRef] [PubMed]
[41] Chignalia, A.Z., Isbatan, A., Black, S.M. and Dull, R.O. (2020) Glypican‐1 Is a Trigger for Pulmonary Edema Development during Acute Heart Failure. The FASEB Journal, 34, 1. [Google Scholar] [CrossRef
[42] Thorneloe, K.S., Cheung, M., Bao, W., Alsaid, H., Lenhard, S., Jian, M., et al. (2012) An Orally Active TRPV4 Channel Blocker Prevents and Resolves Pulmonary Edema Induced by Heart Failure. Science Translational Medicine, 4, 159ra148. [Google Scholar] [CrossRef] [PubMed]
[43] Fayyaz, A.U., Edwards, W.D., Maleszewski, J.J., Konik, E.A., DuBrock, H.M., Borlaug, B.A., et al. (2018) Global Pulmonary Vascular Remodeling in Pulmonary Hypertension Associated with Heart Failure and Preserved or Reduced Ejection Fraction. Circulation, 137, 1796-1810. [Google Scholar] [CrossRef] [PubMed]
[44] Jheng, J., Bai, Y., Noda, K., Huot, J.R., Cook, T., Fisher, A., et al. (2024) Skeletal Muscle SIRT3 Deficiency Contributes to Pulmonary Vascular Remodeling in Pulmonary Hypertension Due to Heart Failure with Preserved Ejection Fraction. Circulation, 150, 867-883. [Google Scholar] [CrossRef] [PubMed]
[45] Kerem, A., Yin, J., Kaestle, S.M., Hoffmann, J., Schoene, A.M., Singh, B., et al. (2010) Lung Endothelial Dysfunction in Congestive Heart Failure. Circulation Research, 106, 1103-1116. [Google Scholar] [CrossRef] [PubMed]
[46] Roger, I., Milara, J., Montero, P. and Cortijo, J. (2021) The Role of JAK/STAT Molecular Pathway in Vascular Remodeling Associated with Pulmonary Hypertension. International Journal of Molecular Sciences, 22, Article 4980. [Google Scholar] [CrossRef] [PubMed]
[47] Dai, J., Chen, H., Fang, J., Wu, S. and Jia, Z. (2025) Vascular Remodeling: The Multicellular Mechanisms of Pulmonary Hypertension. International Journal of Molecular Sciences, 26, Article 4265. [Google Scholar] [CrossRef] [PubMed]
[48] Pena, E., Brito, J., El Alam, S. and Siques, P. (2020) Oxidative Stress, Kinase Activity and Inflammatory Implications in Right Ventricular Hypertrophy and Heart Failure under Hypobaric Hypoxia. International Journal of Molecular Sciences, 21, Article 6421. [Google Scholar] [CrossRef] [PubMed]
[49] Shang, L., Yue, W., Wang, D., Weng, X., Hall, M.E., Xu, Y., et al. (2020) Systolic Overload-Induced Pulmonary Inflammation, Fibrosis, Oxidative Stress and Heart Failure Progression through Interleukin-1β. Journal of Molecular and Cellular Cardiology, 146, 84-94. [Google Scholar] [CrossRef] [PubMed]
[50] Boulet, J., Sridhar, V.S., Bouabdallaoui, N., Tardif, J. and White, M. (2024) Inflammation in Heart Failure: Pathophysiology and Therapeutic Strategies. Inflammation Research, 73, 709-723. [Google Scholar] [CrossRef] [PubMed]
[51] Ahmad, S., Isbatan, A., Chen, S., M. Dudek, S., D. Minshall, R. and Chen, J. (2024) The Interplay of Heart Failure and Lung Disease: Clinical Correlations, Mechanisms, and Therapeutic Implications. Journal of Respiratory Biology and Translational Medicine, 1, 10020-10020. [Google Scholar] [CrossRef] [PubMed]
[52] Khoury, E.E., Kinaneh, S., Aronson, D., Amir, O., Ghanim, D., Volinsky, N., et al. (2018) Natriuretic Peptides System in the Pulmonary Tissue of Rats with Heart Failure: Potential Involvement in Lung Edema and Inflammation. Oncotarget, 9, 21715-21730. [Google Scholar] [CrossRef] [PubMed]
[53] Aimo, A., Castiglione, V., Borrelli, C., Saccaro, L.F., Franzini, M., Masi, S., et al. (2019) Oxidative Stress and Inflammation in the Evolution of Heart Failure: From Pathophysiology to Therapeutic Strategies. European Journal of Preventive Cardiology, 27, 494-510. [Google Scholar] [CrossRef] [PubMed]
[54] de Almeida, A.J.P.O., de Almeida Rezende, M.S., Dantas, S.H., de Lima Silva, S., de Oliveira, J.C.P.L., de Lourdes Assunção Araújo de Azevedo, F., et al. (2020) Unveiling the Role of Inflammation and Oxidative Stress on Age-Related Cardiovascular Diseases. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 1954398. [Google Scholar] [CrossRef] [PubMed]
[55] Wróbel-Nowicka, K., Wojciechowska, C., Jacheć, W., Zalewska, M. and Romuk, E. (2024) The Role of Oxidative Stress and Inflammatory Parameters in Heart Failure. Medicina, 60, Article 760. [Google Scholar] [CrossRef] [PubMed]
[56] Yue, W., Tong, L., Liu, X., Weng, X., Chen, X., Wang, D., et al. (2019) Short Term PM2.5 Exposure Caused a Robust Lung Inflammation, Vascular Remodeling, and Exacerbated Transition from Left Ventricular Failure to Right Ventricular Hypertrophy. Redox Biology, 22, Article 101161. [Google Scholar] [CrossRef] [PubMed]
[57] Philip, J.L., Murphy, T.M., Schreier, D.A., Stevens, S., Tabima, D.M., Albrecht, M., et al. (2019) Pulmonary Vascular Mechanical Consequences of Ischemic Heart Failure and Implications for Right Ventricular Function. American Journal of Physiology-Heart and Circulatory Physiology, 316, H1167-H1177. [Google Scholar] [CrossRef] [PubMed]
[58] Bernardo, R.J., Haddad, F., Couture, E.J., Hansmann, G., Perez, V.A.d.J., Denault, A.Y., et al. (2020) Mechanics of Right Ventricular Dysfunction in Pulmonary Arterial Hypertension and Heart Failure with Preserved Ejection Fraction. Cardiovascular Diagnosis and Therapy, 10, 1580-1603. [Google Scholar] [CrossRef] [PubMed]
[59] Singh, I., Rahaghi, F.N., Naeije, R., Oliveira, R.K.F., Systrom, D.M. and Waxman, A.B. (2019) Right Ventricular-Arterial Uncoupling during Exercise in Heart Failure with Preserved Ejection Fraction: Role of Pulmonary Vascular Dysfunction. Chest, 156, 933-943. [Google Scholar] [CrossRef] [PubMed]
[60] Hemnes, A.R., Celermajer, D.S., D’Alto, M., Haddad, F., Hassoun, P.M., Prins, K.W., et al. (2024) Pathophysiology of the Right Ventricle and Its Pulmonary Vascular Interaction. European Respiratory Journal, 64, Article 2401321. [Google Scholar] [CrossRef] [PubMed]
[61] Guazzi, M., Dixon, D., Labate, V., Beussink-Nelson, L., Bandera, F., Cuttica, M.J., et al. (2017) RV Contractile Function and Its Coupling to Pulmonary Circulation in Heart Failure with Preserved Ejection Fraction. JACC: Cardiovascular Imaging, 10, 1211-1221. [Google Scholar] [CrossRef] [PubMed]
[62] Teramoto, K., Sengelov, M., West, E., Santos, M., Nadruz, W., Skali, H., et al. (2020) Association of Pulmonary Hypertension and Right Ventricular Function with Exercise Capacity in Heart Failure. ESC Heart Failure, 7, 1635-1644. [Google Scholar] [CrossRef] [PubMed]
[63] Legris, V., Thibault, B., Dupuis, J., White, M., Asgar, A.W., Fortier, A., et al. (2021) Right Ventricular Function and Its Coupling to Pulmonary Circulation Predicts Exercise Tolerance in Systolic Heart Failure. ESC Heart Failure, 9, 450-464. [Google Scholar] [CrossRef] [PubMed]
[64] Olson, T.P., Johnson, B.D. and Borlaug, B.A. (2016) Impaired Pulmonary Diffusion in Heart Failure with Preserved Ejection Fraction. JACC: Heart Failure, 4, 490-498. [Google Scholar] [CrossRef] [PubMed]
[65] Gorter, T.M., Obokata, M., Reddy, Y.N.V., Melenovsky, V. and Borlaug, B.A. (2018) Exercise Unmasks Distinct Pathophysiologic Features in Heart Failure with Preserved Ejection Fraction and Pulmonary Vascular Disease. European Heart Journal, 39, 2825-2835. [Google Scholar] [CrossRef] [PubMed]
[66] Nguyen, Q.T., Nsaibia, M.J., Sirois, M.G., Calderone, A., Tardif, J., Fen Shi, Y., et al. (2019) PBI-4050 Reduces Pulmonary Hypertension, Lung Fibrosis, and Right Ventricular Dysfunction in Heart Failure. Cardiovascular Research, 116, 171-182. [Google Scholar] [CrossRef] [PubMed]
[67] Guazzi, M., Ghio, S. and Adir, Y. (2020) Pulmonary Hypertension in HFpEF and HFrEF: JACC Review Topic of the Week. Journal of the American College of Cardiology, 76, 1102-1111. [Google Scholar] [CrossRef] [PubMed]
[68] Bistola, V., Polyzogopoulou, E. and Parissis, J. (2020) A Novel Strategy for the Management of Lung Congestion: Targeting Trpv4 Channel, the ‘Gate Keeper’ of Pulmonary Capillary Permeability. European Journal of Heart Failure, 22, 1646-1648. [Google Scholar] [CrossRef] [PubMed]
[69] Gempel, S., Kologie, J., Wright, T., Decinti, D. and Cahalin, L. (2025) Impact of Cardiopulmonary Rehabilitation on Patients with Heart Failure Reduced Ejection Fraction and Preserved Ejection Fraction. Journal of Clinical Medicine, 14, Article 3815. [Google Scholar] [CrossRef] [PubMed]
[70] Eckhardt, C.M., Balte, P.P., Barr, R.G., Bertoni, A.G., Bhatt, S.P., Cuttica, M., et al. (2022) Lung Function Impairment and Risk of Incident Heart Failure: The NHLBI Pooled Cohorts Study. European Heart Journal, 43, 2196-2208. [Google Scholar] [CrossRef] [PubMed]
[71] Silvestre, O.M., Nadruz, W., Querejeta Roca, G., Claggett, B., Solomon, S.D., Mirabelli, M.C., et al. (2018) Declining Lung Function and Cardiovascular Risk: The ARIC Study. Journal of the American College of Cardiology, 72, 1109-1122. [Google Scholar] [CrossRef] [PubMed]
[72] Georgiopoulou, V.V., Kalogeropoulos, A.P., Psaty, B.M., Rodondi, N., Bauer, D.C., Butler, A.B., et al. (2011) Lung Function and Risk for Heart Failure among Older Adults: The Health ABC Study. The American Journal of Medicine, 124, 334-341. [Google Scholar] [CrossRef] [PubMed]
[73] Huang, W., Feng, J., Cheng, H., Chen, S., Huang, C., Guo, C., et al. (2020) The Role of Pulmonary Function in Patients with Heart Failure and Preserved Ejection Fraction: Looking beyond Chronic Obstructive Pulmonary Disease. PLOS ONE, 15, e0235152. [Google Scholar] [CrossRef] [PubMed]
[74] Lagan, J., Schelbert, E.B., Naish, J.H., Vestbo, J., Fortune, C., Bradley, J., et al. (2021) Mechanisms Underlying the Association of Chronic Obstructive Pulmonary Disease with Heart Failure. JACC: Cardiovascular Imaging, 14, 1963-1973. [Google Scholar] [CrossRef] [PubMed]
[75] Panagiotou, M., Church, A.C., Johnson, M.K. and Peacock, A.J. (2017) Pulmonary Vascular and Cardiac Impairment in Interstitial Lung Disease. European Respiratory Review, 26, Article 160053. [Google Scholar] [CrossRef] [PubMed]
[76] Guazzi, M. and Naeije, R. (2017) Pulmonary Hypertension in Heart Failure: Pathophysiology, Pathobiology, and Emerging Clinical Perspectives. Journal of the American College of Cardiology, 69, 1718-1734. [Google Scholar] [CrossRef] [PubMed]
[77] Rosenkranz, S., Howard, L.S., Gomberg-Maitland, M. and Hoeper, M.M. (2020) Systemic Consequences of Pulmonary Hypertension and Right-Sided Heart Failure. Circulation, 141, 678-693. [Google Scholar] [CrossRef] [PubMed]