|
[1]
|
Dai, M., Qiao, J., Shi, Z., Wei, X., Chen, H., Shen, L., et al. (2023) Effect of Cerebellar Transcranial Magnetic Stimulation with Dou-ble-Cone Coil on Dysphagia after Subacute Infratentorial Stroke: A Randomized, Single-Blinded, Controlled Trial. Brain Stimulation, 16, 1012-1020. [Google Scholar] [CrossRef]
|
|
[2]
|
Saricaoglu, M., Hanoglu, L., Toprak, G., Yilmaz, N.H. and Yulug, B. (2022) The Multifactorial Role of Pre-Supplementary Motor Area Stimulation in the Freezing of Gait: An Alternative Strategy to the Classical Drug-Target Approach. Endocrine, Metabolic & Immune Disorders—Drug Targets, 22, 518-524. [Google Scholar] [CrossRef]
|
|
[3]
|
Cash, R.F.H., Weigand, A., Zalesky, A., Siddiqi, S.H., Downar, J., Fitzgerald, P.B., et al. (2021) Using Brain Imaging to Improve Spatial Targeting of Transcranial Magnetic Stimulation for Depression. Biological Psychiatry, 90, 689-700. [Google Scholar] [CrossRef]
|
|
[4]
|
Tang, N., Li, Y., Chen, J., et al. (2024) Accelerated Transcranial Magnetic Stimulation for Major Depressive Disorder: A Quick Path to Relief? Wiley Interdisciplinary Reviews: Cognitive Science, 15, e1666.
|
|
[5]
|
Suppa, A., Quartarone, A., Siebner, H., et al. (2022) TMS as a Tool to Explore Plasticity in Humans. In: Handbook of Clinical Neurology (Vol. 184), Elsevier, 73-89.
|
|
[6]
|
Jannati, A., Oberman, L.M., Rotenberg, A. and Pascual-Leone, A. (2023) As-sessing the Mechanisms of Brain Plasticity by Transcranial Magnetic Stimulation. Neuropsychopharmacology, 48, 191-208. [Google Scholar] [CrossRef]
|
|
[7]
|
Anil, S., Lu, H., Rotter, S. and Vlachos, A. (2023) Repetitive Transcranial Magnetic Stimulation (rTMS) Triggers Dose-Dependent Homeostatic Rewiring in Recurrent Neuronal Networks. PLOS Computational Biology, 19, e1011027. [Google Scholar] [CrossRef]
|
|
[8]
|
Li, X., Wang, H., Zhang, Y., et al. (2021) Cortical Plasticity Correlates with Cognitive Improvement in Alzheimer’s Disease after rTMS. Brain Stimulation, 14, 503-510.
|
|
[9]
|
Chou, Y.H., You, H., Wang, S.J., et al. (2022) Cortical Excitability and Plasticity in Alzheimer’s Disease: A TMS Meta-Analysis. Ageing Research Reviews, 79, Article 101660.
|
|
[10]
|
Kweon, J., Kim, D., Park, S., et al. (2024) NMDA/GABA Mechanisms of 10-Hz rTMS-Induced Plasticity. Research Square. [Google Scholar] [CrossRef]
|
|
[11]
|
Zou, H., Bao, S., Chen, X., Zhou, X. and Zhang, S. (2024) High-Frequency Repetitive Transcranial Magnetic Stimulation Ameliorates Memory Impairment by Inhibiting Neuroinflammation in the Chronic Cerebral Hypoperfusion Mice. Brain and Behavior, 14, e3618. [Google Scholar] [CrossRef]
|
|
[12]
|
Downar, J., Sid-diqi, S.H., Mitra, A., Williams, N. and Liston, C. (2024) Mechanisms of Action of TMS in the Treatment of Depression. In: Current Topics in Behavioral Neurosciences, Springer, 233-277. [Google Scholar] [CrossRef]
|
|
[13]
|
Zhong, M., Cywiak, C., Metto, A.C., Liu, X., Qian, C. and Pelled, G. (2021) Mul-ti-Session Delivery of Synchronous rTMS and Sensory Stimulation Induces Long-Term Plasticity. Brain Stimulation, 14, 884-894. [Google Scholar] [CrossRef]
|
|
[14]
|
Zrenner, C. and Ziemann, U. (2024) Closed-Loop Brain Stimulation. Biological Psychiatry, 95, 545-552. [Google Scholar] [CrossRef]
|
|
[15]
|
Buetefisch, C.M., Haut, M.W., Revill, K.P., Shaeffer, S., Edwards, L., Barany, D.A., et al. (2023) Stroke Lesion Volume and Injury to Motor Cortex Output Determines Extent of Contralesional Motor Cor-tex Reorganization. Neurorehabilitation and Neural Repair, 37, 119-130. [Google Scholar] [CrossRef]
|
|
[16]
|
Du, J., Yang, F., Hu, J., Hu, J., Xu, Q., Cong, N., et al. (2019) Effects of High- and Low-Frequency Repetitive Transcranial Magnetic Stimulation on Motor Recovery in Early Stroke Patients: Evidence from a Randomized Controlled Trial with Clinical, Neurophysiolog-ical and Functional Imaging Assessments. NeuroImage: Clinical, 21, Article 101620. [Google Scholar] [CrossRef]
|
|
[17]
|
Lefaucheur, J., Aleman, A., Baeken, C., Benninger, D.H., Brunelin, J., Di Lazzaro, V., et al. (2020) Evidence-based Guidelines on the Therapeutic Use of Repetitive Transcranial Magnetic Stimulation (rTMS): An Update (2014-2018). Clinical Neurophysiology, 131, 474-528. [Google Scholar] [CrossRef]
|
|
[18]
|
Wang, Q., Zhang, D., Zhao, Y., Hai, H. and Ma, Y. (2020) Effects of High-Frequency Repetitive Transcranial Magnetic Stimulation over the Contralesional Motor Cortex on Motor Recovery in Severe Hemiplegic Stroke: A Randomized Clinical Trial. Brain Stimulation, 13, 979-986. [Google Scholar] [CrossRef]
|
|
[19]
|
Chen, Q., Shen, D., Sun, H., Ke, J., Wang, H., Pan, S., et al. (2021) Effects of Coupling Inhibitory and Facilitatory Repetitive Transcranial Magnetic Stimulation on Motor Recovery in Patients Following Acute Cerebral Infarction. Neuro Rehabilitation, 48, 83-96. [Google Scholar] [CrossRef]
|
|
[20]
|
Vink, J.J.T., van Lieshout, E.C.C., Otte, W.M., van Eijk, R.P.A., Kouwenhoven, M., Neggers, S.F.W., et al. (2023) Continuous Theta-Burst Stimulation of the Contralesional Primary Motor Cortex for Promotion of Upper Limb Recovery after Stroke: A Randomized Controlled Trial. Stroke, 54, 1962-1971. [Google Scholar] [CrossRef]
|
|
[21]
|
Ding, Q., Chen, J., Zhang, S., Chen, S., Li, X., Peng, Y., et al. (2024) Neurophysiological Characterization of Stroke Recovery: A Longitudinal TMS and EEG Study. CNS Neuroscience & Thera-peutics, 30, e14471. [Google Scholar] [CrossRef]
|
|
[22]
|
Du, J., Wang, S., Cheng, Y., Xu, J., Li, X., Gan, Y., et al. (2022) Effects of Neuromus-cular Electrical Stimulation Combined with Repetitive Transcranial Magnetic Stimulation on Upper Limb Motor Function Rehabilitation in Stroke Patients with Hemiplegia. Computational and Mathematical Methods in Medicine, 2022, 1-7. [Google Scholar] [CrossRef]
|
|
[23]
|
Zhang, W., Sun, Y., Liu, H., et al. (2024) Effectiveness of Repetitive Transcranial Magnetic Stimulation Combined with Intelligent Gait-Adaptability Training. Journal of Stroke and Cerebrovascular Diseases, 33, Arti-cle 107961.
|
|
[24]
|
Kim, W., Kwon, B.S., Seo, H.G., Park, J. and Paik, N. (2020) Low-Frequency Repetitive Transcranial Magnetic Stimulation over Contralesional Motor Cortex for Motor Recovery in Subacute Ischemic Stroke: A Randomized Sham-Controlled Trial. Neurorehabilitation and Neural Repair, 34, 856-867. [Google Scholar] [CrossRef]
|
|
[25]
|
Edwards, J.D., Black, S.E., Boe, S., Boyd, L., Chaves, A., Chen, R., et al. (2021) Canadian Platform for Trials in Noninvasive Brain Stimulation (CanStim) Consensus Recommendations for Repetitive Transcranial Magnetic Stimulation in Upper Extremity Motor Stroke Rehabilitation Trials. Neurorehabilitation and Neural Repair, 35, 103-116. [Google Scholar] [CrossRef]
|
|
[26]
|
Liu, X., Li, H., Yang, S., Xiao, Z., Li, Q., Zhang, F., et al. (2024) Efficacy of Repetitive Transcranial Magnetic Stimulation on Post-Stroke Cognitive Impairment: A Systematic and a Network Meta-Analysis. In-ternational Journal of Geriatric Psychiatry, 39, e6117. [Google Scholar] [CrossRef]
|
|
[27]
|
Yang, Y., Chang, W., Ding, J., Xu, H., Wu, X., Ma, L., et al. (2024) Effects of Different Modalities of Transcranial Magnetic Stimulation on Post-Stroke Cognitive Im-pairment: A Network Meta-Analysis. Neurological Sciences, 45, 4399-4416. [Google Scholar] [CrossRef]
|
|
[28]
|
Li, H., Ma, J., Zhang, J., Shi, W., Mei, H. and Xing, Y. (2021) Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Thyroid Hormones Level and Cognition in the Recovery Stage of Stroke Patients with Cognitive Dysfunction. Medical Science Monitor, 27, e931914. [Google Scholar] [CrossRef]
|
|
[29]
|
Hong, J., Chen, J., Zeng, Y., Zhang, X., Xie, M., Li, C., et al. (2021) Different Combinations of High-Frequency rTMS and Cognitive Training Im-prove the Cognitive Function of Cerebral Ischemic Rats. Brain Research Bulletin, 175, 16-25. [Google Scholar] [CrossRef]
|
|
[30]
|
Gao, Y., Qiu, Y., Yang, Q.Y., et al. (2023) Repetitive Transcranial Mag-netic Stimulation Combined with Cognitive Training for Cognitive Function and Activities of Daily Living in Patients with Post-Stroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Ageing Research Reviews, 87, Article 101919. [Google Scholar] [CrossRef]
|
|
[31]
|
Li, K., Mo, D., Yu, Q., Feng, R. and Li, Y. (2024) Effect of Repetitive Transcrani-al Magnetic Stimulation on Post-Stroke Comorbid Cognitive Impairment and Depression: A Randomized Controlled Trial. Journal of Alzheimer’s Disease, 101, 337-352. [Google Scholar] [CrossRef]
|
|
[32]
|
Xun, X., Liu, Y., Pan, W., Tang, L., Hu, C., Ouyang, H., et al. (2025) Low Frequency-Repetitive Transcranial Magnetic Stimulation Combined with Xingnao Kaiqiao Acupuncture Improves Post-Stroke Cognitive Impairment and Has Better Clinical Efficacy. Psychogeriatrics, 25, e13199. [Google Scholar] [CrossRef]
|
|
[33]
|
Zhu, M., Huang, S., Chen, W., Pan, G. and Zhou, Y. (2024) The Effect of Transcranial Magnetic Stimulation on Cognitive Function in Post-Stroke Patients: A Systematic Review and Meta-Analysis. BMC Neurology, 24, Article No. 234. [Google Scholar] [CrossRef]
|
|
[34]
|
Zou, F., Chen, X., Niu, L., Wang, Y., Chen, J., Li, C., et al. (2023) Effect of Repetitive Transcranial Magnetic Stimulation on Post-Stroke Dysphagia in Acute Stage. Dysphagia, 38, 1117-1127. [Google Scholar] [CrossRef]
|
|
[35]
|
Wang, L., Wang, F., Lin, Y., Guo, X., Wang, J., Liu, J., et al. (2023) Treat-ment of Post-Stroke Dysphagia with Repetitive Transcranial Magnetic Stimulation Based on the Bimodal Balance Recovery Model: A Pilot Study. Journal of Integrative Neuroscience, 22, Article 53. [Google Scholar] [CrossRef]
|
|
[36]
|
Suh, I., You, J., Son, S., Bae, J.S. and Lim, J.Y. (2024) The Effect of Real versus Sham Intermittent Theta Burst Transcranial Magnetic Stimulation Com-bined with Conventional Treatment on Poststroke Dysphagia: A Randomized Controlled Trial. International Journal of Rehabilitation Research, 47, 81-86. [Google Scholar] [CrossRef]
|
|
[37]
|
Tai, J., Hu, R., Fan, S., Wu, Y., Wang, T. and Wu, J. (2023) Theta-Burst Transcranial Magnetic Stimulation for Dysphagia Patients during Recovery Stage of Stroke: A Randomized Controlled Trial. European Journal of Physical and Rehabilitation Medicine, 59, 543-553. [Google Scholar] [CrossRef]
|
|
[38]
|
Cheng, I., Sasegbon, A. and Hamdy, S. (2021) Effects of Neurostimulation on Poststroke Dysphagia: A Synthesis of Current Evidence from Randomized Controlled Trials. Neuromodulation: Technology at the Neural Interface, 24, 1388-1401. [Google Scholar] [CrossRef]
|
|
[39]
|
Li, R., He, Y., Qin, W., Zhang, Z., Su, J., Guan, Q., et al. (2022) Effects of Repetitive Transcranial Magnetic Stimulation on Motor Symptoms in Parkinson’s Disease: A Meta-Analysis. Neurorehabilitation and Neural Repair, 36, 395-404. [Google Scholar] [CrossRef]
|
|
[40]
|
Wang, M., Zhang, W. and Zang, W. (2024) Repetitive Transcranial Magnetic Stimulation Improves Cognition, Depression, and Walking Ability in Patients with Parkinson’s Disease: A Meta-Analysis. BMC Neu-rology, 24, Article No. 490. [Google Scholar] [CrossRef]
|
|
[41]
|
Grobe-Einsler, M., Baljasnikowa, V., Faikus, A., Schaprian, T. and Kaut, O. (2024) Cerebellar Transcranial Magnetic Stimulation Improves Motor Function in Parkinson’s Disease. Annals of Clinical and Trans-lational Neurology, 11, 2673-2684. [Google Scholar] [CrossRef]
|
|
[42]
|
Zhang, X., Zhuang, S., Wu, J., Wang, L., Mao, C., Chen, J., et al. (2022) Effects of Repetitive Transcranial Magnetic Stimulation over Right Dorsolateral Prefrontal Cortex on Excessive Daytime Sleepiness in Patients with Parkinson’s Disease. Sleep Medicine, 100, 133-138. [Google Scholar] [CrossRef]
|
|
[43]
|
Xie, F., Shen, B., Luo, Y., Zhou, H., Xie, Z., Zhu, S., et al. (2024) Repetitive Transcranial Magnetic Stimulation Alleviates Motor Impairment in Parkinson’s Disease: Association with Peripheral Inflammatory Regulatory T-Cells and SYT6. Molecular Neurodegeneration, 19, Article No. 80. [Google Scholar] [CrossRef]
|
|
[44]
|
Wen, X., Chi, S., Yu, Y., Wang, G., Zhang, X., Wang, Z., et al. (2022) The Cerebellum Is Involved in Motor Improvements after Repetitive Transcranial Magnetic Stimulation in Parkinson’s Disease Patients. Neuroscience, 499, 1-11. [Google Scholar] [CrossRef]
|
|
[45]
|
Qi, C., Wang, J., Li, H., et al. (2023) Observation on the Efficacy of Different Targets Low-Frequency Repetitive Transcranial Magnetic Stimulation for the Treatment of Tremor-Dominant Subtypes of Parkinson’s Disease. Chinese Medical Journal, 103, 3112-3118.
|
|
[46]
|
Khedr, E.M., Haridy, N.A., Korayem, M.A., Tawfik, A.M. and Hamed, A.A. (2025) In PD, Non-Invasive Trans-Spinal Magnetic Stimulation Enhances the Effect of Transcranial Magnetic Stimula-tion on Axial Motor Symptoms: A Double-Blind Randomized Clinical Trial. Neurorehabilitation and Neural Repair, 39, 126-137. [Google Scholar] [CrossRef]
|
|
[47]
|
Hamed, S.A. (2020) Cortical Excitability in Epilepsy and the Impact of An-tiepileptic Drugs: Transcranial Magnetic Stimulation Applications. Expert Review of Neurotherapeutics, 20, 707-723. [Google Scholar] [CrossRef]
|
|
[48]
|
Wang, Z., Zhang, X., Meiduo, G., Song, M. and Wang, S. (2024) Time-Effectiveness of Low-Frequency rTMS for Epilepsy and Improvement in Cognitive Function in Patients: A Systematic Review and Meta-Analysis. Epilepsy Research, 199, Article 107277. [Google Scholar] [CrossRef]
|
|
[49]
|
Wang, Y., Ma, L., Shi, X., Liu, Y., Wu, D., Hao, J., et al. (2025) Cerebellar Transcranial Magnetic Stimulation to Treat Drug-Resistant Epilepsy: A Randomized, Controlled, Crossover Clinical Trial. Epilepsia, 66, 240-252. [Google Scholar] [CrossRef]
|
|
[50]
|
Carrette, S., Boon, P., Klooster, D., Van Dycke, A., Carrette, E., Miatton, M., et al. (2022) Continuous Theta Burst Stimulation for Drug-Resistant Epilepsy. Frontiers in Neuroscience, 16, Article 885905. [Google Scholar] [CrossRef]
|
|
[51]
|
So, M., Kong, J., Kim, Y., Kim, K., Kim, H. and Kim, J.B. (2024) Increased Cerebellar Vermis Volume Following Repetitive Transcranial Magnetic Stimulation in Drug-Resistant Epilepsy: A Voxel-Based Mor-phometry Study. Frontiers in Neuroscience, 18, Article 1421917. [Google Scholar] [CrossRef]
|
|
[52]
|
Fu, C., Aisikaer, A., Chen, Z., Yu, Q., Yin, J. and Yang, W. (2021) Antiepileptic Efficacy and Network Connectivity Modulation of Repetitive Transcranial Magnetic Stimulation by Vertex Suppression. Frontiers in Human Neuroscience, 15, Article 667619. [Google Scholar] [CrossRef]
|
|
[53]
|
Rivadulla, C., Pardo-Vazquez, J.L., de Labra, C., Aguilar, J., Suarez, E., Paz, C., et al. (2023) Transcranial Static Magnetic Stimulation Reduces Seizures in a Mouse Model of Dravet Syndrome. Experimental Neurology, 370, Article 114581. [Google Scholar] [CrossRef]
|
|
[54]
|
Walton, D., Spencer, D.C., Nevitt, S.J. and Michael, B.D. (2021) Transcranial Magnetic Stimulation for the Treatment of Epilepsy. Cochrane Database of Systematic Reviews, 2021, CD011025. [Google Scholar] [CrossRef]
|
|
[55]
|
Chen, X., Yin, L., An, Y., Yan, H., Zhang, T., Lu, X., et al. (2022) Ef-fects of Repetitive Transcranial Magnetic Stimulation in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Multiple Sclerosis and Related Disorders, 59, Article 103564. [Google Scholar] [CrossRef]
|
|
[56]
|
Yassine, I.A., Shehata, H., Hamdy, S., Abdel-Naseer, M., Hassan, T., Sherbiny, M., et al. (2024) Effect of High Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) on the Balance and the White Matter Integrity in Patients with Relapsing-Remitting Multiple Sclerosis: A Long-Term Fol-low-Up Study. Multiple Sclerosis and Related Disorders, 83, Article 105471. [Google Scholar] [CrossRef]
|
|
[57]
|
Ahmadpanah, M., Amini, S., Mazdeh, M., Haghighi, M., Soltanian, A., Ja-hangard, L., et al. (2023) Effectiveness of Repetitive Transcranial Magnetic Stimulation (rTMS) Add-On Therapy to a Standard Treat-ment in Individuals with Multiple Sclerosis and Concomitant Symptoms of Depression—Results from a Randomized Clinical Trial and Pilot Study. Journal of Clinical Medicine, 12, Article 2525. [Google Scholar] [CrossRef]
|
|
[58]
|
León Ruiz, M., García, S., Rodríguez, A., et al. (2022) Current Evidence on the Potential Therapeutic Applications of Transcranial Magnetic Stimulation in Multi-ple Sclerosis: A Systematic Review of the Literature. Neurologia, 37, 199-215.
|
|
[59]
|
Stampanoni Bassi, M., Buttari, F., Gilio, L., De Paolis, N., Fresegna, D., Centonze, D., et al. (2020) Inflammation and Corticospinal Functioning in Multiple Sclerosis: A TMS Per-spective. Frontiers in Neurology, 11, Article 566. [Google Scholar] [CrossRef]
|
|
[60]
|
Kauv, P., Chalah, M.A., Créange, A., Lefaucheur, J., Hodel, J. and Ayache, S.S. (2025) The Corticospinal Tract in Multiple Sclerosis: Correlation between Cortical Excitability and Magnetic Resonance Imaging Measures. Journal of Neural Transmission, 132, 265-273. [Google Scholar] [CrossRef]
|
|
[61]
|
Stevens, N., Ezegbe, C., Fuh-Ngwa, V., Makowiecki, K., Zarghami, A., Nguyen, P.T., et al. (2024) A Phase II Trial Examining the Safety and Pre-liminary Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) for People Living with Multiple Sclerosis. Trials, 25, Article No. 598. [Google Scholar] [CrossRef]
|
|
[62]
|
Matias-Guiu, J.A., González-Rosa, J., Hernández, M.Á., Mar-tínez-Ginés, M.L., Portolés, A., Pérez-Macías, N., et al. (2024) Amantadine and/or Transcranial Magnetic Stimulation for Fatigue As-sociated with Multiple Sclerosis (FETEM): Study Protocol for a Phase 3 Randomised, Double-Blind, Cross-Over, Controlled Clinical Trial. BMJ Open, 14, e078661. [Google Scholar] [CrossRef]
|
|
[63]
|
Aydın, M., Erkan, M., Gündoğdu, R., Vural, A., Kökoğlu, K. and Şahin, M.İ. (2021) Assessment of the Effectiveness of Transcranial Magnetic Stimulation in Subjective Tinnitus. International Archives of Otorhinolaryngology, 25, e453-e458. [Google Scholar] [CrossRef]
|
|
[64]
|
Noh, T.S., Kyong, J.S., Kim, J.S., et al. (2020) Dual-Site rTMS Is More Effective than Single-Site rTMS in Tinnitus Patients: A Blinded Randomized Controlled Trial. Brain Topography, 33, 767-775. [Google Scholar] [CrossRef]
|
|
[65]
|
Kim, E., Kim, J., Park, H.Y., et al. (2023) Auditory Cortex Hyperconnectivity before rTMS Is Correlated with Tinnitus Improvement. Neurología, 38, 475-485. [Google Scholar] [CrossRef]
|
|
[66]
|
Yang, H., Cheng, G., Liang, Z., Deng, W., Huang, X., Gao, M., et al. (2023) Effi-cacy of Repetitive Transcranial Magnetic Stimulation (rTMS) for Tinnitus: A Retrospective Study. Ear, Nose & Throat Journal, 102, NP506-NP510. [Google Scholar] [CrossRef]
|
|
[67]
|
Berman, Z.R., Citrenbaum, C., Corlier, J., Leuchter, A.F., Folmer, R.L. and Leuchter, M.K. (2024) Sequential Multilocus Repetitive Transcranial Magnetic Stimulation for Treatment of Tinnitus with and without Comorbid Major Depressive Disorder. Neuromodulation: Technology at the Neural Interface, 27, 774-780. [Google Scholar] [CrossRef]
|
|
[68]
|
Lefebvre-Demers, M., Doyon, N. and Fecteau, S. (2021) Non-Invasive Neu-romodulation for Tinnitus: A Meta-Analysis and Modeling Studies. Brain Stimulation, 14, 113-128. [Google Scholar] [CrossRef]
|
|
[69]
|
Heiland, L.D., Owen, J.M., Nguyen, S.A., Labadie, R.F., Lambert, P.R. and Meyer, T.A. (2024) Neuromodulation for Treatment of Tinnitus: A Systematic Review and Meta-Analysis. Otolaryngology—Head and Neck Surgery, 170, 1234-1245. [Google Scholar] [CrossRef]
|
|
[70]
|
Breda, V. and Freire, R. (2024) Repetitive Transcranial Magnetic Stimulation (rTMS) in Major Depression. In: Advances in Experimental Medicine and Biology, Springer, 145-159. [Google Scholar] [CrossRef]
|
|
[71]
|
Dalhuisen, I., van Oostrom, I., Spijker, J., Wijnen, B., van Exel, E., van Mierlo, H., et al. (2024) rTMS as a Next Step in Antidepressant Nonresponders: A Randomized Comparison with Current Antidepres-sant Treatment Approaches. American Journal of Psychiatry, 181, 806-814. [Google Scholar] [CrossRef]
|
|
[72]
|
Leuchter, M.K., Citrenbaum, C., Wilson, A.C., Tibbe, T.D., Jackson, N.J., Krantz, D.E., et al. (2024) The Effect of Older Age on Outcomes of rTMS Treatment for Treatment-Resistant Depression. International Psy-chogeriatrics, 36, 1070-1075. [Google Scholar] [CrossRef]
|
|
[73]
|
Morriss, R., Briley, P.M., Webster, L., Ab-delghani, M., Barber, S., Bates, P., et al. (2024) Connectivity-Guided Intermittent Theta Burst versus Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression: A Randomized Controlled Trial. Nature Medicine, 30, 403-413. [Google Scholar] [CrossRef]
|
|
[74]
|
Tang, S.J., Holle, J., Dadario, N.B., Lesslar, O., Teo, C., Ryan, M., et al. (2023) Personalized, Parcel-Guided rTMS for the Treatment of Major Depressive Disorder: Safety and Proof of Concept. Brain and Behavior, 13, e3268. [Google Scholar] [CrossRef]
|
|
[75]
|
Chen, X., Blumberger, D.M., Downar, J., Middleton, V.J., Monira, N., Bowman, J., et al. (2024) Depressive Symptom Trajectories with Prolonged rTMS Treatment. Brain Stimulation, 17, 525-532. [Google Scholar] [CrossRef]
|
|
[76]
|
Wang, Q., Huang, H., Li, D., Wang, Y., Qi, N., Ci, Y., et al. (2022) Intensive rTMS for Treatment-Resistant Depression Patients with Suicidal Ideation: An Open-Label Study. Asian Journal of Psychiatry, 74, Ar-ticle 103189. [Google Scholar] [CrossRef]
|
|
[77]
|
Li, X., Liu, J., Wei, S., Yu, C., Wang, D., Li, Y., et al. (2024) Cognitive Enhanc-ing Effect of rTMS Combined with tDCS in Patients with Major Depressive Disorder: A Double-Blind, Randomized, Sham-Controlled Study. BMC Medicine, 22, Article No. 253. [Google Scholar] [CrossRef]
|
|
[78]
|
Valiengo, L., Maia, A., Cotovio, G., Gordon, P.C., Brunoni, A.R., Forlenza, O.V., et al. (2021) Repetitive Transcranial Magnetic Stimulation for Major Depressive Disorder in Older Adults: Systematic Review and Meta-Analysis. The Journals of Gerontology: Series A, 77, 851-860. [Google Scholar] [CrossRef]
|
|
[79]
|
Gu, L.M., Zhang, Y., Wang, L., et al. (2025) Efficacy and Safety of Low-Frequency Repetitive Transcranial Magnetic Stimulation in Adolescents with First-Episode Major Depressive Disorder. Journal of Affective Dis-orders, 370, 190-197.
|
|
[80]
|
Slan, A.R., Filkowski, M.M., Smith, R.T., et al. (2024) The Role of Sex and Age in the Differential Effi-cacy of 10 Hz and Intermittent Theta-Burst rTMS Treatment of Major Depressive Disorder. Journal of Affective Disorders, 366, 106-112.
|
|
[81]
|
Valiuliene, G., Mickeviciene, D., Rastenyte, D., et al. (2023) Anti-Neuroinflammatory MicroRNA-146a-5p as a Poten-tial Biomarker for Neuronavigation-Guided rTMS Therapy Success. Biomedicine & Pharmacotherapy, 166, Article 115313.
|
|
[82]
|
Modak, A. and Fitzgerald, P.B. (2021) Personalising Transcranial Magnetic Stimulation for Depression Using Neu-roimaging: A Systematic Review. The World Journal of Biological Psychiatry, 22, 647-669. [Google Scholar] [CrossRef]
|
|
[83]
|
van Rooij, S.J.H., Arulpragasam, A.R., McDonald, W.M. and Philip, N.S. (2024) Accelerated TMS-Moving Quickly into the Future of Depression Treatment. Neuropsychopharmacology, 49, 128-137. [Google Scholar] [CrossRef]
|
|
[84]
|
Andreasson, A.C., Norlin, M., Pettersson, L., et al. (2020) Motor Cortex Stimulation in Children with Cerebral Palsy: A Systematic Review. Developmental Medicine and Child Neurology, 62, 793-798.
|
|
[85]
|
Gogulski, J., Ross, J.M., Talbot, A., et al. (2023) High-Definition Transcranial Magnetic Stimulation Reveals Distinct Cortical Contributions to Semantic and Phonological Processes. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 8, 351-360.
|