|
[1]
|
Mezzolla, V., Pontrelli, P., Fiorentino, M., Stasi, A., Pesce, F., Franzin, R., et al. (2021) Emerging Biomarkers of Delayed Graft Function in Kidney Transplantation. Transplantation Reviews, 35, Article ID: 100629. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Montagud‐Marrahi, E., Molina‐Andújar, A., Rovira, J., Revuelta, I., Ventura‐Aguiar, P., Piñeiro, G., et al. (2020) The Impact of Functional Delayed Graft Function in the Modern Era of Kidney Transplantation—A Retrospective Study. Transplant International, 34, 175-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Cooper, M., Wiseman, A.C., Doshi, M.D., Hall, I.E., Parsons, R.F., Pastan, S., et al. (2024) Understanding Delayed Graft Function to Improve Organ Utilization and Patient Outcomes: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. American Journal of Kidney Diseases, 83, 360-369. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Schrezenmeier, E., Müller, M., Friedersdorff, F., Khadzhynov, D., Halleck, F., Staeck, O., et al. (2021) Evaluation of Severity of Delayed Graft Function in Kidney Transplant Recipients. Nephrology Dialysis Transplantation, 37, 973-981. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Phillips, B.L., Ibrahim, M., Greenhall, G.H.B., Mumford, L., Dorling, A. and Callaghan, C.J. (2021) Effect of Delayed Graft Function on Longer-Term Outcomes after Kidney Transplantation from Donation after Circulatory Death Donors in the United Kingdom: A National Cohort Study. American Journal of Transplantation, 21, 3346-3355. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Qiu, L., Lai, X., Wang, J., Yeap, X.Y., Han, S., Zheng, F., et al. (2020) Kidney-Intrinsic Factors Determine the Severity of Ischemia/Reperfusion Injury in a Mouse Model of Delayed Graft Function. Kidney International, 98, 1489-1501. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yang, B., Lan, S., Dieudé, M., Sabo-Vatasescu, J., Karakeussian-Rimbaud, A., Turgeon, J., et al. (2018) Caspase-3 Is a Pivotal Regulator of Microvascular Rarefaction and Renal Fibrosis after Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology, 29, 1900-1916. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wu, J., Zhang, F., Zheng, X., Zhang, J., Cao, P., Sun, Z., et al. (2022) Identification of Renal Ischemia Reperfusion Injury Subtypes and Predictive Strategies for Delayed Graft Function and Graft Survival Based on Neutrophil Extracellular Trap-Related Genes. Frontiers in Immunology, 13, Article ID: 1047367. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Qin, J., Li, Z., Feng, Y., Guo, Y., Zhao, Z., Sun, S., et al. (2024) Reactive Oxygen Species-Scavenging Mesoporous Poly(Tannic Acid) Nanospheres Alleviate Acute Kidney Injury by Inhibiting Ferroptosis. ACS Biomaterials Science & Engineering, 10, 5856-5868. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Xin, W., Gong, S., Chen, Y., Yao, M., Qin, S., Chen, J., et al. (2024) Self‐Assembling P38 Peptide Inhibitor Nanoparticles Ameliorate the Transition from Acute to Chronic Kidney Disease by Suppressing Ferroptosis. Advanced Healthcare Materials, 13, Article ID: 2400441. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Liu, X., Liu, D., Long, M. and Chen, F. (2024) Application Value of Ultrasonic Contrast Imaging and Ultrasonic Parameters in Post-Transplant Renal Surgery. Frontiers in Medicine, 11, Article ID: 1397884. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gerken, A.L.H., Nowak, K., Meyer, A., Weiss, C., Krüger, B., Nawroth, N., et al. (2020) Quantitative Assessment of Intraoperative Laser Fluorescence Angiography with Indocyanine Green Predicts Early Graft Function after Kidney Transplantation. Annals of Surgery, 276, 391-397. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Pan, F., Yang, D., Zhao, G., Huang, S., Wang, Y., Xu, M., et al. (2024) Prediction of Allograft Function in Pre-Transplant Kidneys Using Sound Touch Elastography (STE): An Ex Vivo Study. Insights into Imaging, 15, Article No. 245. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ye, Y., Han, F., Ma, M., Sun, Q., Huang, Z., Zheng, H., et al. (2021) Plasma Macrophage Migration Inhibitory Factor Predicts Graft Function Following Kidney Transplantation: A Prospective Cohort Study. Frontiers in Medicine, 8, Article ID: 708316. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Leng, Q., Ma, M., Tang, Z., Jiang, W., Han, F. and Huang, Z. (2025) Assessing Donor Kidney Function: The Role of CIRBP in Predicting Delayed Graft Function Post-Transplant. Frontiers in Immunology, 15, Article ID: 1518279. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Woo, H.Y., An, J.M., Park, M.Y., Han, A., Kim, Y., Kang, J., et al. (2024) Cysteine as an Innovative Biomarker for Kidney Injury. Transplantation, 109, 309-318. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhu, M., Chen, Z., Wei, Y., Yuan, Y., Ying, L., Zhou, H., et al. (2021) The Predictive Value of Urinary Kidney Injury Molecular-1 for Long-Term Graft Function in Kidney Transplant Patients: A Prospective Study. Annals of Translational Medicine, 9, Article No. 244. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Cucchiari, D., Cuadrado-Payan, E., Gonzalez-Roca, E., Revuelta, I., Argudo, M., Ramirez-Bajo, M.J., et al. (2023) Early Kinetics of Donor-Derived Cell-Free DNA after Transplantation Predicts Renal Graft Recovery and Long-Term Function. Nephrology Dialysis Transplantation, 39, 114-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Xiang, X., Peng, B., Liu, K., Wang, T., Ding, P., Zhu, Y., et al. (2024) Prediction of Delayed Graft Function by Early Salivary Microbiota Following Kidney Transplantation. Applied Microbiology and Biotechnology, 108, Article No. 402. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Gardezi, A.I., Muth, B., Ghaffar, A., Aziz, F., Garg, N., Mohamed, M., et al. (2021) Continuation of Peritoneal Dialysis in Adult Kidney Transplant Recipients with Delayed Graft Function. Kidney International Reports, 6, 1634-1641. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Sethi, S., Mangat, G., Soundararajan, A., Marakini, A.B., Pecoits-Filho, R., Shah, R., et al. (2023) Archetypal Sustained Low-Efficiency Daily Diafiltration (SLEDD-f) for Critically Ill Patients Requiring Kidney Replacement Therapy: Towards an Adequate Therapy. Journal of Nephrology, 36, 1789-1804. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Collins, M.G., Fahim, M.A., Pascoe, E.M., Hawley, C.M., Johnson, D.W., Varghese, J., et al. (2023) Balanced Crystalloid Solution versus Saline in Deceased Donor Kidney Transplantation (BEST-Fluids): A Pragmatic, Double-Blind, Randomised, Controlled Trial. The Lancet, 402, 105-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zarychanski, R., Abou-Setta, A.M., Turgeon, A.F., Houston, B.L., McIntyre, L., Marshall, J.C., et al. (2013) Association of Hydroxyethyl Starch Administration with Mortality and Acute Kidney Injury in Critically Ill Patients Requiring Volume Resuscitation: A Systematic Review and Meta-Analysis. JAMA, 309, 678-688. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kyllönen, L.E., Eklund, B.H., Pesonen, E.J. and Salmela, K.T. (2007) Single Bolus Antithymocyte Globulin versus Basiliximab Induction in Kidney Transplantation with Cyclosporine Triple Immunosuppression: Efficacy and Safety. Transplantation, 84, 75-82. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Oliveras, L., López-Vargas, P., Melilli, E., Codina, S., Royuela, A., Coloma López, A., et al. (2025) Delayed Initiation or Reduced Initial Dose of Calcineurin-Inhibitors for Kidney Transplant Recipients at High Risk of Delayed Graft Function. Cochrane Database of Systematic Reviews, 2025, CD014855. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
de Winter, B.C.M., van Gelder, T., Glander, P., Cattaneo, D., Tedesco-Silva, H., Neumann, I., et al. (2008) Population Pharmacokinetics of Mycophenolic Acid: A Comparison between Enteric-Coated Mycophenolate Sodium and Mycophenolate Mofetil in Renal Transplant Recipients. Clinical Pharmacokinetics, 47, 827-838. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Guo, S., Jia, D., Liu, X., Gao, L., Wang, H., Chen, C., et al. (2023) The Positive Efficacy of Dexmedetomidine on the Clinical Outcomes of Patients Undergoing Renal Transplantation: Evidence from Meta-Analysis. Aging, 15, 14192-14209. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Vincenti, F., Bromberg, J., Kim, J., Faravardeh, A., Leca, N., Alperovich, G., et al. (2024) The Hepatocyte Growth Factor Mimetic, ANG-3777, in Kidney Transplant Recipients with Delayed Graft Function: Results from a Randomized Phase 3 Trial. American Journal of Transplantation, 24, 1644-1651. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Eerhart, M.J., Reyes, J.A., Blanton, C.L., Danobeitia, J.S., Chlebeck, P.J., Zitur, L.J., et al. (2021) Complement Blockade in Recipients Prevents Delayed Graft Function and Delays Antibody-Mediated Rejection in a Nonhuman Primate Model of Kidney Transplantation. Transplantation, 106, 60-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Veroux, M., Sanfilippo, F., Roscitano, G., Giambra, M., Giaquinta, A., Riccioli, G., et al. (2024) Prevention of Delayed Graft Function in Kidney Transplant Recipients through a Continuous Infusion of the Prostaglandin Analogue Iloprost: A Single-Center Prospective Study. Biomedicines, 12, Article No. 290. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Liang, G.Z., Dorais, M., Collette, S., Sénécal, L., Belkaid, M., Turgeon, J., et al. (2024) Exposure to Renin-Angiotensin System Inhibitors before Kidney Transplantation Is Associated with a Decreased Risk of Delayed Graft Function. Frontiers in Immunology, 15, Article ID: 1447638. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Levine, M.A., Rasmussen, A., Lee, D., Rim, C., Farokhi, K., Luke, P.P., et al. (2024) Prospective Assessment of the Impact of Intraoperative Diuretics in Kidney Transplant Recipient Surgery. Canadian Journal of Surgery, 67, E158-E164. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ghozloujeh, Z.G., Jang, S.M. and Abdipour, A. (2024) Diuretic Use in Post-Kidney Transplant Patients: A Retrospective Chart Review. Transplantation Proceedings, 56, 82-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Feng, Y., Jones, M.R., Ahn, J.B., Garonzik-Wang, J.M., Segev, D.L. and McAdams-DeMarco, M. (2021) Ambient Air Pollution and Posttransplant Outcomes among Kidney Transplant Recipients. American Journal of Transplantation, 21, 3333-3345. [Google Scholar] [CrossRef] [PubMed]
|