|
[1]
|
李洪波, 皮美清, 廖新根, 等. 膝关节损伤861例流行病学调查[J]. 实用临床医学, 2020, 21(12): 87-90.
|
|
[2]
|
陈梦, 胡杰, 张宇辰, 等. 高水平排球运动员膝关节损伤临床与MRI表现研究[J]. 体育科技, 2024, 45(6): 24-26, 29.
|
|
[3]
|
钟锦建, 李梅红. MRI在膝关节隐匿性骨折伴半月板及韧带损伤诊断价值[J]. 浙江创伤外科, 2023, 28(6): 1177-1180.
|
|
[4]
|
范广涛, 施政良, 黄益龙, 等. MRT2*mapping定量评估膝关节前交叉韧带重建术后移植物成熟度[J]. 中国医学影像技术, 2022, 38(11): 1699-1703.
|
|
[5]
|
王成立, 邓娜, 彭伟生, 等. 磁共振T2-Mapping对膝关节前交叉韧带重建术后软骨变性和移植物成熟度的评估研究[J]. 中国医疗器械信息, 2024, 30(16): 126-128.
|
|
[6]
|
徐贤, 陈敏, 张君, 等. 磁共振T2mapping和dGEMRIC对膝关节再生软骨的纵向评估[J]. 中国医学影像学杂志, 2021, 29(5): 484-488.
|
|
[7]
|
穆萌. 基于3DCUBE并压缩感知HyperSense序列在膝关节磁共振成像的应用中对前交叉韧带损伤诊断的价值[J]. 实用医技杂志, 2023, 30(10): 743-746.
|
|
[8]
|
Marth, T., Marth, A.A., Kajdi, G.W., Nickel, M.D., Paul, D., Sutter, R., et al. (2025) Evaluating Undersampling Schemes and Deep Learning Reconstructions for High-Resolution 3D Double Echo Steady State Knee Imaging at 7 T: A Comparison between GRAPPA, CAIPIRINHA, and Compressed Sensing. Investigative Radiology, 60, 609-615. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
毛光兰, 李培, 杨荣丽, 等. 膝关节前交叉韧带损伤的弥散张量成像观测[J]. 中国临床解剖学杂志, 2021, 39(1): 26-30, 36.
|
|
[10]
|
Liu, S., Zhang, Y., Liu, W., Yin, T., Yuan, J., Ran, J., et al. (2024) Simultaneous Multi-Slice Technique for Reducing Acquisition Times in Diffusion Tensor Imaging of the Knee: A Feasibility Study. Skeletal Radiology, 54, 243-253. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Gao, F., Wen, Z., Dou, S., Kan, X., Wei, S. and Ge, Y. (2021) High-Resolution Simultaneous Multi-Slice Accelerated Turbo Spin-Echo Musculoskeletal Imaging: A Head-To-Head Comparison with Routine Turbo Spin-Echo Imaging. Frontiers in Physiology, 12, Article 759888. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wu, Z., Zaylor, W., Sommer, S., Xie, D., Zhong, X., Liu, K., et al. (2023) Assessment of Ultrashort Echo Time (UTE) T2* Mapping at 3T for the Whole Knee: Repeatability, the Effects of Fat Suppression, and Knee Position. Quantitative Imaging in Medicine and Surgery, 13, 7893-7909. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cheng, K.Y., Moazamian, D., Ma, Y., Jang, H., Jerban, S., Du, J., et al. (2023) Clinical Application of Ultrashort Echo Time (UTE) and Zero Echo Time (ZTE) Magnetic Resonance (MR) Imaging in the Evaluation of Osteoarthritis. Skeletal Radiology, 52, 2149-2157. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lombardi, A.F., Ma, Y., Jang, H., Jerban, S., Tang, Q., Searleman, A.C., et al. (2023) Correction: Lombardi et al. Acidocest-Ute MRI Reveals an Acidic Microenvironment in Knee Osteoarthritis. Int. J. Mol. Sci. 2022, 23, 4466. International Journal of Molecular Sciences, 24, Article 12346. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Jang, H., Ma, Y., Carl, M., Jerban, S., Chang, E.Y. and Du, J. (2021) Ultrashort Echo Time Cones Double Echo Steady State (UTE‐Cones‐DESS) for Rapid Morphological Imaging of Short T2 Tissues. Magnetic Resonance in Medicine, 86, 881-892. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Guruprasad, A., Sinha, U., Kumar, S., Kumar, A., Ahmad, S., Kumar, P., et al. (2024) Utility of Three-Dimensional Proton Density-Weighted Sequence MRI in Knee for the Assessment of Anterolateral Complex in Anterior Cruciate Ligament Injury. British Journal of Radiology, 97, 583-593. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
袁雁, 仇馨悦, 邓迎杰, 等. MR3DCUBE与常规MRI在膝关节前交叉韧带损伤中的应用价值[J]. 中国CT和MRI杂志, 2025, 23(09): 198-201.
|
|
[18]
|
Li, K., Jhonatan, F.Y., Yu, Z., Liu, J., Huang, L., Yang, H., et al. (2024) A New Modified MR Dual Precision Positioning of Thin-Slice Oblique Sagittal Fat Suppression Proton Density Weighted Imaging: Its Diagnostic Accuracy in Anterior Cruciate Ligament Injury. Scientific Reports, 13, Article No. 23109. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chen, J., Li, K., Peng, X., Li, L., Yang, H., Huang, L., et al. (2023) A Transfer Learning Approach for Staging Diagnosis of Anterior Cruciate Ligament Injury on a New Modified MR Dual Precision Positioning of Thin-Slice Oblique Sagittal FS-PDWI Sequence. Japanese Journal of Radiology, 41, 637-647. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
金嵚, 赵静, 房海燕, 等. MRI3D-SPACE及DTI在膝关节前交叉韧带损伤中的诊断价值[J]. 中国CT和MRI杂志, 2025, 23(04): 176-178.
|
|
[21]
|
许方彧, 刘彦荣, 曾果. 磁共振成像常规序列联合三维快速自旋回波序列对膝关节交叉韧带损伤的诊断价值分析[J]. 黑龙江医学, 2023, 47(24): 2989-2991.
|
|
[22]
|
Chen, K., Yang, C., Wang, H., Ma, H. and Lee, O.K. (2022) Artificial Intelligence–assisted Diagnosis of Anterior Cruciate Ligament Tears from Magnetic Resonance Images: Algorithm Development and Validation Study. JMIR AI, 1, e37508. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Minamoto, Y., Akagi, R., Maki, S., Shiko, Y., Tozawa, R., Kimura, S., et al. (2022) Automated Detection of Anterior Cruciate Ligament Tears Using a Deep Convolutional Neural Network. BMC Musculoskeletal Disorders, 23, Article No. 577. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Behr, J., Nich, C., D’Assignies, G., Zavastin, C., Zille, P., Herpe, G., et al. (2025) Deep Learning-Assisted Detection of Meniscus and Anterior Cruciate Ligament Combined Tears in Adult Knee Magnetic Resonance Imaging: A Crossover Study with Arthroscopy Correlation. International Orthopaedics, 49, 1689-1697. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yang, G., Shi, Y. and Li, Q. (2025) A Comparative Analysis of Sagittal, Coronal, and Axial Magnetic Resonance Imaging Planes in Diagnosing Anterior Cruciate Ligament and Meniscal Tears via a Deep Learning Model: Emphasizing the Unexpected Importance of the Axial Plane. Quantitative Imaging in Medicine and Surgery, 15, 5811-5824. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Fayad, L.M., Parekh, V.S., de Castro Luna, R., Ko, C.C., Tank, D., Fritz, J., et al. (2020) A Deep Learning System for Synthetic Knee Magnetic Resonance Imaging. Is Artificial Intelligence-Based Fat-Suppressed Imaging Feasible? Investigative Radiology, 56, 357-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kulseng, C.P.S., Nainamalai, V., Grøvik, E., Geitung, J., Årøen, A. and Gjesdal, K. (2023) Automatic Segmentation of Human Knee Anatomy by a Convolutional Neural Network Applying a 3D MRI Protocol. BMC Musculoskeletal Disorders, 24, Article No. 41. [Google Scholar] [CrossRef] [PubMed]
|