益生菌在偏头痛治疗中的研究进展
The Role of Probiotics in Migraine Management: A Review of Advances
DOI: 10.12677/acm.2025.15113269, PDF, HTML, XML,   
作者: 李 纳*, 谭 戈#:重庆医科大学附属第一医院神经内科,重庆
关键词: 益生菌偏头痛预防肠道微生物组肠–脑轴Probiotics Migraine Prophylaxis Gut Microbiome Gut-Brain Axis
摘要: 偏头痛是一种常见的原发性头痛,主要表现为单侧、搏动性的中重度头痛,反复发作。偏头痛发作时可伴随恶心、呕吐等胃肠道症状,也可与肠易激综合征、胃潴留等胃肠道疾病共病,表明偏头痛可能与胃肠道存在一定的关系。肠道微生物组可能通过肠–脑轴影响偏头痛。益生菌通过改善肠道微生物组对偏头痛表现出预防性疗效。然而,一些研究发现益生菌可以减少偏头痛的发作频率,一些益生菌显示无效。这可能是因为益生菌的种类、剂量和人群不同。本综述不仅总结了益生菌治疗偏头痛可能的机制和益生菌对偏头痛的预防性疗效,还为未来的相关临床试验的标准化提出了一些建议,以期为偏头痛的治疗提供新思路。
Abstract: Migraine is a common primary headache disorder characterized by recurrent, unilateral, pulsating, and moderate-to-severe pain. Attacks may be accompanied by gastrointestinal symptoms such as nausea and vomiting, and migraine often co-ocscur with gastrointestinal disorders like irritable bowel syndrome and gastroparesis, suggesting a potential link between migraine and the gut. The gut microbiome may influence migraine via the gut-brain axis. Probiotics have demonstrated prophylactic effects on migraine by modulating the gut microbiota. However, while some studies indicate that probiotics can reduce the frequency of migraine attacks, others show no significant benefit. These discrepancies may be attributed to variations in probiotic strains, dosages, and patient populations. This review not only summarizes the potential mechanisms of probiotics in migraine treatment and their prophylactic efficacy but also offers recommendations for standardizing future clinical trials, aiming to provide new insights into migraine management.
文章引用:李纳, 谭戈. 益生菌在偏头痛治疗中的研究进展[J]. 临床医学进展, 2025, 15(11): 1672-1682. https://doi.org/10.12677/acm.2025.15113269

1. 介绍

偏头痛是一种常见的原发性头痛,是全球致残率第二的疾病,是50岁以下人群(尤其女性)的首要致残原因[1] [2]。偏头痛的全球年患病率为15%,在我国为9.3%,且发病率逐年升高,给家庭和社会带来极大的负担[3]。根据ICHD-3,偏头痛主要表现为反复发作的,单侧、搏动样的中重度的头痛,持续4~48小时,伴有恶心、呕吐、畏光、畏声等症状[4]。目前偏头痛的发病机制尚不明确,可能与三叉神经血管系统激活、皮层扩布抑制、神经源性炎症等有关[5]

偏头痛的伴随症状包括恶心、呕吐等胃肠道症状。一项纳入了3000多名患者的流行病学研究表明当呕吐作为最令人困扰的伴随症状时,是月头痛天数大于3天的危险因素[6]。偏头痛也常与肠易激综合征、炎症性肠病、胃潴留等消化系统疾病共病[7]。特定的食物可能诱发或改善偏头痛[8]。咖啡被广泛视为偏头痛的诱因[9] [10]。值得注意的是咖啡因过度使用(>200 mg/天)可能导致偏头痛慢性化,而突然停止摄入咖啡因可能会引发偏头痛发作[11]。某些特定的饮食方案,如生酮饮食、降压饮食、无麸质饮食、IgG消除饮食等有利于减少偏头痛的发作[12]-[14]。以上现象提示,偏头痛和肠道存在一定的联系。肠–脑轴为胃肠道和中枢神经系统之间的双向调节轴,而肠道微生物组在其中发挥了至关重要的作用。益生菌作为调节肠道微生物组的保健品,也展现出对偏头痛的预防性疗效[15] [16]

目前益生菌治疗偏头痛的临床研究较少,疗效存在争议,可能是由于纳入标准、益生菌种类、剂量等不同。本文总结了益生菌在治疗偏头痛的可能的机制、疗效及安全性,为未来相关临床研究提出了一些建议,以期为偏头痛的发病机制及治疗提供新思路。

2. 偏头痛发病机制

偏头痛的发病机制尚不明确。但大多数研究认为偏头痛的发生与三叉神经的激活和敏化有关。

三叉神经的伤害性感受器的长期激活会促使其神经末梢释放血管活性物质,如降钙素基因相关肽(CGRP),垂体腺苷酸环化酶激活多肽(PACAP),物质P,神经激肽A [17]。神经末梢释放的CGRP使Aδ fibers致敏导致头痛发生[17] [18]。这些血管活性物质会引起神经源性血管炎症,例如脑膜血管扩张、炎症细胞的激活及脱颗粒等[19]。炎症细胞释放的炎症因子,如前列腺素、组胺等会进一步使疼痛感受器致敏,导致头痛的阈值更低[18] [20]。治疗偏头痛的药物如抗CGRP抗体的有效性证实了CGRP在偏头痛致病通路上的关键作用。

部分研究发现下丘脑参与了头痛的发生。在偏头痛发生过程中,对偏头痛患者进行功能磁共振扫描,发现偏头痛的先兆阶段存在下丘脑的激活[21]。也有类似的影像学研究发现,偏头痛的发生可能与下丘脑失去对边缘系统的控制有关[22]

大量的动物模型证据支持皮层扩散性抑制(CSD)参与了先兆性偏头痛的发生。CSD是四种不同偏头痛相关基因的突变后功能改变的共同结果,包括钙通道、Na+/K+ ATPase和丝氨酸–苏氨酸激酶的两种不同突变[23]。在动物模型中,CSD与许多可能激活或致敏疼痛信号通路信使的释放有关——包括一氧化氮[24]、三磷酸腺苷[25]、降钙素基因相关肽[26]-[28]等。CSD进一步激活三叉神经血管系统,从而将痛觉信号传递至脑干、丘脑和大脑皮层等高级中枢[28] [29],并促进多种血管活性物质的释放[29]-[31],共同参与偏头痛发作。

3. 肠道微生物组与偏头痛的联系

肠–脑轴是通过内分泌、代谢、免疫等多种途径参与的肠道与大脑之间双向调节通道[32]。肠道微生物组是指肠道中的所有细菌、真菌、病毒和其他形式的生命的统称,在肠–脑轴的调节中发挥了重要作用。已有证据表明肠道细菌可能影响大脑,与帕金森病、阿尔兹海默症、癫痫、偏头痛等多种神经系统疾病相关[33] [34]。肠道微生物组与偏头痛之间联系的具体机制尚不明确,大部分研究认为可能与肠道通透性、炎症因子、肠道细菌代谢产物等有关。

研究显示偏头痛患者有肠道微生物组失调,包括α多样性降低、有益菌减少等[35]。肠道微生物组失调会引起肠道屏障通透性增加。肠道中的革兰阴性细菌的脂多糖进入循环系统,进而激活免疫系统,产生更多的细胞炎症因子,如IL-6、TNF-alpha、CRP [7]。肠道屏障通透性与炎症细胞因子的变化具有双向性。细胞炎症因子的上升将进一步增强肠道屏障通透性[36]。炎症细胞因子的上升可能引起三叉神经的传入末梢致敏,从而进一步引起偏头痛[37] [38]。抗生素治疗延长了硝酸甘油(NTG)诱导的野生型(WT)小鼠急性偏头痛样疼痛,并且通过遗传缺失肿瘤坏死因子-α (TNFα)或脊髓内三叉神经尾核(Sp5C)注射TNFα受体拮抗剂完全阻断了疼痛延长,益生菌给药也显着抑制了抗生素产生的偏头痛样疼痛延长[39]。另一方面,肠道微生物的代谢产物具有合成和调节神经递质的作用。微生物产生的色氨酸、酪氨酸、谷氨酰胺等直接参与神经递质,如多巴胺、乙酰胆碱、血清素和GABA的合成和调节。由于肠道菌群、应激等变化,肠道中的5-HT可能被分流到犬尿氨酸的代谢途径,进一步生成具有神经毒性的喹啉酸[40]。在偏头痛患者中观察到犬尿氨酸途径被富集[41]。一项研究天麻和钩藤治疗偏头痛的机制,发现给药后,紊乱的肠道细菌的丰度得到了调整,影响了色氨酸、酪氨酸、精氨酸、烟酸和烟酰胺的代谢[42]。拟杆菌门和厚壁菌门内的物种是参与短链脂肪酸产生的主要细菌物种。粪杆菌属、双歧杆菌属、乳杆菌属和球状梭菌等合成的丁酸盐、丙酸盐等,不仅具有维持肠道屏障完整性的作用[43],也被证明会影响大脑功能[44]。包括丁酸和丙酸在内的短链脂肪酸可以穿过血脑屏障并激活影响多巴胺和血清素信号传导的受体[45]。Lanza等人表明丙酸钠(SP)和丁酸钠(SB)治疗减轻了硝酸甘油引发的疼痛发作[46]

肠道微生物组的结构可通过益生菌、饮食、药物等因素改变。补充益生菌可直接改变肠道微生物组的结构[47]-[59],增加有益菌,如乳杆菌、双歧杆菌等的数量。Abed Ghavami等人在2021年的一项研究发现对偏头痛患者补充12周的益生菌后,患者血液高敏C反应蛋白(HsCRP)、连接蛋白(一种肠道通透性的标志物)下降[15]。然而De Ross、Fahimeh Martami、Mahdi Vajdi等人却未发现炎症因子及肠道通透性标志物的变化[16] [50] [51]。另外,也有一些研究认为益生菌通过改善偏头痛患者氧化应激水平、改变色氨酸代谢途径等发挥作用。Abed Ghavami等人在2021年的一项研究发现对偏头痛患者补充12周的益生菌后,患者血液中的总抗氧化能力(TAC)、氧化应激指数(OSI)、NO水平显著下降[52]。在饮食方面,健康的饮食方式,如地中海饮食、生酮饮食、DASH (停止高血压饮食)、无麸质饮食等已知具有逐渐产生更平衡的抗炎微生物组的功能[53] [54]。同时也有证据表明,健康的饮食可以通过改变肠道微生物组改善偏头痛[7] [13] [14]。一项随机对照试验研究了采用无麸质地中海饮食如何影响肠道微生物组和偏头痛结局,证实了保持无麸质饮食的人在过去三个月中偏头痛频率显着降低,肠道中真菌多毛菌的丰度显着减少[55]。在偏头痛患者中观察到线粒体DNA甲基化异常[56],叶酸通过在DNA甲基化中发挥作用对偏头痛有一定的疗效[57]。药物通常会降低细菌多样性并增加潜在病原体(例如艰难梭菌)的数量,尤其是抗生素。研究表明万古霉素显著降低了产生SCFA的厚壁菌门的相对丰度,同时增加了肠杆菌科和肠球菌属的相对丰度[58]。环丙沙星被证明不仅能消耗双歧杆菌和瘤胃球菌属,还会导致物种丰富度和β多样性的更大降低[59]。一项观察性队列研究发现服用抗生素与偏头痛之间存在联系,接受了氟喹诺酮类药物、大环内酯类药物或头孢菌素类药物等治疗2周后,头痛和偏头痛患者人数增加[60]

4. 益生菌对偏头痛的预防性疗效

有研究发现偏头痛患者肠道微生物与健康人存在差异。偏头痛患者的肠道微生物的α多样性下降,有益微生物减少,如普拉粪杆菌、青少年双歧杆菌等[61]。2项探索肠道菌群与偏头痛风险的孟德尔分析显示双歧杆菌与偏头痛的风险降低有关[62] [63]。2025年Jingjing Liu等人进行了一项横断面研究,通过DI-GM评估患者肠道微生物的健康状况,发现DI-GM评分越高,偏头痛发生的风险越低[64]。Rongjiang Xu等人的研究发现中度至大量摄入活的膳食微生物与严重头痛或偏头痛的患病率呈负相关[65]。以上研究提示补充益生菌可能通过改善肠道菌群的结构,从而缓解偏头痛。

益生菌是指活的微生物膳食补充剂,通过改善宿主动物的肠道微生物平衡,对宿主动物产生有益的影响,乳杆菌、双歧杆菌和链球菌等是人类常用的益生菌[66]。益生菌不仅广泛用于腹泻、便秘等胃肠道疾病,对神经系统疾病,如焦虑抑郁、阿尔兹海默症、帕金森等也表现出一定的疗效[67]-[69]。近年来,有部分临床研究表明益生菌也有助于治疗偏头痛(见表1)。

4.1. 益生菌对偏头痛的疗效

4.1.1. 益生菌对头痛天数的影响

2015年,De Ross等人首次将益生菌作为补充剂治疗偏头痛,每位患者每日服用5 × 109 CFU的8种的混合益生菌(Ecologic®Barrier),研究发现服用益生菌12周后,患者的偏头痛天数从治疗前6.7 ± 2.4天/月下降至5.2 ± 2.4天/月(P = 0.001) [70]。该研究所使用的混合益生菌主要含有双歧杆菌属和乳杆菌属,有助于增加肠道上皮屏障的完整性[71],也是产生和调节神经递质GABA和乙酰胆碱的重要菌属[53],其中短双歧杆菌是公认的产乙酸盐的主要参与者[72]。但该试验为非随机对照,未设置安慰剂组,因此不能除外安慰剂效应。2017年,De Ross等人在之前的研究基础上设置了安慰剂组并增加了样本量(60名),使用同样的益生菌种类和剂量治疗偏头痛患者12周后,发现虽然第8周时偏头痛天数较治疗前有显著下降(治疗前的6天/月下降至第8周的4天/月(P = 0.002),但第12周(5天/月)较治疗前未发现显著变化,同时任何时间点未发现偏头痛天数的下降在益生菌组和安慰剂组有显著差异,此项研究结果并不支持益生菌有利于改善偏头痛,但此结果可能与干预周期短、益生菌剂量小有关[50]。Von A. Straube等人纳入了1020名偏头痛患者,使用De Ross等人的2倍剂量的同种类的益生菌,发现偏头痛天数较De Ross的研究下降更多且较前有显著性差异(2天/周下降至1.4天/周;p ≤ 0.001),表明益生菌可能存在剂量效应关系[73]。遗憾的是此研究仍无安慰剂组。2019年,Fahimeh Martami等人的一项随机对照试验使用了bio-kult益生菌(一种含有14种益生菌的产品,主要是双歧杆菌属、乳杆菌属、芽孢杆菌属、链球菌属、肠球菌属)治疗了偏头痛12周,研究结果显示,服用益生菌的发作性偏头痛患者的偏头痛天数从6.91 ± 2.69天/月下降至3.91 ± 2.49天/月,与安慰剂组有显著性差异(p ≤ 0.001),且在慢性偏头痛患者中下降更明显(从21.33 ± 4.93天/月下降至11.52 ± 6.37天/月),表明可能偏头痛频率越高,对益生菌的反应越好[16],本研究为第一项证明益生菌对偏头痛具有预防性疗效的双盲、随机、对照研究,与以往的研究不同的是,使用了更大剂量、菌种更丰富的益生菌产品,不仅包含双歧杆菌属和乳杆菌属,其中双歧杆菌属添加了更丰富的产短链脂肪酸的细菌,如短双歧杆菌、婴儿双歧杆菌和两岐双岐杆菌[72]等,还包含了可以产生血清素的芽孢杆菌属、链球菌属、肠球菌属[53],可能从改善肠道粘膜完整性、抗炎、合成和调节神经递质等多方面达到预防偏头痛发作的作用。

4.1.2. 益生菌对偏头痛的其他方面(强度、持续时间、生活质量、心理健康、MBS)的影响

益生菌对头痛强度、持续时间、生活质量、心理健康及MBS的影响尚无定论。目前的所有研究皆采用VAS评分评估偏头痛程度,大部分显示出益生菌有降低偏头痛强度的作用,减少范围在−0.8~−3.0之间[16] [51] [70] [73] [74],然而也有1项研究认为益生菌对降低偏头痛的强度并无作用[50]。有3项研究关注到了偏头痛的每次持续时间,然而所有研究均认为益生菌不能减少偏头痛发作持续时间[15] [16] [51]。其中Fahimeh Martami等人的研究结果显示,虽然在服用益生菌的发作性偏头痛患者中未能发现偏头痛持续时间的下降,但慢性偏头痛患者的头痛持续时间却有微小的降低,这应证了前文所述,头痛频率越高的患者可能对益生菌的反应越好[16]。大多数研究采用MIDAS、HIT-6、HDI等量表评估偏头痛对患者生活质量的影响,采用DASS量表评估对心理健康状况的影响,并未发现益生菌对偏头痛患者的生活质量和心理健康的改善[50] [51]。目前,没有任何文章分析过益生菌对偏头痛患者的最令人困扰的伴随症状(MBS)的缓解情况,尤其是与胃肠道相关的伴随症状,如恶心、呕吐。

4.2. 益生菌联合其他治疗方法对偏头痛的疗效

最近的一项随机对照试验将复合益生菌和维生素D同时作为偏头痛补充治疗12周,发现偏头痛的发作频率、程度、持续时间皆发生显著下降[51],但该试验尚不能确定发挥疗效的是维生素D还是益生菌。Yangzhi Xi等探讨IgG消除的饮食联合益生菌对偏头痛合并肠易激综合征患者的影响,发现坚持14周的消除IgG饮食(IgG Elimination Diet)或消除IgG饮食联合益生菌,偏头痛天数显著下降,血清5-HT显著上升,且联合组变化更明显,而在单纯服用益生菌组未发现明显改变,表明特定饮食和补充益生菌可能对偏头痛有协同作用[75]

4.3. 益生菌对特殊人群的疗效

4.3.1. 女性

众所周知,偏头痛患病率、治疗效果等具有性别差异,这可能与女性性激素有关[76]。2021年Abed Ghavami等人将合生元(复合益生菌 + 低聚果糖益生元)用于治疗女性偏头痛患者后,发现偏头痛发作频率较安慰剂组显著下降(从5.61 ± 0.19次/月下降至4.59 ± 0.17次/月) [16]

4.3.2. 儿童

Bidabadi Elyasi等人进行了一项随机对照试验,发现在儿童偏头痛患者中,丙戊酸钠联合益生菌在头痛频率的下降较单用丙戊酸钠更显著[77]。2024年Hassan B等人,将41名儿童分为普萘洛尔组和普萘洛尔联合益生菌组,分别治疗3周,最终发现普萘洛尔联合益生菌较普萘洛尔对偏头痛疗效更显著[78]。以上两项研究证明了益生菌在儿童偏头痛患者中的有效性。以上两项临床试验并未发现益生菌的不良反应。由于益生菌较常规的药物相比,副作用几乎可以忽略,故未来的临床试验可以着重研究益生菌在偏头痛儿童中的作用。

Table 1. Probiotics used in clinical trials of migraine

1. 益生菌治疗偏头痛的临床研究

研究(年份)

试验设计

菌种

剂量(CFU/)

疗程

主要结果

De Roos

等人(2015)

单臂

开放

标签

Bifidobacterium bifidum W23, Bifidobacterium lactis W52,

Lactobacillus acidophilus W37, Lactobacillus brevis W63,

Lactobacillus casei W56, Lactobacillus salivarius W24,

Lactococcus lactis W19, Lactococcus lactis W58

5 × 109

12周

频率↓、

程度↓、MIDAS↓

De Roos

等人(2017)

双盲、随机

、对照研究

同上

5 × 109

12周

治疗前后

无显著性改变

Straube VA

等人(2018)

观察性

研究

同上

7.5 × 109

8周

频率↓、程度↓

Martami F

等人(2019)

双盲、随机、

对照研究

Bacillus subtilis PXN 21, Bifidobacterium bifidum PXN 23,

Bifidobacterium breve PXN 25, Bifidobacterium infantis PXN

27, Bifidobacterium longum PXN 30, Lactobacillus acidophilus

PXN 35, Lactob. delbrueckii ssp. bulgaricus PXN 39, Lactob.

casei PXN 37, Lactob.plantarum PXN 47, Lactob. rhamnosus

PXN 54, Lactob. helveticus PXN 45, Lactob. salivarius PXN57,

Lactococcus lactis ssp. lactis PXN 63, Streptococcus thermophilus

PXN 66

4 × 109

10周(EM);

8周(CM)

EM:频率↓、

程度↓;

CM:频率↓、

程度↓、

持续时间↓

Yangzhi Xie

等人(2019)

双盲、随机、

对照研究

Bifidobacterium infantis, Lactobacillus acidophilus,

Enterococcus faecalis, and Bacillus cereus

14周

MIDAS↓、

止痛药使用天数↓、

Ghavami A

等人(2021)

双盲、随机、

对照研究

Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus

rhamnosus, Lactobacillus helveticus, Lactobacillus bulgaricus,

Lactobacillus plantarum, Lactobacillus gasseri, Bifidobacterium

breve Bifdobacterium longum, Bifidobacterium lactis,

Bifidobacterium bifidum, Streptococcus thermophilus

Fructooligosaccharides

2 × 109

12周

频率↓

Ghavami A

等人(2021)

双盲、随机、

对照研究

同上

2 × 109

12周

MI↓、TAC↑、

OSI↓、NO↓

Bidabadi E

等人(2023)

双盲、随机、

对照研究

Lactobacillus acidophilus (2.5 × 1010 CFU), Lactobacillus

rhamnosus (3.5 × 1010 CFU), Lactobacillus bulgaricus

(2 × 109 CFU), Bifidobacterium infantis (5 × 1010 CFU),

Lactobacillus casei (3 × 1010 CFU), Bifidobacterium breve

(2.5 × 1010 CFU), Streptococcus thermophilus (2 × 109 CFU)

1 g;4月

频率↓、程度

Amani T

等人(2024)

双盲、随机、

对照研究

Lactobacillus plantarum, Lactobacillus casei, Lactobacillus

acidophilus, Lactobacillus bulgaricus, Bifidobacterium

infantis, Bifidobacterium longum, Bifidobacterium breve,

Streptococcus thermophilus

4.5 × 1011

12周

频率↓、程度↓

Hassan B

等人(2024)

双盲、随机、

对照研究

Saccharomyces boulardii

3月

频率↓、MIDAS↓

缩写:CFU:集落形成单位;MIDAS:偏头痛失能评估问卷;TAC:总抗氧化能力;TOS:总氧化水平;OSI:氧化压力指数;OSI = (TOS/TAS) × 100;NO:一氧化碳;MI:偏头痛指数;MI = 频率 × 程度。

5. 益生菌的安全性和耐受性

服用益生菌的不良反应有轻微便秘、恶心等,但发生率低。2015年,De Ross NM等人的研究纳入了29名偏头痛患者,发现仅有4名参与者在服用益生菌前2周出现了轻微的便秘,而第3周便秘缓解[70]。2018年,Von A. Straube等人的研究纳入了1020名偏头痛患者,有20名患者出现轻度恶心或其它消化道不适[73]。以上两项研究均无参与者因为不良反应退出试验。其余临床试验未发现不良反应。较常规的偏头痛预防性药物,如氟桂利嗪、托吡酯、丙戊酸钠等易出现体重增加、感觉异常、肝功能异常等不良反应,益生菌等是一种安全性高、耐受性好的治疗产品。

6. 当前存在的争议和未来的展望

目前对于益生菌对偏头痛是否有效的结论尚不统一,可能与纳入标准、受试者的类型、疗程、剂量等有关,未来需要进行更多大规模的高质量的随机对照试验。对于未来的研究总结出以下建议:1、纳入标准:选择特定的偏头痛人群,如性别、有无先兆、发作性或慢性偏头痛、有无恶心/呕吐的伴随症状等,筛选出对益生菌疗效敏感的人群。2、干预产品及剂量:由于患者的肠道菌群受到遗传、年龄、地域、性别等影响存在先天的差异,因此未来的研究可以利用多组学技术(宏基因组学、代谢组学)——来识别益生菌干预的响应者和无响应者,或设计N-of-1试验来探索个性化益生菌治疗。同时可设置不同剂量的分组,探索其是否存在剂量–效应关系以及最适宜的治疗剂量。3、疗程:现大部分研究局限于12周,未来研究可延长至24周,且可关注停止治疗后疗效是否持续。4、控制因素:因肠道菌群易受到饮食、生活方式等的影响,因此可尽量控制研究过程中膳食结构、运动量、作息、压力、情绪等。5、机制:收集粪便、血液、影像学资料等探索益生菌治疗偏头痛的作用机制,可关注肠道通透性、氧化应激、炎症因子、胃排空等。

7. 总结

偏头痛发病率高、致残率高,其预防性治疗至关重要。但由于偏头痛的发病机制尚不明确,偏头痛的治疗是一项难题。偏头痛与胃肠道症状和疾病的密切关系、针对肠道菌群的治疗方式的有效性等提示肠–脑轴可能参与了偏头痛的发病,其中肠道菌群发挥了至关重要的作用。

益生菌对偏头痛疗效尚不统一,可能与人群、益生菌种类和剂量、治疗周期等相关,但大多数研究支持益生菌的积极作用。未来需要更多大规模、高质量的研究发现适用人群、发挥主要作用的益生菌种类、剂量及其中的机制,为偏头痛人群提供更个性化的治疗。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Steiner, T.J., Stovner, L.J., Jensen, R., Uluduz, D. and Katsarava, Z. (2020) Migraine Remains Second among the World’s Causes of Disability, and First among Young Women: Findings from GBD2019. The Journal of Headache and Pain, 21, Article No. 137. [Google Scholar] [CrossRef] [PubMed]
[2] Ashina, M., Katsarava, Z., Do, T.P., Buse, D.C., Pozo-Rosich, P., Özge, A., et al. (2021) Migraine: Epidemiology and Systems of Care. The Lancet, 397, 1485-1495. [Google Scholar] [CrossRef] [PubMed]
[3] Chen, Z., Kong, X., Yang, C., Li, X., Guo, H. and Wang, Z. (2024) Global, Regional, and National Burden and Trends of Migraine among Youths and Young Adults Aged 15-39 Years from 1990 to 2021: Findings from the Global Burden of Disease Study 2021. The Journal of Headache and Pain, 25, Article No. 131. [Google Scholar] [CrossRef] [PubMed]
[4] Headache Classification Committee of the International Headache Society (IHS) (2018) The International Classification of Headache Disorders, 3rd Edition. Cephalalgia, 38, 1-211.
[5] Ferrari, M.D., Goadsby, P.J., Burstein, R., Kurth, T., Ayata, C., Charles, A., et al. (2022) Migraine. Nature Reviews Disease Primers, 8, Article No. 2. [Google Scholar] [CrossRef] [PubMed]
[6] Kim, S.J., Lee, H.J., Lee, S.H., Cho, S., Kim, K.M. and Chu, M.K. (2023) Most Bothersome Symptom in Migraine and Probable Migraine: A Population-Based Study. PLOS ONE, 18, e0289729. [Google Scholar] [CrossRef] [PubMed]
[7] Arzani, M., Jahromi, S.R., Ghorbani, Z., Vahabizad, F., Martelletti, P., Ghaemi, A., et al. (2020) Gut-Brain Axis and Migraine Headache: A Comprehensive Review. The Journal of Headache and Pain, 21, Article No. 15. [Google Scholar] [CrossRef] [PubMed]
[8] Gazerani, P., Papetti, L., Dalkara, T., Cook, C.L., Webster, C. and Bai, J. (2024) The Brain, the Eating Plate, and the Gut Microbiome: Partners in Migraine Pathogenesis. Nutrients, 16, Article 2222. [Google Scholar] [CrossRef] [PubMed]
[9] Mostofsky, E., Mittleman, M.A., Buettner, C., Li, W. and Bertisch, S.M. (2019) Prospective Cohort Study of Caffeinated Beverage Intake as a Potential Trigger of Headaches among Migraineurs. The American Journal of Medicine, 132, 984-991. [Google Scholar] [CrossRef] [PubMed]
[10] Zhang, L., Yin, J., Li, J., Sun, H., Liu, Y. and Yang, J. (2023) Association between Dietary Caffeine Intake and Severe Headache or Migraine in US Adults. Scientific Reports, 13, Article No. 10220. [Google Scholar] [CrossRef] [PubMed]
[11] Zduńska, A., Cegielska, J., Zduński, S. and Domitrz, I. (2023) Caffeine for Headaches: Helpful or Harmful? A Brief Review of the Literature. Nutrients, 15, Article 3170. [Google Scholar] [CrossRef] [PubMed]
[12] Ramsden, C.E., Zamora, D., Faurot, K.R., MacIntosh, B., Horowitz, M., Keyes, G.S., et al. (2021) Dietary Alteration of N-3 and N-6 Fatty Acids for Headache Reduction in Adults with Migraine: Randomized Controlled Trial. BMJ, 374, n1448. [Google Scholar] [CrossRef] [PubMed]
[13] Olivito, I., Simona, F., Tarsitano, A., Pagliuso, M., Tarantino, C., De Lorenzo, A., et al. (2024) Mediterranean Ketogenic Diet Accounts for Reduced Pain Frequency and Intensity in Patients with Chronic Migraine: A Pilot Study. Clinical Nutrition, 43, 1781-1787. [Google Scholar] [CrossRef] [PubMed]
[14] Nguyen, K.V. and Schytz, H.W. (2024) The Evidence for Diet as a Treatment in Migraine—A Review. Nutrients, 16, Article 3415. [Google Scholar] [CrossRef] [PubMed]
[15] Ghavami, A., Khorvash, F., Heidari, Z., Khalesi, S. and Askari, G. (2021) Effect of Synbiotic Supplementation on Migraine Characteristics and Inflammatory Biomarkers in Women with Migraine: Results of a Randomized Controlled Trial. Pharmacological Research, 169, Article 105668. [Google Scholar] [CrossRef] [PubMed]
[16] Martami, F., Togha, M., Seifishahpar, M., Ghorbani, Z., Ansari, H., Karimi, T., et al. (2019) The Effects of a Multispecies Probiotic Supplement on Inflammatory Markers and Episodic and Chronic Migraine Characteristics: A Randomized Double-Blind Controlled Trial. Cephalalgia, 39, 841-853. [Google Scholar] [CrossRef] [PubMed]
[17] Levy, D. and Moskowitz, M.A. (2023) Meningeal Mechanisms and the Migraine Connection. Annual Review of Neuroscience, 46, 39-58. [Google Scholar] [CrossRef] [PubMed]
[18] De Logu, F., Nassini, R., Hegron, A., Landini, L., Jensen, D.D., Latorre, R., et al. (2022) Schwann Cell Endosome CGRP Signals Elicit Periorbital Mechanical Allodynia in Mice. Nature Communications, 13, Article No. 646. [Google Scholar] [CrossRef] [PubMed]
[19] Schain, A.J., Melo‐Carrillo, A., Borsook, D., Grutzendler, J., Strassman, A.M. and Burstein, R. (2018) Activation of Pial and Dural Macrophages and Dendritic Cells by Cortical Spreading Depression. Annals of Neurology, 83, 508-521. [Google Scholar] [CrossRef] [PubMed]
[20] Zhang, X. and Levy, D. (2008) Modulation of Meningeal Nociceptors Mechanosensitivity by Peripheral Proteinase-Activated Receptor-2: The Role of Mast Cells. Cephalalgia, 28, 276-284. [Google Scholar] [CrossRef] [PubMed]
[21] Schulte, L.H., Mehnert, J. and May, A. (2020) Longitudinal Neuroimaging over 30 Days: Temporal Characteristics of Migraine. Annals of Neurology, 87, 646-651. [Google Scholar] [CrossRef] [PubMed]
[22] Stankewitz, A., Keidel, L., Rehm, M., Irving, S., Kaczmarz, S., Preibisch, C., et al. (2021) Migraine Attacks as a Result of Hypothalamic Loss of Control. NeuroImage: Clinical, 32, Article 102784. [Google Scholar] [CrossRef] [PubMed]
[23] Brennan, K.C., Bates, E.A., Shapiro, R.E., Zyuzin, J., Hallows, W.C., Huang, Y., et al. (2013) Casein Kinase Iδ Mutations in Familial Migraine and Advanced Sleep Phase. Science Translational Medicine, 5, 183ra56. [Google Scholar] [CrossRef] [PubMed]
[24] Colonna, D.M., Meng, W., Deal, D.D., Gowda, M. and Busija, D.W. (1997) Neuronal NO Promotes Cerebral Cortical Hyperemia during Cortical Spreading Depression in Rabbits. American Journal of Physiology-Heart and Circulatory Physiology, 272, H1315-H1322. [Google Scholar] [CrossRef] [PubMed]
[25] Schock, S.C., Munyao, N., Yakubchyk, Y., Sabourin, L.A., Hakim, A.M., Ventureyra, E.C.G., et al. (2007) Cortical Spreading Depression Releases ATP into the Extracellular Space and Purinergic Receptor Activation Contributes to the Induction of Ischemic Tolerance. Brain Research, 1168, 129-138. [Google Scholar] [CrossRef] [PubMed]
[26] Colonna, D.M., Meng, W., Deal, D.D. and Busija, D.W. (1994) Calcitonin Gene-Related Peptide Promotes Cerebrovascular Dilation during Cortical Spreading Depression in Rabbits. American Journal of Physiology-Heart and Circulatory Physiology, 266, H1095-H1102. [Google Scholar] [CrossRef] [PubMed]
[27] Wahl, M., Schilling, L., Parsons, A.A. and Kaumann, A. (1994) Involvement of Calcitonin Gene-Related Peptide (CGRP) and Nitric Oxide (NO) in the Pial Artery Dilatation Elicited by Cortical Spreading Depression. Brain Research, 637, 204-210. [Google Scholar] [CrossRef] [PubMed]
[28] Olesen, J., Burstein, R., Ashina, M. and Tfelt-Hansen, P. (2009) Origin of Pain in Migraine: Evidence for Peripheral Sensitisation. The Lancet Neurology, 8, 679-690. [Google Scholar] [CrossRef] [PubMed]
[29] Silberstein, S.D. (2004) Migraine. The Lancet, 363, 381-391. [Google Scholar] [CrossRef] [PubMed]
[30] Zhang, Q., Han, X., Wu, H., Zhang, M., Hu, G., Dong, Z., et al. (2019) Dynamic Changes in CGRP, PACAP, and PACAP Receptors in the Trigeminovascular System of a Novel Repetitive Electrical Stimulation Rat Model: Relevant to Migraine. Molecular Pain, 15, 1-15. [Google Scholar] [CrossRef] [PubMed]
[31] Han, X., Ran, Y., Su, M., Liu, Y., Tang, W., Dong, Z., et al. (2017) Chronic Changes in Pituitary Adenylate Cyclase-Activating Polypeptide and Related Receptors in Response to Repeated Chemical Dural Stimulation in Rats. Molecular Pain, 13, 1-10. [Google Scholar] [CrossRef] [PubMed]
[32] Agirman, G. and Hsiao, E.Y. (2021) Snapshot: The Microbiota-Gut-Brain Axis. Cell, 184, 2524-2524.e1. [Google Scholar] [CrossRef] [PubMed]
[33] Socała, K., Doboszewska, U., Szopa, A., Serefko, A., Włodarczyk, M., Zielińska, A., et al. (2021) The Role of Microbiota-Gut-Brain Axis in Neuropsychiatric and Neurological Disorders. Pharmacological Research, 172, Article 105840. [Google Scholar] [CrossRef] [PubMed]
[34] Mayer, E.A., Tillisch, K. and Gupta, A. (2015) Gut/Brain Axis and the Microbiota. Journal of Clinical Investigation, 125, 926-938. [Google Scholar] [CrossRef] [PubMed]
[35] Wieërs, G., Belkhir, L., Enaud, R., Leclercq, S., Philippart de Foy, J., Dequenne, I., et al. (2020) How Probiotics Affect the Microbiota. Frontiers in Cellular and Infection Microbiology, 9, Article ID: 454. [Google Scholar] [CrossRef] [PubMed]
[36] Mennigen, R. and Bruewer, M. (2009) Effect of Probiotics on Intestinal Barrier Function. Annals of the New York Academy of Sciences, 1165, 183-189. [Google Scholar] [CrossRef] [PubMed]
[37] Ramachandran, R. (2018) Neurogenic Inflammation and Its Role in Migraine. Seminars in Immunopathology, 40, 301-314. [Google Scholar] [CrossRef] [PubMed]
[38] Cavaillon, J.M. (2001) Pro-versus Anti-Inflammatory Cytokines: Myth or Reality. Cellular and Molecular Biology, 47, 695-702.
[39] Tang, Y., Liu, S., Shu, H., Yanagisawa, L. and Tao, F. (2019) Gut Microbiota Dysbiosis Enhances Migraine-Like Pain via TNFα Upregulation. Molecular Neurobiology, 57, 461-468. [Google Scholar] [CrossRef] [PubMed]
[40] Crawford, J., Liu, S. and Tao, F. (2022) Gut Microbiota and Migraine. Neurobiology of Pain, 11, Article 100090. [Google Scholar] [CrossRef] [PubMed]
[41] Hagerty, S.L., Hutchison, K.E., Lowry, C.A. and Bryan, A.D. (2020) An Empirically Derived Method for Measuring Human Gut Microbiome Alpha Diversity: Demonstrated Utility in Predicting Health-Related Outcomes among a Human Clinical Sample. PLOS ONE, 15, e0229204. [Google Scholar] [CrossRef] [PubMed]
[42] Wen, Z., He, M., Peng, C., Rao, Y., Li, J., Li, Z., et al. (2019) Metabolomics and 16S rRNA Gene Sequencing Analyses of Changes in the Intestinal Flora and Biomarkers Induced by Gastrodia-Uncaria Treatment in a Rat Model of Chronic Migraine. Frontiers in Pharmacology, 10, Article No. 1425. [Google Scholar] [CrossRef] [PubMed]
[43] Park, J. and Floch, M.H. (2007) Prebiotics, Probiotics, and Dietary Fiber in Gastrointestinal Disease. Gastroenterology Clinics of North America, 36, 47-63. [Google Scholar] [CrossRef] [PubMed]
[44] Yassin, L.K., Nakhal, M.M., Alderei, A., Almehairbi, A., Mydeen, A.B., Akour, A., et al. (2025) Exploring the Microbiota-Gut-Brain Axis: Impact on Brain Structure and Function. Frontiers in Neuroanatomy, 19, Article 1504065. [Google Scholar] [CrossRef] [PubMed]
[45] Morris, G., Berk, M., Carvalho, A., Caso, J.R., Sanz, Y., Walder, K., et al. (2017) The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. Molecular Neurobiology, 54, 4432-4451. [Google Scholar] [CrossRef] [PubMed]
[46] Li, H., Zhou, D., Gan, R., Huang, S., Zhao, C., Shang, A., et al. (2021) Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients, 13, Article 3211. [Google Scholar] [CrossRef] [PubMed]
[47] Bagarolli, R.A., Tobar, N., Oliveira, A.G., Araújo, T.G., Carvalho, B.M., Rocha, G.Z., et al. (2017) Probiotics Modulate Gut Microbiota and Improve Insulin Sensitivity in DIO Mice. The Journal of Nutritional Biochemistry, 50, 16-25. [Google Scholar] [CrossRef] [PubMed]
[48] Everard, A., Matamoros, S., Geurts, L., Delzenne, N.M. and Cani, P.D. (2014) Saccharomyces boulardii Administration Changes Gut Microbiota and Reduces Hepatic Steatosis, Low-Grade Inflammation, and Fat Mass in Obese and Type 2 Diabetic db/db Mice. mBio, 5, e01011-e01014. [Google Scholar] [CrossRef] [PubMed]
[49] Chen, L., Zou, Y.Y., Lu, F.G., Li, F.J. and Lian, G.H. (2013) Efficacy Profiles for Different Concentrations of Lactobacillus acidophilus in Experimental Colitis. World Journal of Gastroenterology, 19, 5347-5356. [Google Scholar] [CrossRef] [PubMed]
[50] de Roos, N.M., van Hemert, S., Rovers, J.M.P., Smits, M.G. and Witteman, B.J.M. (2017) The Effects of a Multispecies Probiotic on Migraine and Markers of Intestinal Permeability-Results of a Randomized Placebo-Controlled Study. European Journal of Clinical Nutrition, 71, 1455-1462. [Google Scholar] [CrossRef] [PubMed]
[51] Tirani, S.A., Khorvash, F., Saneei, P., Moradmand, Z. and Askari, G. (2024) Effects of Probiotic and Vitamin D Co-Supplementation on Clinical Symptoms, Mental Health, and Inflammation in Adult Patients with Migraine Headache: A Randomized, Triple-Blinded, Placebo-Controlled Trial. BMC Medicine, 22, Article No. 457. [Google Scholar] [CrossRef] [PubMed]
[52] Ghavami, A., Khorvash, F., Khalesi, S., Heidari, Z. and Askari, G. (2021) The Effects of Synbiotic Supplementation on Oxidative Stress and Clinical Symptoms in Women with Migraine: A Double‐Blind, Placebo‐Controlled, Randomized Trial. Journal of Functional Foods, 86, Article 104738. [Google Scholar] [CrossRef
[53] Kappéter, Á., Sipos, D., Varga, A., Vigvári, S., Halda-Kiss, B. and Péterfi, Z. (2023) Migraine as a Disease Associated with Dysbiosis and Possible Therapy with Fecal Microbiota Transplantation. Microorganisms, 11, Article 2083. [Google Scholar] [CrossRef] [PubMed]
[54] Newell, C., Bomhof, M.R., Reimer, R.A., Hittel, D.S., Rho, J.M. and Shearer, J. (2016) Ketogenic Diet Modifies the Gut Microbiota in a Murine Model of Autism Spectrum Disorder. Molecular Autism, 7, Article No. 37. [Google Scholar] [CrossRef] [PubMed]
[55] San Mauro Martín, I., López Oliva, S., Garicano Vilar, E., Sánchez Niño, G.M., Penadés, B.F., Terrén Lora, A., et al. (2024) Effects of Gluten on Gut Microbiota in Patients with Gastrointestinal Disorders, Migraine, and Dermatitis. Nutrients, 16, Article 1228. [Google Scholar] [CrossRef] [PubMed]
[56] Fila, M., Pawłowska, E. and Blasiak, J. (2019) Mitochondria in Migraine Pathophysiology—Does Epigenetics Play a Role? Archives of Medical Science, 15, 944-956. [Google Scholar] [CrossRef] [PubMed]
[57] Fila, M., Chojnacki, C., Chojnacki, J. and Blasiak, J. (2021) Nutrients to Improve Mitochondrial Function to Reduce Brain Energy Deficit and Oxidative Stress in Migraine. Nutrients, 13, Article 4433. [Google Scholar] [CrossRef] [PubMed]
[58] Reijnders, D., Goossens, G.H., Hermes, G.D.A., Neis, E.P.J.G., van der Beek, C.M., Most, J., et al. (2016) Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized Double-Blind Placebo-Controlled Trial. Cell Metabolism, 24, 63-74. [Google Scholar] [CrossRef] [PubMed]
[59] Stewardson, A.J., Gaïa, N., François, P., Malhotra-Kumar, S., Delémont, C., Martinez de Tejada, B., et al. (2015) Collateral Damage from Oral Ciprofloxacin versus Nitrofurantoin in Outpatients with Urinary Tract Infections: A Culture-Free Analysis of Gut Microbiota. Clinical Microbiology and Infection, 21, 344.e1-344.e11. [Google Scholar] [CrossRef] [PubMed]
[60] Wilton, L.V., Pearce, G.L. and Mann, R.D. (1996) A Comparison of Ciprofloxacin, Norfloxacin, Ofloxacin, Azithromycin and Cefixime Examined by Observational Cohort Studies. British Journal of Clinical Pharmacology, 41, 277-284. [Google Scholar] [CrossRef] [PubMed]
[61] Chen, J., Wang, Q., Wang, A. and Lin, Z. (2019) Structural and Functional Characterization of the Gut Microbiota in Elderly Women with Migraine. Frontiers in Cellular and Infection Microbiology, 9, Article ID: 470. [Google Scholar] [CrossRef] [PubMed]
[62] He, Q., Wang, W., Xiong, Y., Tao, C., Ma, L., Ma, J., et al. (2023) A Causal Effects of Gut Microbiota in the Development of Mi-Graine. The Journal of Headache and Pain, 24, Article 90.
[63] Meng, X., Li, Q., Wang, D., Li, J., Cui, Y., Sun, Z., et al. (2024) Exploring the Role of Gut Microbiota in Migraine Risk: A Two-Sample Mendelian Randomization Study. Scandinavian Journal of Gastroenterology, 59, 411-418. [Google Scholar] [CrossRef] [PubMed]
[64] Liu, J., Liu, H., Li, W. and Huang, S. (2025) Association between Dietary Index for Gut Microbiota and Self-Reported Severe Headache or Migraine in U.S. Adults: A Cross-Sectional Study from Nhanes. Frontiers in Nutrition, 12, Article ID: 1549251. [Google Scholar] [CrossRef] [PubMed]
[65] Xu, R., Yu, X., Zhang, R., Xu, X., Fan, X., Dong, L., et al. (2025) Association between Live Microbe Intake and Severe Headache or Migraine: Evidence from NHANES 1999-2004. Frontiers in Nutrition, 12, Article ID: 1547371. [Google Scholar] [CrossRef] [PubMed]
[66] Gibson, G.R. and Roberfroid, M.B. (1995) Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 125, 1401-1412. [Google Scholar] [CrossRef] [PubMed]
[67] d’Angelo, M., Cimini, A., Castelli, V., Quintiliani, M., Benedetti, E. and Cifone, M. (2021) The Emerging Role of Probiotics in Neurodegenerative Diseases: New Hope for Parkinson’s Disease? Neural Regeneration Research, 16, 628-634. [Google Scholar] [CrossRef] [PubMed]
[68] Liu, R.T., Walsh, R.F.L. and Sheehan, A.E. (2019) Prebiotics and Probiotics for Depression and Anxiety: A Systematic Review and Meta-Analysis of Controlled Clinical Trials. Neuroscience & Biobehavioral Reviews, 102, 13-23. [Google Scholar] [CrossRef] [PubMed]
[69] Akbari, E., Asemi, Z., Daneshvar Kakhaki, R., Bahmani, F., Kouchaki, E., Tamtaji, O.R., et al. (2016) Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer’s Disease: A Randomized, Double-Blind and Controlled Trial. Frontiers in Aging Neuroscience, 8, Article No. 256. [Google Scholar] [CrossRef] [PubMed]
[70] de Roos, N.M., Giezenaar, C.G.T., Rovers, J.M.P., Witteman, B.J.M., Smits, M.G. and van Hemert, S. (2015) The Effects of the Multispecies Probiotic Mixture Ecologic®barrier on Migraine: Results of an Open-Label Pilot Study. Beneficial Microbes, 6, 641-646. [Google Scholar] [CrossRef] [PubMed]
[71] Hiippala, K., Jouhten, H., Ronkainen, A., Hartikainen, A., Kainulainen, V., Jalanka, J., et al. (2018) The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients, 10, Article 988. [Google Scholar] [CrossRef] [PubMed]
[72] Fusco, W., Lorenzo, M.B., Cintoni, M., Porcari, S., Rinninella, E., Kaitsas, F., et al. (2023) Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients, 15, Article 2211. [Google Scholar] [CrossRef] [PubMed]
[73] Straube, A., Müller, H., Stiegelbauer, V. and Frauwallner, A. (2018) Migraine Prophylaxis with a Probiotic. Results of an Uncontrolled Observational Study with 1,020 Patients. MMW-Fortschritte der Medizin, 160, 16-21. [Google Scholar] [CrossRef] [PubMed]
[74] Vajdi, M., Khorvash, F. and Askari, G. (2024) A Randomized, Double-Blind, Placebo-Controlled Parallel Trial to Test the Effect of Inulin Supplementation on Migraine Headache Characteristics, Quality of Life and Mental Health Symptoms in Women with Migraine. Food & Function, 15, 10088-10098. [Google Scholar] [CrossRef] [PubMed]
[75] Xie, Y., Zhou, G., Xu, Y., He, B., Wang, Y., Ma, R., et al. (2019) Effects of Diet Based on Igg Elimination Combined with Probiotics on Migraine Plus Irritable Bowel Syndrome. Pain Research and Management, 2019, Article ID: 7890461. [Google Scholar] [CrossRef] [PubMed]
[76] Vetvik, K.G. and MacGregor, E.A. (2017) Sex Differences in the Epidemiology, Clinical Features, and Pathophysiology of Migraine. The Lancet Neurology, 16, 76-87. [Google Scholar] [CrossRef] [PubMed]
[77] Bidabadi, E., Elyasi, M., Hassanzadeh Rad, A. and Kazemnezhad, E. (2023) The Effect of Probiotics on Headaches in Children with Migraine Treated with Sodium Valproate: A Randomized Controlled Clinical Trial. Iranian Journal of Child Neurology, 17, 119-126.
[78] Bazmamoum, H., Keshtkarsohi, B., Mohammadi, Y. and Fayyazi, A. (2024) Efficacy of Probiotics in Prevention of Migraine Attacks in Children: A Randomized Clinical Trial Study. Iranian Journal of Child Neurology, 18, 103-112.