重复性经颅磁刺激治疗神经系统疾病的研究进展
Research Advances in Repetitive Transcranial Magnetic Stimulation for Neurological Disorders
DOI: 10.12677/jcpm.2025.46473, PDF, HTML, XML,    科研立项经费支持
作者: 陈飞龙, 王艳丽:济宁医学院临床医学院(附属医院),山东 济宁;孔庆霞*:济宁医学院附属医院神经内科,山东 济宁
关键词: 重复性经颅磁刺激神经系统疾病神经调控脑卒中帕金森病Repetitive Transcranial Magnetic Stimulation (rTMS) Neurological Disorders Neuromodulation Stroke Parkinson’s Disease
摘要: 重复性经颅磁刺激(rTMS)作为一种非侵入性神经调控技术,近年来在神经系统疾病治疗领域取得显著进展。本文综述rTMS在神经系统疾病治疗中的研究进展。
Abstract: Repetitive transcranial magnetic stimulation (rTMS), as a non-invasive neuromodulation technique, has achieved significant progress in the therapeutic applications for neurological disorders in recent years. This review summarizes the current research advances in rTMS for the treatment of neurological disorders.
文章引用:陈飞龙, 王艳丽, 孔庆霞. 重复性经颅磁刺激治疗神经系统疾病的研究进展[J]. 临床个性化医学, 2025, 4(6): 16-27. https://doi.org/10.12677/jcpm.2025.46473

1. 引言

神经系统疾病如卒中、帕金森病(PD)、癫痫、多发性硬化(MS)、耳鸣及抑郁症的病理机制常涉及皮质兴奋性失衡与神经网络功能障碍。rTMS利用电磁感应原理产生交变磁场,无创地调节特定脑区神经元活动,为药物难治性神经系统疾病提供了新的干预策略。近年来,靶点定位技术的革新(如基于功能磁共振成像(fMRI)的导航引导)显著提升了治疗精准度。例如,幕下卒中后吞咽障碍患者经小脑连续theta爆发刺激(cTBS)后,吞咽功能得到有效改善[1]。在帕金森病治疗中,高频rTMS作用于辅助运动区(SMA)可改善步态冻结[2]。针对抑郁症,个体化刺激靶点(如基于静息态功能连接选择前额叶亚区)使缓解率提升至65% [3]。此外,加速rTMS方案(每日多次刺激)可将抑郁症治疗周期缩短至1~2周[4]

2. rTMS对神经系统疾病的作用机制

2.1. 调节皮层兴奋性与神经可塑性

rTMS通过电磁感应诱导颅内电流,改变神经元膜电位,实现频率依赖性神经调控。高频刺激(>5 Hz)增强皮层兴奋性,促进长时程增强(LTP)样效应;低频刺激(≤1 Hz)降低兴奋性,诱发长时程抑制(LTD)样改变[5]。Theta爆发刺激(TBS)通过间歇性(iTBS)或连续性(cTBS)模式,分别模拟LTP/LTD机制,显著提升突触可塑性[6]。计算模型研究表明,rTMS触发稳态可塑性,通过兴奋–抑制环路重组神经网络连接,其效应受刺激参数(频率、强度、持续时间)的严格调控[7]。在阿尔茨海默病(AD)中,rTMS可改善皮质兴奋性异常和LTP样可塑性,其改善程度与认知提升相关[8] [9]

2.2. 调控神经递质与炎症通路

rTMS通过调节谷氨酸-GABA平衡影响突触传递。10 Hz rTMS激活NMDA受体依赖的LTP机制,增强谷氨酸能传递,而GABA能抑制未显著减少[10]。此外,rTMS具有抑制神经炎症的作用:在慢性脑低灌注模型中,高频rTMS降低IL-1β、TNF-α等促炎因子水平,抑制小胶质细胞M1极化,同时促进抗炎因子IL-10释放[11]

2.3. 重塑脑网络连接与多模态协同效应

rTMS通过调节默认网络(DMN)、突显网络(SN)及皮质–皮质下连接发挥治疗作用。针对抑郁症患者背外侧前额叶皮层(DLPFC)的rTMS可下调膝下前扣带回(sgACC)与DMN的过度连接,同时增强DLPFC-sgACC的抗抑郁网络通路[12]。多模态策略如rTMS联合感觉刺激(如经颅聚焦超声)可诱导持久可塑性:同步性感觉输入与rTMS通过时空耦合增强初级感觉皮层在fMRI上的激活范围,效果优于单一模态[13]。闭环rTMS通过脑电图(EEG)实时反馈调整刺激时序,精准靶向高兴奋状态,提升突触修饰效率[14]

3. rTMS在神经系统疾病的治疗进展

3.1. 脑卒中

研究表明,rTMS可通过改变卒中后脑可塑性,纠正适应不良并促进功能康复。

3.1.1. 脑卒中后运动功能障碍

rTMS改善卒中后运动功能障碍的机制主要基于半球间抑制模型与代偿模型。半球间抑制模型认为,卒中后患侧半球兴奋性降低导致健侧半球过度激活,后者通过胼胝体抑制患侧运动皮层(M1),形成恶性循环;而代偿模型强调健侧半球神经网络可通过功能重组代偿患侧功能缺损[15]。临床干预中,低频rTMS (≤1 Hz)作用于健侧M1区时,通过LTD样机制调控突触可塑性:其诱导的持续性低幅钙内流激活钙依赖性磷酸酶,促使AMPA受体去磷酸化及内化,降低突触传递效能。该过程抑制健侧M1兴奋性,显著减弱经胼胝体向患侧投射的抑制性神经递质(主要为GABA能)输出,从而解除对患侧的病理抑制。高频rTMS (>5 Hz)靶向患侧M1则通过LTP样机制实现功能重塑:高频刺激触发的强直性钙内流激活钙/钙调素依赖性激酶II与蛋白激酶A,驱动AMPA受体磷酸化及膜表面插入,增强突触传递强度,从而使患侧皮层兴奋性提升,促进皮层内兴奋性环路重建并增强皮层–脊髓通路的神经传导效率。二者协同作用:低频干预抑制健侧过度活跃以消除跨半球抑制,高频干预直接增强患侧神经可塑性,最终重构双侧半球间抑制平衡,为运动功能恢复创造神经生理基础[16]。欧洲循证指南[17]明确指出,亚急性期脑卒中患者采用健侧低频rTMS具有A级证据(明确有效),患侧高频rTMS为B级证据(很可能有效)。

近年随机对照试验进一步验证了优化策略:Wang Q等[18]研究表明,对于重度偏瘫患者,健侧M1区10 Hz高频刺激在改善Fugl-Meyer评分方面优于1 Hz低频刺激,提示在严重缺损时健侧代偿机制可能更关键。联合刺激策略展现出协同效应:Chen Q等[19]发现耦合抑制–易化rTMS (健侧1 Hz + 患侧10 Hz)较单模式刺激显著改善急性脑梗死患者运动功能(上肢Fugl-Meyer评分提升40%,p < 0.001),且fMRI显示该方案可重塑双侧运动网络功能连接(FC)。TBS因其高效调控皮层可塑性渐成焦点,Vink JJT等[20]的RCT表明,连续10日健侧cTBS联合康复训练显著改善上肢功能(ARAT评分)并缩短住院时间。

个体化治疗需结合神经生理标志物。Ding Q等[21]的纵向研究表明,患侧皮质脊髓通路完整性丧失的患者(运动诱发电位MEP阴性)需增强健侧半球驱动,而MEP阳性者应减少健侧干扰(功能连接与运动评分呈负相关)。多模态联合干预显著增效:rTMS与神经肌肉电刺激(NMES)联合使Fugl-Meyer评分提升幅度达单一疗法的1.8倍[22];步态适应性训练同步低频rTMS可改善下肢对称性(脑对称指数下降26%,p = 0.026) [23]。值得注意的是,刺激靶点需依据病灶定位调整:Kim WS等[24] (2020)发现非皮层受累卒中患者从健侧低频rTMS获益更显著(Brunnstrom手分期提升0.4级,p = 0.023)。未来研究应聚焦精准导航rTMS,结合弥散张量成像(DTI)纤维束示踪与实时功能性近红外光谱(fNIRS)反馈,优化个体刺激参数[25]

3.1.2. 脑卒中后认知功能障碍

rTMS在卒中后认知功能障碍(PSCI)治疗中展现出显著潜力,其机制主要涉及调节与执行功能、工作记忆和注意力密切相关的DLPFC兴奋性。研究表明,高频rTMS (HF-rTMS, ≥5 Hz)作用于左侧DLPFC时,可激活cAMP/PKA-MAPK-BDNF-CREB信号通路,促进突触长时程增强(LTP)和神经发生,同时上调前额叶多巴胺、5-羟色胺、谷氨酸等递质的可用性,优化认知相关神经网络的传递效能,显著改善整体认知功能,提高蒙特利尔认知评估(MoCA)和简易精神状态检查(MMSE)评分,并增强事件相关电位P300振幅,反映神经信息处理效率提升[26] [27]。网络荟萃分析进一步表明,间歇性θ短阵脉冲刺激(iTBS)在改善MoCA和MMSE评分方面优于传统HF-rTMS [26]。低频rTMS (LF-rTMS, 1 Hz)刺激健侧DLPFC则通过降低半球间抑制间接促进功能代偿;此外,在卒中恢复期伴认知障碍患者中,该刺激可上调血清三碘甲腺原氨酸(T3)和促甲状腺激素(TSH)水平,后者与认知评分呈正相关,提示其可能通过调节代谢和炎症通路改善认知[28]。rTMS联合认知训练效果优于单一疗法,尤其当认知训练紧接rTMS后进行时[29]。随机对照试验证实,该联合方案显著提升执行功能和工作记忆(效应量g = 0.78),并改善日常生活能力[30]

针对合并抑郁的PSCI患者,左DLPFC的rTMS可增强默认模式网络(DMN)内功能连接(如左侧颞极与右侧后扣带回),其强度与认知评分改善正相关[31]。最新研究探索了创新联合策略,如LF-rTMS联合醒脑开窍针灸,通过降低肿瘤坏死因子-α (TNF-α)、白介素-6 (IL-6)等炎症因子水平,进一步优化疗效[32]。安全性方面,rTMS耐受性良好,头痛为主要轻微不良反应(发生率 ≤ 36%),无严重不良事件报告[33]

3.1.3. 脑卒中后吞咽障碍

rTMS在卒中后吞咽障碍(PSD)治疗中展现出显著疗效,其核心机制是通过调节皮质延髓束兴奋性和促进神经可塑性重建吞咽功能网络。研究表明,双侧半球刺激策略优于单侧[34]。根据双模平衡恢复模型,对皮质延髓束完整性高的患者,健侧5 Hz或患侧1 Hz rTMS均有效;但对完整性低的患者,健侧5 Hz刺激效果显著优于患侧低频刺激[35]。新型刺激模式如间歇性θ短阵脉冲刺激(iTBS)作用于患侧咽皮质区可改善喉部运动和降低误吸风险[36],且对幕上或脑干卒中均有效;而健侧cTBS仅对脑干卒中有效[37]。针对小脑的靶点研究取得进展:10 Hz双侧小脑rTMS通过增强双侧皮质延髓束兴奋性,使亚急性幕下卒中患者的功能性经口摄食量表(FOIS)和吞咽障碍严重程度量表(DOSS)评分显著提升,为传统大脑靶点提供补充方案[1]。神经调控时机影响疗效:急性期(<14天)应用rTMS效应值最高(0.8, p < 0.001),且疗效可持续至干预后2个月[38]

3.2. 帕金森病

研究表明,高频rTMS (>5 Hz)刺激初级运动皮层(M1)或SMA可有效改善PD患者的运动功能,尤其是运动迟缓和肌强直[39]。一项Meta分析显示,高频rTMS对PD患者的运动症状改善效果显著(标准化均数差SMD = 0.64),其中M1区的高频刺激效果尤为突出[40]。此外,针对小脑的高频rTMS可改善PD患者的步态和平衡功能,加速刺激方案(如每日多次)可能在短期内实现持久疗效[41]

在非运动症状方面,rTMS对PD患者的抑郁和认知功能障碍也表现出积极效果。低频rTMS (1 Hz)刺激右侧DLPFC可显著改善PD患者的抑郁症状,且效果在治疗后可持续数月[42]。同时,高频rTMS刺激DLPFC还能提升PD患者的认知功能,尤其是执行功能和注意力[40]。rTMS的治疗效果可能与神经可塑性和神经炎症调节有关[43]。此外,rTMS还能调节PD患者的脑网络活动,特别是小脑–丘脑–皮质环路的功能连接,进一步支持其在PD治疗中的多重作用[44]

尽管rTMS在PD治疗中显示出前景,其疗效仍受个体差异和刺激参数的影响。例如,不同PD亚型(如震颤型与强直型)对rTMS的反应可能不同[45]。此外,联合其他神经调控技术(如经颅直流电刺激或脊髓磁刺激)可能进一步增强疗效[46]。未来研究需进一步优化刺激参数(如频率、靶点和疗程),并通过大样本随机对照试验验证其长期效果和安全性[41]

3.3. 癫痫

研究表明,低频rTMS (≤1 Hz)可通过抑制皮层兴奋性减少癫痫发作频率,其核心机制在于,低频rTMS (≤1 Hz)的重复磁刺激能够模拟自然发生的低频神经活动模式,优先激活皮层神经元上的N-甲基-D-天冬氨酸受体,引发适度的胞内钙离子内流。这种特定幅度和持续时间的钙信号触发了下游的酶联级联反应,最终导致突触后膜上α-氨基-3-羟基-5-甲基-4-异恶唑丙酸型谷氨酸受体的内吞和功能下调。这种持续的突触效能减弱(即LTD样效应),特别作用于过度兴奋或异常强化的神经网络(如癫痫灶及其周围区域),有效降低了病理性神经环路的兴奋性和同步化放电能力,从而抑制癫痫活动的产生和传播[47]。系统综述和Meta分析[48]表明,低频rTMS (0.5 Hz)刺激癫痫灶可显著降低药物难治性癫痫(DRE)患者发作频率,减少发作间期癫痫样放电(IEDs),并改善认知功能。

高频rTMS (>5 Hz)和TBS在癫痫治疗中的应用也受到关注。针对小脑的连续TBS (cTBS)可通过调节小脑–丘脑–皮质环路抑制癫痫网络活动;一项随机交叉试验显示,cTBS治疗DRE患者的50%应答率达24%,且安全性良好[49]。此外,加速cTBS方案(每日多疗程)在短期治疗中显示出可行性,尽管其长期疗效仍需验证[50]。研究提示rTMS的抗癫痫效应可能涉及神经可塑性调节,一项研究发现rTMS治疗后小脑蚓部体积增加,且该变化与发作频率减少显著相关,提示小脑–皮质环路在rTMS抗癫痫作用中的关键角色[51]

rTMS还可通过调节功能网络连接(FNC)改善癫痫症状。低频rTMS刺激顶点可降低感觉运动网络(SMN)与前默认模式网络(aDMN)的过度同步化,同时增强aDMN与背侧注意网络(DAN)的连接,这种网络重组与发作减少和情绪改善显著相关[52]。在特殊癫痫综合征中,如Dravet综合征,静态磁场刺激(tSMS)通过降低皮层兴奋性显著减少发作持续时间和强度,为非药物干预提供了新思路[53]。然而,rTMS的疗效仍存在个体差异,部分研究未观察到显著发作减少,可能与刺激参数(如频率、靶点和疗程)或患者异质性有关[54]。未来需通过大样本随机对照试验优化治疗方案,并结合神经影像和生物标志物预测治疗反应。

3.4. 多发性硬化

高频rTMS (>5 Hz)刺激运动皮层或小脑可有效改善MS患者的运动功能,尤其是痉挛状态。一项Meta分析显示,rTMS治疗后患者的改良Ashworth量表(MAS)评分显著降低(95% CI:−1.27至−0.25),提示其对痉挛的短期缓解效果明确[55]。此外,针对小脑的高频rTMS (5 Hz)可通过调节小脑–丘脑–皮质环路改善MS患者的平衡功能和步态,且疗效在长期随访中仍能维持[56]。弥散张量成像(DTI)研究进一步显示,rTMS治疗后患者白质完整性指标(如部分各向异性分数FA)显著提高[56],提示rTMS可能通过促进神经可塑性发挥治疗作用。

在非运动症状方面,rTMS对MS患者的疲劳和抑郁症状也表现出积极效果。一项随机对照试验表明,在标准治疗(含舍曲林)基础上加用rTMS,在降低蒙哥马利–艾斯伯格抑郁量表(MADRS)评分和疲劳程度方面优于假刺激联合标准治疗[57]。此外,间歇性theta脉冲刺激(iTBS)应用于前额叶皮质和顶叶皮质可改善MS患者的工作记忆和认知功能,其机制可能与调节皮层兴奋性和抑制平衡有关[58]。值得注意的是,rTMS的疗效可能受炎症状态影响。研究发现,MS患者脑脊液中促炎细胞因子水平与皮层兴奋性异常相关,而rTMS可通过抑制炎症性突触病变部分恢复抑制性神经递质(如GABA)的功能[59]

尽管rTMS在MS治疗中展现出前景,其临床应用仍面临挑战。例如,不同MS亚型(如复发缓解型与进展型)对rTMS的反应可能存在差异[60]。此外,现有研究多集中于短期疗效评估,长期效果和最佳刺激参数(如频率、靶点和疗程)仍需进一步探索[61]。未来研究需结合多模态神经影像和生物标志物,优化个体化治疗方案,并通过大样本随机对照试验验证其临床价值[62]

3.5. 耳鸣

研究表明,低频rTMS (1 Hz)可通过抑制听觉皮层的过度兴奋性,显著改善耳鸣症状。例如,Aydın M等[63]的随机对照试验发现,接受低频rTMS治疗的患者在耳鸣残疾量表(THI)和耳鸣严重程度评分上均表现出显著改善,而假刺激组则无显著变化。此外,多靶点刺激策略(如同时作用于前额叶和听觉皮层)显示出更优的疗效。Noh TS等[64]的双盲随机对照试验表明,双靶点rTMS (听觉皮层 + 前额叶)在治疗后4周、8周和12周的THI评分改善均显著优于单靶点刺激或假刺激组,提示多靶点干预可能通过调节更广泛的神经网络来增强治疗效果。

然而,rTMS治疗耳鸣的疗效仍存在个体差异,部分患者对治疗反应不佳。Kim E等[65]通过fMRI发现,治疗前左侧初级听觉皮层的功能连接过度增强与rTMS疗效显著相关,这为个体化治疗提供了潜在的生物标志物。此外,耳鸣病程也是影响疗效的重要因素。Yang H等[66]的回顾性研究显示,病程短于1周的患者对rTMS的反应率显著高于慢性耳鸣患者,提示早期干预可能更有效。针对合并抑郁症的耳鸣患者,Berman等[67]研究表明,序贯多靶点rTMS (前额叶→听觉皮层)可同时改善耳鸣和抑郁症状,但达到类似效果可能需要更长的治疗周期。

Lefebvre-Demers M等[68]的荟萃分析指出,针对听觉皮层的rTMS是目前最有效的方案,且对女性患者效果更显著(机制尚未明确)。此外,Heiland LD等[69]的系统综述表明,rTMS的长期疗效(THI评分改善)显著优于短期效果,而与其他神经调控技术(如经颅直流电刺激)相比,rTMS的副作用更少,安全性更高。尽管rTMS在耳鸣治疗中展现出前景,但其长期疗效和标准化方案仍需进一步探索。未来研究应聚焦于优化刺激参数(如频率、强度和靶点选择),并结合功能影像学技术实现精准化治疗。

3.6. 抑郁症

rTMS是治疗难治性抑郁症(TRD)的重要非药物干预手段,其临床价值已得到广泛验证。大量研究表明,针对DLPFC的高频rTMS (10 Hz)可显著改善抑郁症状,其机制主要涉及对关键神经环路功能连接的调节、神经可塑性的增强以及神经递质系统的调控。具体而言,高频rTMS (10 Hz)能够有效调节前额叶–边缘神经网络(特别是下调杏仁核等边缘结构的过度活动,增强前额叶对边缘系统的自上而下抑制)的功能连接,纠正抑郁相关的情感处理异常。同时,该刺激增强神经可塑性(包括促进突触效能的长时程增强LTP和神经发生),改善受损的神经网络功能。此外,rTMS还能调控相关脑区的神经递质平衡,如增加前额叶皮层的多巴胺、去甲肾上腺素、5-羟色胺和谷氨酸等递质的可用性或受体功能,共同促进情绪和认知功能的恢复[12] [70]。Dalhuisen I等[71]的随机对照试验显示,在8周疗程中,rTMS的疗效显著优于更换抗抑郁药策略(有效率37.5% vs. 14.6%),尤其在改善焦虑和快感缺失症状方面更具优势,且疗效不受年龄限制[72]。针对治疗反应的个体差异,神经影像学引导的个体化靶点定位成为优化策略。Morriss R等[73]提出基于右前脑岛与左DLPFC功能连接个性化的连续theta爆发刺激(cgiTBS),其疗效与标准rTMS相当,但为精准治疗提供了新方向;而Tang SJ等[74]的回顾性研究证实,基于连接组学的多靶点rTMS可使62%患者达到缓解,突破传统“一刀切”模式的局限。

疗程方案的优化亦取得重要进展。Chen X等[75]研究表明,约22.5%的患者需要延长rTMS疗程(研究中部分患者需51次)才能实现持续症状改善,此类患者基线抑郁程度更高。相反,加速rTMS方案(每日多次刺激)为急需快速缓解的患者提供新选择:Wang Q等[76]对伴自杀意念的TRD患者实施5日密集治疗(总量75万脉冲),结果显示5日抑郁缓解率达51.6%,自杀意念缓解率达87.1%,且安全性良好。联合治疗策略同样表现突出,Li X等[77]的双盲研究表明,rTMS联合经颅直流电刺激(tDCS)在改善认知功能(尤其即刻记忆与视觉空间能力)及抑郁症状方面显著优于单一治疗(p < 0.05)。

在老年抑郁患者群体中,rTMS被证实安全有效。Valiengo等[78]的荟萃分析显示,rTMS治疗老年抑郁的缓解率可达33% (比值比OR = 4.63),且疗效随年龄与治疗次数增加而提升。青少年群体中,Gu LM等[79]的随机试验证实低频rTMS安全性良好,但疗效未显著优于假刺激,提示需进一步优化参数。值得注意的是,疗效存在性别差异:Slan AR等[80]发现男性接受间歇性θ短阵脉冲刺激(iTBS)的疗效优于女性,而女性对10 Hz rTMS反应更佳。

综上,rTMS已成为抑郁症治疗的重要选择,未来研究方向包括开发个体化刺激参数、优化加速方案及探索生物标志物(如Valiuliene G等[81]提出的miR-146a-5p炎症标志物),以提升治疗精准性[82] [83]

4. 总结

rTMS在神经系统疾病治疗中的应用已从单一症状控制转向多靶点、个体化整合干预。在癫痫领域,低频刺激通过降低皮质兴奋性减少发作频率,尤其适用于儿童耐药性癫痫[84]。在卒中康复领域,高频rTMS显示出改善运动与认知功能的潜力。帕金森病的rTMS治疗效果存在亚型差异:强直型患者对M1/SMA区10 Hz刺激反应更佳,而震颤型患者可能需联合小脑靶点刺激[45]。针对抑郁症,基于脑网络连接的靶点定位(如亚属前扣带回–背外侧前额叶通路)使缓解率提高至传统方法的2倍[3]。未来发展方向包括:开发闭环刺激系统以实时响应神经活动变化(如EEG-guided rTMS) [14],探索多靶点序贯刺激策略(如联合运动皮层与默认模式网络),以及利用生物标志物(如血清脑源性神经营养因子BDNF水平)预测治疗反应[85]。跨病种协同机制研究将进一步推动rTMS成为神经调控治疗的核心技术。然而,其安全性、禁忌症及长期副作用等风险问题也需引起重视。研究表明,rTMS在治疗过程中具有较高的安全性,多数不良反应为轻微且可逆,如头痛、恶心、肌肉不适等,但是,rTMS在特定条件下可能引发严重不良反应,如癫痫发作,尤其是在高频刺激、高强度或长时间刺激下。禁忌症人群(如颅内金属植入、心脏起搏器携带者)需严格筛查,另外听力保护不足可能导致耳鸣,以及高强度刺激(>120% MT)的潜在皮质兴奋性毒性。长期副作用评估显示认知功能无损害,但双相障碍患者可能诱发躁狂。尽管rTMS具有良好的安全性和耐受性,但在临床应用中仍需严格遵循操作规范,以降低潜在风险。

基金项目

济宁市重点研发计划项目(2023YXNS255)。

NOTES

*通讯作者。

参考文献

[1] Dai, M., Qiao, J., Shi, Z., Wei, X., Chen, H., Shen, L., et al. (2023) Effect of Cerebellar Transcranial Magnetic Stimulation with Dou-ble-Cone Coil on Dysphagia after Subacute Infratentorial Stroke: A Randomized, Single-Blinded, Controlled Trial. Brain Stimulation, 16, 1012-1020. [Google Scholar] [CrossRef
[2] Saricaoglu, M., Hanoglu, L., Toprak, G., Yilmaz, N.H. and Yulug, B. (2022) The Multifactorial Role of Pre-Supplementary Motor Area Stimulation in the Freezing of Gait: An Alternative Strategy to the Classical Drug-Target Approach. Endocrine, Metabolic & Immune Disorders—Drug Targets, 22, 518-524. [Google Scholar] [CrossRef
[3] Cash, R.F.H., Weigand, A., Zalesky, A., Siddiqi, S.H., Downar, J., Fitzgerald, P.B., et al. (2021) Using Brain Imaging to Improve Spatial Targeting of Transcranial Magnetic Stimulation for Depression. Biological Psychiatry, 90, 689-700. [Google Scholar] [CrossRef
[4] Tang, N., Li, Y., Chen, J., et al. (2024) Accelerated Transcranial Magnetic Stimulation for Major Depressive Disorder: A Quick Path to Relief? Wiley Interdisciplinary Reviews: Cognitive Science, 15, e1666.
[5] Suppa, A., Quartarone, A., Siebner, H., et al. (2022) TMS as a Tool to Explore Plasticity in Humans. In: Handbook of Clinical Neurology (Vol. 184), Elsevier, 73-89.
[6] Jannati, A., Oberman, L.M., Rotenberg, A. and Pascual-Leone, A. (2023) As-sessing the Mechanisms of Brain Plasticity by Transcranial Magnetic Stimulation. Neuropsychopharmacology, 48, 191-208. [Google Scholar] [CrossRef
[7] Anil, S., Lu, H., Rotter, S. and Vlachos, A. (2023) Repetitive Transcranial Magnetic Stimulation (rTMS) Triggers Dose-Dependent Homeostatic Rewiring in Recurrent Neuronal Networks. PLOS Computational Biology, 19, e1011027. [Google Scholar] [CrossRef
[8] Li, X., Wang, H., Zhang, Y., et al. (2021) Cortical Plasticity Correlates with Cognitive Improvement in Alzheimer’s Disease after rTMS. Brain Stimulation, 14, 503-510.
[9] Chou, Y.H., You, H., Wang, S.J., et al. (2022) Cortical Excitability and Plasticity in Alzheimer’s Disease: A TMS Meta-Analysis. Ageing Research Reviews, 79, Article 101660.
[10] Kweon, J., Kim, D., Park, S., et al. (2024) NMDA/GABA Mechanisms of 10-Hz rTMS-Induced Plasticity. Research Square. [Google Scholar] [CrossRef
[11] Zou, H., Bao, S., Chen, X., Zhou, X. and Zhang, S. (2024) High-Frequency Repetitive Transcranial Magnetic Stimulation Ameliorates Memory Impairment by Inhibiting Neuroinflammation in the Chronic Cerebral Hypoperfusion Mice. Brain and Behavior, 14, e3618. [Google Scholar] [CrossRef
[12] Downar, J., Sid-diqi, S.H., Mitra, A., Williams, N. and Liston, C. (2024) Mechanisms of Action of TMS in the Treatment of Depression. In: Current Topics in Behavioral Neurosciences, Springer, 233-277. [Google Scholar] [CrossRef
[13] Zhong, M., Cywiak, C., Metto, A.C., Liu, X., Qian, C. and Pelled, G. (2021) Mul-ti-Session Delivery of Synchronous rTMS and Sensory Stimulation Induces Long-Term Plasticity. Brain Stimulation, 14, 884-894. [Google Scholar] [CrossRef
[14] Zrenner, C. and Ziemann, U. (2024) Closed-Loop Brain Stimulation. Biological Psychiatry, 95, 545-552. [Google Scholar] [CrossRef
[15] Buetefisch, C.M., Haut, M.W., Revill, K.P., Shaeffer, S., Edwards, L., Barany, D.A., et al. (2023) Stroke Lesion Volume and Injury to Motor Cortex Output Determines Extent of Contralesional Motor Cor-tex Reorganization. Neurorehabilitation and Neural Repair, 37, 119-130. [Google Scholar] [CrossRef
[16] Du, J., Yang, F., Hu, J., Hu, J., Xu, Q., Cong, N., et al. (2019) Effects of High- and Low-Frequency Repetitive Transcranial Magnetic Stimulation on Motor Recovery in Early Stroke Patients: Evidence from a Randomized Controlled Trial with Clinical, Neurophysiolog-ical and Functional Imaging Assessments. NeuroImage: Clinical, 21, Article 101620. [Google Scholar] [CrossRef
[17] Lefaucheur, J., Aleman, A., Baeken, C., Benninger, D.H., Brunelin, J., Di Lazzaro, V., et al. (2020) Evidence-based Guidelines on the Therapeutic Use of Repetitive Transcranial Magnetic Stimulation (rTMS): An Update (2014-2018). Clinical Neurophysiology, 131, 474-528. [Google Scholar] [CrossRef
[18] Wang, Q., Zhang, D., Zhao, Y., Hai, H. and Ma, Y. (2020) Effects of High-Frequency Repetitive Transcranial Magnetic Stimulation over the Contralesional Motor Cortex on Motor Recovery in Severe Hemiplegic Stroke: A Randomized Clinical Trial. Brain Stimulation, 13, 979-986. [Google Scholar] [CrossRef
[19] Chen, Q., Shen, D., Sun, H., Ke, J., Wang, H., Pan, S., et al. (2021) Effects of Coupling Inhibitory and Facilitatory Repetitive Transcranial Magnetic Stimulation on Motor Recovery in Patients Following Acute Cerebral Infarction. Neuro Rehabilitation, 48, 83-96. [Google Scholar] [CrossRef
[20] Vink, J.J.T., van Lieshout, E.C.C., Otte, W.M., van Eijk, R.P.A., Kouwenhoven, M., Neggers, S.F.W., et al. (2023) Continuous Theta-Burst Stimulation of the Contralesional Primary Motor Cortex for Promotion of Upper Limb Recovery after Stroke: A Randomized Controlled Trial. Stroke, 54, 1962-1971. [Google Scholar] [CrossRef
[21] Ding, Q., Chen, J., Zhang, S., Chen, S., Li, X., Peng, Y., et al. (2024) Neurophysiological Characterization of Stroke Recovery: A Longitudinal TMS and EEG Study. CNS Neuroscience & Thera-peutics, 30, e14471. [Google Scholar] [CrossRef
[22] Du, J., Wang, S., Cheng, Y., Xu, J., Li, X., Gan, Y., et al. (2022) Effects of Neuromus-cular Electrical Stimulation Combined with Repetitive Transcranial Magnetic Stimulation on Upper Limb Motor Function Rehabilitation in Stroke Patients with Hemiplegia. Computational and Mathematical Methods in Medicine, 2022, 1-7. [Google Scholar] [CrossRef
[23] Zhang, W., Sun, Y., Liu, H., et al. (2024) Effectiveness of Repetitive Transcranial Magnetic Stimulation Combined with Intelligent Gait-Adaptability Training. Journal of Stroke and Cerebrovascular Diseases, 33, Arti-cle 107961.
[24] Kim, W., Kwon, B.S., Seo, H.G., Park, J. and Paik, N. (2020) Low-Frequency Repetitive Transcranial Magnetic Stimulation over Contralesional Motor Cortex for Motor Recovery in Subacute Ischemic Stroke: A Randomized Sham-Controlled Trial. Neurorehabilitation and Neural Repair, 34, 856-867. [Google Scholar] [CrossRef
[25] Edwards, J.D., Black, S.E., Boe, S., Boyd, L., Chaves, A., Chen, R., et al. (2021) Canadian Platform for Trials in Noninvasive Brain Stimulation (CanStim) Consensus Recommendations for Repetitive Transcranial Magnetic Stimulation in Upper Extremity Motor Stroke Rehabilitation Trials. Neurorehabilitation and Neural Repair, 35, 103-116. [Google Scholar] [CrossRef
[26] Liu, X., Li, H., Yang, S., Xiao, Z., Li, Q., Zhang, F., et al. (2024) Efficacy of Repetitive Transcranial Magnetic Stimulation on Post-Stroke Cognitive Impairment: A Systematic and a Network Meta-Analysis. In-ternational Journal of Geriatric Psychiatry, 39, e6117. [Google Scholar] [CrossRef
[27] Yang, Y., Chang, W., Ding, J., Xu, H., Wu, X., Ma, L., et al. (2024) Effects of Different Modalities of Transcranial Magnetic Stimulation on Post-Stroke Cognitive Im-pairment: A Network Meta-Analysis. Neurological Sciences, 45, 4399-4416. [Google Scholar] [CrossRef
[28] Li, H., Ma, J., Zhang, J., Shi, W., Mei, H. and Xing, Y. (2021) Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Thyroid Hormones Level and Cognition in the Recovery Stage of Stroke Patients with Cognitive Dysfunction. Medical Science Monitor, 27, e931914. [Google Scholar] [CrossRef
[29] Hong, J., Chen, J., Zeng, Y., Zhang, X., Xie, M., Li, C., et al. (2021) Different Combinations of High-Frequency rTMS and Cognitive Training Im-prove the Cognitive Function of Cerebral Ischemic Rats. Brain Research Bulletin, 175, 16-25. [Google Scholar] [CrossRef
[30] Gao, Y., Qiu, Y., Yang, Q.Y., et al. (2023) Repetitive Transcranial Mag-netic Stimulation Combined with Cognitive Training for Cognitive Function and Activities of Daily Living in Patients with Post-Stroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Ageing Research Reviews, 87, Article 101919. [Google Scholar] [CrossRef
[31] Li, K., Mo, D., Yu, Q., Feng, R. and Li, Y. (2024) Effect of Repetitive Transcrani-al Magnetic Stimulation on Post-Stroke Comorbid Cognitive Impairment and Depression: A Randomized Controlled Trial. Journal of Alzheimer’s Disease, 101, 337-352. [Google Scholar] [CrossRef
[32] Xun, X., Liu, Y., Pan, W., Tang, L., Hu, C., Ouyang, H., et al. (2025) Low Frequency-Repetitive Transcranial Magnetic Stimulation Combined with Xingnao Kaiqiao Acupuncture Improves Post-Stroke Cognitive Impairment and Has Better Clinical Efficacy. Psychogeriatrics, 25, e13199. [Google Scholar] [CrossRef
[33] Zhu, M., Huang, S., Chen, W., Pan, G. and Zhou, Y. (2024) The Effect of Transcranial Magnetic Stimulation on Cognitive Function in Post-Stroke Patients: A Systematic Review and Meta-Analysis. BMC Neurology, 24, Article No. 234. [Google Scholar] [CrossRef
[34] Zou, F., Chen, X., Niu, L., Wang, Y., Chen, J., Li, C., et al. (2023) Effect of Repetitive Transcranial Magnetic Stimulation on Post-Stroke Dysphagia in Acute Stage. Dysphagia, 38, 1117-1127. [Google Scholar] [CrossRef
[35] Wang, L., Wang, F., Lin, Y., Guo, X., Wang, J., Liu, J., et al. (2023) Treat-ment of Post-Stroke Dysphagia with Repetitive Transcranial Magnetic Stimulation Based on the Bimodal Balance Recovery Model: A Pilot Study. Journal of Integrative Neuroscience, 22, Article 53. [Google Scholar] [CrossRef
[36] Suh, I., You, J., Son, S., Bae, J.S. and Lim, J.Y. (2024) The Effect of Real versus Sham Intermittent Theta Burst Transcranial Magnetic Stimulation Com-bined with Conventional Treatment on Poststroke Dysphagia: A Randomized Controlled Trial. International Journal of Rehabilitation Research, 47, 81-86. [Google Scholar] [CrossRef
[37] Tai, J., Hu, R., Fan, S., Wu, Y., Wang, T. and Wu, J. (2023) Theta-Burst Transcranial Magnetic Stimulation for Dysphagia Patients during Recovery Stage of Stroke: A Randomized Controlled Trial. European Journal of Physical and Rehabilitation Medicine, 59, 543-553. [Google Scholar] [CrossRef
[38] Cheng, I., Sasegbon, A. and Hamdy, S. (2021) Effects of Neurostimulation on Poststroke Dysphagia: A Synthesis of Current Evidence from Randomized Controlled Trials. Neuromodulation: Technology at the Neural Interface, 24, 1388-1401. [Google Scholar] [CrossRef
[39] Li, R., He, Y., Qin, W., Zhang, Z., Su, J., Guan, Q., et al. (2022) Effects of Repetitive Transcranial Magnetic Stimulation on Motor Symptoms in Parkinson’s Disease: A Meta-Analysis. Neurorehabilitation and Neural Repair, 36, 395-404. [Google Scholar] [CrossRef
[40] Wang, M., Zhang, W. and Zang, W. (2024) Repetitive Transcranial Magnetic Stimulation Improves Cognition, Depression, and Walking Ability in Patients with Parkinson’s Disease: A Meta-Analysis. BMC Neu-rology, 24, Article No. 490. [Google Scholar] [CrossRef
[41] Grobe-Einsler, M., Baljasnikowa, V., Faikus, A., Schaprian, T. and Kaut, O. (2024) Cerebellar Transcranial Magnetic Stimulation Improves Motor Function in Parkinson’s Disease. Annals of Clinical and Trans-lational Neurology, 11, 2673-2684. [Google Scholar] [CrossRef
[42] Zhang, X., Zhuang, S., Wu, J., Wang, L., Mao, C., Chen, J., et al. (2022) Effects of Repetitive Transcranial Magnetic Stimulation over Right Dorsolateral Prefrontal Cortex on Excessive Daytime Sleepiness in Patients with Parkinson’s Disease. Sleep Medicine, 100, 133-138. [Google Scholar] [CrossRef
[43] Xie, F., Shen, B., Luo, Y., Zhou, H., Xie, Z., Zhu, S., et al. (2024) Repetitive Transcranial Magnetic Stimulation Alleviates Motor Impairment in Parkinson’s Disease: Association with Peripheral Inflammatory Regulatory T-Cells and SYT6. Molecular Neurodegeneration, 19, Article No. 80. [Google Scholar] [CrossRef
[44] Wen, X., Chi, S., Yu, Y., Wang, G., Zhang, X., Wang, Z., et al. (2022) The Cerebellum Is Involved in Motor Improvements after Repetitive Transcranial Magnetic Stimulation in Parkinson’s Disease Patients. Neuroscience, 499, 1-11. [Google Scholar] [CrossRef
[45] Qi, C., Wang, J., Li, H., et al. (2023) Observation on the Efficacy of Different Targets Low-Frequency Repetitive Transcranial Magnetic Stimulation for the Treatment of Tremor-Dominant Subtypes of Parkinson’s Disease. Chinese Medical Journal, 103, 3112-3118.
[46] Khedr, E.M., Haridy, N.A., Korayem, M.A., Tawfik, A.M. and Hamed, A.A. (2025) In PD, Non-Invasive Trans-Spinal Magnetic Stimulation Enhances the Effect of Transcranial Magnetic Stimula-tion on Axial Motor Symptoms: A Double-Blind Randomized Clinical Trial. Neurorehabilitation and Neural Repair, 39, 126-137. [Google Scholar] [CrossRef
[47] Hamed, S.A. (2020) Cortical Excitability in Epilepsy and the Impact of An-tiepileptic Drugs: Transcranial Magnetic Stimulation Applications. Expert Review of Neurotherapeutics, 20, 707-723. [Google Scholar] [CrossRef
[48] Wang, Z., Zhang, X., Meiduo, G., Song, M. and Wang, S. (2024) Time-Effectiveness of Low-Frequency rTMS for Epilepsy and Improvement in Cognitive Function in Patients: A Systematic Review and Meta-Analysis. Epilepsy Research, 199, Article 107277. [Google Scholar] [CrossRef
[49] Wang, Y., Ma, L., Shi, X., Liu, Y., Wu, D., Hao, J., et al. (2025) Cerebellar Transcranial Magnetic Stimulation to Treat Drug-Resistant Epilepsy: A Randomized, Controlled, Crossover Clinical Trial. Epilepsia, 66, 240-252. [Google Scholar] [CrossRef
[50] Carrette, S., Boon, P., Klooster, D., Van Dycke, A., Carrette, E., Miatton, M., et al. (2022) Continuous Theta Burst Stimulation for Drug-Resistant Epilepsy. Frontiers in Neuroscience, 16, Article 885905. [Google Scholar] [CrossRef
[51] So, M., Kong, J., Kim, Y., Kim, K., Kim, H. and Kim, J.B. (2024) Increased Cerebellar Vermis Volume Following Repetitive Transcranial Magnetic Stimulation in Drug-Resistant Epilepsy: A Voxel-Based Mor-phometry Study. Frontiers in Neuroscience, 18, Article 1421917. [Google Scholar] [CrossRef
[52] Fu, C., Aisikaer, A., Chen, Z., Yu, Q., Yin, J. and Yang, W. (2021) Antiepileptic Efficacy and Network Connectivity Modulation of Repetitive Transcranial Magnetic Stimulation by Vertex Suppression. Frontiers in Human Neuroscience, 15, Article 667619. [Google Scholar] [CrossRef
[53] Rivadulla, C., Pardo-Vazquez, J.L., de Labra, C., Aguilar, J., Suarez, E., Paz, C., et al. (2023) Transcranial Static Magnetic Stimulation Reduces Seizures in a Mouse Model of Dravet Syndrome. Experimental Neurology, 370, Article 114581. [Google Scholar] [CrossRef
[54] Walton, D., Spencer, D.C., Nevitt, S.J. and Michael, B.D. (2021) Transcranial Magnetic Stimulation for the Treatment of Epilepsy. Cochrane Database of Systematic Reviews, 2021, CD011025. [Google Scholar] [CrossRef
[55] Chen, X., Yin, L., An, Y., Yan, H., Zhang, T., Lu, X., et al. (2022) Ef-fects of Repetitive Transcranial Magnetic Stimulation in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Multiple Sclerosis and Related Disorders, 59, Article 103564. [Google Scholar] [CrossRef
[56] Yassine, I.A., Shehata, H., Hamdy, S., Abdel-Naseer, M., Hassan, T., Sherbiny, M., et al. (2024) Effect of High Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) on the Balance and the White Matter Integrity in Patients with Relapsing-Remitting Multiple Sclerosis: A Long-Term Fol-low-Up Study. Multiple Sclerosis and Related Disorders, 83, Article 105471. [Google Scholar] [CrossRef
[57] Ahmadpanah, M., Amini, S., Mazdeh, M., Haghighi, M., Soltanian, A., Ja-hangard, L., et al. (2023) Effectiveness of Repetitive Transcranial Magnetic Stimulation (rTMS) Add-On Therapy to a Standard Treat-ment in Individuals with Multiple Sclerosis and Concomitant Symptoms of Depression—Results from a Randomized Clinical Trial and Pilot Study. Journal of Clinical Medicine, 12, Article 2525. [Google Scholar] [CrossRef
[58] León Ruiz, M., García, S., Rodríguez, A., et al. (2022) Current Evidence on the Potential Therapeutic Applications of Transcranial Magnetic Stimulation in Multi-ple Sclerosis: A Systematic Review of the Literature. Neurologia, 37, 199-215.
[59] Stampanoni Bassi, M., Buttari, F., Gilio, L., De Paolis, N., Fresegna, D., Centonze, D., et al. (2020) Inflammation and Corticospinal Functioning in Multiple Sclerosis: A TMS Per-spective. Frontiers in Neurology, 11, Article 566. [Google Scholar] [CrossRef
[60] Kauv, P., Chalah, M.A., Créange, A., Lefaucheur, J., Hodel, J. and Ayache, S.S. (2025) The Corticospinal Tract in Multiple Sclerosis: Correlation between Cortical Excitability and Magnetic Resonance Imaging Measures. Journal of Neural Transmission, 132, 265-273. [Google Scholar] [CrossRef
[61] Stevens, N., Ezegbe, C., Fuh-Ngwa, V., Makowiecki, K., Zarghami, A., Nguyen, P.T., et al. (2024) A Phase II Trial Examining the Safety and Pre-liminary Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) for People Living with Multiple Sclerosis. Trials, 25, Article No. 598. [Google Scholar] [CrossRef
[62] Matias-Guiu, J.A., González-Rosa, J., Hernández, M.Á., Mar-tínez-Ginés, M.L., Portolés, A., Pérez-Macías, N., et al. (2024) Amantadine and/or Transcranial Magnetic Stimulation for Fatigue As-sociated with Multiple Sclerosis (FETEM): Study Protocol for a Phase 3 Randomised, Double-Blind, Cross-Over, Controlled Clinical Trial. BMJ Open, 14, e078661. [Google Scholar] [CrossRef
[63] Aydın, M., Erkan, M., Gündoğdu, R., Vural, A., Kökoğlu, K. and Şahin, M.İ. (2021) Assessment of the Effectiveness of Transcranial Magnetic Stimulation in Subjective Tinnitus. International Archives of Otorhinolaryngology, 25, e453-e458. [Google Scholar] [CrossRef
[64] Noh, T.S., Kyong, J.S., Kim, J.S., et al. (2020) Dual-Site rTMS Is More Effective than Single-Site rTMS in Tinnitus Patients: A Blinded Randomized Controlled Trial. Brain Topography, 33, 767-775. [Google Scholar] [CrossRef
[65] Kim, E., Kim, J., Park, H.Y., et al. (2023) Auditory Cortex Hyperconnectivity before rTMS Is Correlated with Tinnitus Improvement. Neurología, 38, 475-485. [Google Scholar] [CrossRef
[66] Yang, H., Cheng, G., Liang, Z., Deng, W., Huang, X., Gao, M., et al. (2023) Effi-cacy of Repetitive Transcranial Magnetic Stimulation (rTMS) for Tinnitus: A Retrospective Study. Ear, Nose & Throat Journal, 102, NP506-NP510. [Google Scholar] [CrossRef
[67] Berman, Z.R., Citrenbaum, C., Corlier, J., Leuchter, A.F., Folmer, R.L. and Leuchter, M.K. (2024) Sequential Multilocus Repetitive Transcranial Magnetic Stimulation for Treatment of Tinnitus with and without Comorbid Major Depressive Disorder. Neuromodulation: Technology at the Neural Interface, 27, 774-780. [Google Scholar] [CrossRef
[68] Lefebvre-Demers, M., Doyon, N. and Fecteau, S. (2021) Non-Invasive Neu-romodulation for Tinnitus: A Meta-Analysis and Modeling Studies. Brain Stimulation, 14, 113-128. [Google Scholar] [CrossRef
[69] Heiland, L.D., Owen, J.M., Nguyen, S.A., Labadie, R.F., Lambert, P.R. and Meyer, T.A. (2024) Neuromodulation for Treatment of Tinnitus: A Systematic Review and Meta-Analysis. Otolaryngology—Head and Neck Surgery, 170, 1234-1245. [Google Scholar] [CrossRef
[70] Breda, V. and Freire, R. (2024) Repetitive Transcranial Magnetic Stimulation (rTMS) in Major Depression. In: Advances in Experimental Medicine and Biology, Springer, 145-159. [Google Scholar] [CrossRef
[71] Dalhuisen, I., van Oostrom, I., Spijker, J., Wijnen, B., van Exel, E., van Mierlo, H., et al. (2024) rTMS as a Next Step in Antidepressant Nonresponders: A Randomized Comparison with Current Antidepres-sant Treatment Approaches. American Journal of Psychiatry, 181, 806-814. [Google Scholar] [CrossRef
[72] Leuchter, M.K., Citrenbaum, C., Wilson, A.C., Tibbe, T.D., Jackson, N.J., Krantz, D.E., et al. (2024) The Effect of Older Age on Outcomes of rTMS Treatment for Treatment-Resistant Depression. International Psy-chogeriatrics, 36, 1070-1075. [Google Scholar] [CrossRef
[73] Morriss, R., Briley, P.M., Webster, L., Ab-delghani, M., Barber, S., Bates, P., et al. (2024) Connectivity-Guided Intermittent Theta Burst versus Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression: A Randomized Controlled Trial. Nature Medicine, 30, 403-413. [Google Scholar] [CrossRef
[74] Tang, S.J., Holle, J., Dadario, N.B., Lesslar, O., Teo, C., Ryan, M., et al. (2023) Personalized, Parcel-Guided rTMS for the Treatment of Major Depressive Disorder: Safety and Proof of Concept. Brain and Behavior, 13, e3268. [Google Scholar] [CrossRef
[75] Chen, X., Blumberger, D.M., Downar, J., Middleton, V.J., Monira, N., Bowman, J., et al. (2024) Depressive Symptom Trajectories with Prolonged rTMS Treatment. Brain Stimulation, 17, 525-532. [Google Scholar] [CrossRef
[76] Wang, Q., Huang, H., Li, D., Wang, Y., Qi, N., Ci, Y., et al. (2022) Intensive rTMS for Treatment-Resistant Depression Patients with Suicidal Ideation: An Open-Label Study. Asian Journal of Psychiatry, 74, Ar-ticle 103189. [Google Scholar] [CrossRef
[77] Li, X., Liu, J., Wei, S., Yu, C., Wang, D., Li, Y., et al. (2024) Cognitive Enhanc-ing Effect of rTMS Combined with tDCS in Patients with Major Depressive Disorder: A Double-Blind, Randomized, Sham-Controlled Study. BMC Medicine, 22, Article No. 253. [Google Scholar] [CrossRef
[78] Valiengo, L., Maia, A., Cotovio, G., Gordon, P.C., Brunoni, A.R., Forlenza, O.V., et al. (2021) Repetitive Transcranial Magnetic Stimulation for Major Depressive Disorder in Older Adults: Systematic Review and Meta-Analysis. The Journals of Gerontology: Series A, 77, 851-860. [Google Scholar] [CrossRef
[79] Gu, L.M., Zhang, Y., Wang, L., et al. (2025) Efficacy and Safety of Low-Frequency Repetitive Transcranial Magnetic Stimulation in Adolescents with First-Episode Major Depressive Disorder. Journal of Affective Dis-orders, 370, 190-197.
[80] Slan, A.R., Filkowski, M.M., Smith, R.T., et al. (2024) The Role of Sex and Age in the Differential Effi-cacy of 10 Hz and Intermittent Theta-Burst rTMS Treatment of Major Depressive Disorder. Journal of Affective Disorders, 366, 106-112.
[81] Valiuliene, G., Mickeviciene, D., Rastenyte, D., et al. (2023) Anti-Neuroinflammatory MicroRNA-146a-5p as a Poten-tial Biomarker for Neuronavigation-Guided rTMS Therapy Success. Biomedicine & Pharmacotherapy, 166, Article 115313.
[82] Modak, A. and Fitzgerald, P.B. (2021) Personalising Transcranial Magnetic Stimulation for Depression Using Neu-roimaging: A Systematic Review. The World Journal of Biological Psychiatry, 22, 647-669. [Google Scholar] [CrossRef
[83] van Rooij, S.J.H., Arulpragasam, A.R., McDonald, W.M. and Philip, N.S. (2024) Accelerated TMS-Moving Quickly into the Future of Depression Treatment. Neuropsychopharmacology, 49, 128-137. [Google Scholar] [CrossRef
[84] Andreasson, A.C., Norlin, M., Pettersson, L., et al. (2020) Motor Cortex Stimulation in Children with Cerebral Palsy: A Systematic Review. Developmental Medicine and Child Neurology, 62, 793-798.
[85] Gogulski, J., Ross, J.M., Talbot, A., et al. (2023) High-Definition Transcranial Magnetic Stimulation Reveals Distinct Cortical Contributions to Semantic and Phonological Processes. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 8, 351-360.