|
[1]
|
Bartucci, R., Salvati, A., Olinga, P. and Boersma, Y.L. (2019) Vanin 1: Its Physiological Function and Role in Diseases. International Journal of Molecular Sciences, 20, Article 3891. [Google Scholar] [CrossRef]
|
|
[2]
|
Pitari, G., Malergue, F., Martin, F., Philippe, J.M., Massucci, M.T., Chabret, C., et al. (2000) Pantetheinase Activity of Membrane-Bound Vanin-1: Lack of Free Cysteam-ine in Tissues of Vanin-1 Deficient Mice. FEBS Letters, 483, 149-154. [Google Scholar] [CrossRef]
|
|
[3]
|
Motomura, W., Yoshizaki, T., Takahashi, N., Kumei, S., Mizukami, Y., Jang, S., et al. (2012) Analysis of Vanin-1 Upregulation and Lipid Accumulation in Hepatocytes in Response to a High-Fat Diet and Free Fatty Acids. Journal of Clinical Biochemistry and Nutrition, 51, 163-169. [Google Scholar] [CrossRef]
|
|
[4]
|
Chen, S., Zhang, W., Tang, C., Tang, X., Liu, L. and Liu, C. (2014) Vanin-1 Is a Key Activator for Hepatic Gluconeogenesis. Diabetes, 63, 2073-2085. [Google Scholar] [CrossRef]
|
|
[5]
|
Ferreira, D.W., Naquet, P. and Manautou, J.E. (2015) Influence of Vanin-1 and Catalytic Products in Liver during Normal and Oxidative Stress Conditions. Current Medicinal Chemistry, 22, 2407-2416. [Google Scholar] [CrossRef]
|
|
[6]
|
Galland, F., Malergue, F., Bazin, H., Mattei, M.G., Aurrand-Lions, M., Theillet, C., et al. (1998) Two Human Genes Related to Murine Vanin-1 Are Located on the Long Arm of Human Chromosome 6. Genomics, 53, 203-213. [Google Scholar] [CrossRef]
|
|
[7]
|
Qin, W., Kang, M., Li, C., Zheng, W. and Guo, Q. (2023) VNN1 Overexpression in Pancreatic Cancer Cells Inhibits Paraneoplastic Islet Function by Increasing Oxidative Stress and Inducing Β‑Cell Dedifferentiation. Oncology Reports, 49, Article No. 120. [Google Scholar] [CrossRef]
|
|
[8]
|
Jana, S., Mitra, P. and Roy, S. (2022) Profi-cient Novel Biomarkers Guide Early Detection of Acute Kidney Injury: A Review. Diseases, 11, Article 8. [Google Scholar] [CrossRef]
|
|
[9]
|
Bhargava, P. and Schnellmann, R.G. (2017) Mitochondrial Energetics in the Kid-ney. Nature Reviews Nephrology, 13, 629-646. [Google Scholar] [CrossRef]
|
|
[10]
|
Hoste, E.A.J., Kellum, J.A., Selby, N.M., Zarbock, A., Palevsky, P.M., Bagshaw, S.M., et al. (2018) Global Epidemiology and Outcomes of Acute Kidney Injury. Nature Reviews Nephrology, 14, 607-625. [Google Scholar] [CrossRef]
|
|
[11]
|
Noble, R.A., Lucas, B.J. and Selby, N.M. (2020) Long-Term Outcomes in Patients with Acute Kidney Injury. Clinical Journal of the American Society of Nephrology, 15, 423-429. [Google Scholar] [CrossRef]
|
|
[12]
|
Levey, A.S. and James, M.T. (2017) Acute Kidney Injury. Annals of Internal Medi-cine, 167, ITC66-ITC80. [Google Scholar] [CrossRef]
|
|
[13]
|
Yoon, S.Y., Kim, J.S., Jeong, K.H. and Kim, S.K. (2022) Acute Kidney Injury: Bi-omarker-Guided Diagnosis and Management. Medicina, 58, Article 340. [Google Scholar] [CrossRef]
|
|
[14]
|
James, M.T., Bhatt, M., Pannu, N. and Tonelli, M. (2020) Long-Term Outcomes of Acute Kidney Injury and Strategies for Improved Care. Nature Reviews Nephrology, 16, 193-205. [Google Scholar] [CrossRef]
|
|
[15]
|
Chen, T.K., Knicely, D.H. and Grams, M.E. (2019) Chronic Kidney Disease Diagnosis and Management: A Review. Journal of the American Medical Association, 322, 1294-1304. [Google Scholar] [CrossRef]
|
|
[16]
|
Webster, A.C., Nagler, E.V., Morton, R.L. and Masson, P. (2017) Chronic Kidney Disease. The Lancet, 389, 1238-1252. [Google Scholar] [CrossRef]
|
|
[17]
|
Rysz, J., Gluba-Brzózka, A., Franczyk, B., Jabłonowski, Z. and Ciałkow-ska-Rysz, A. (2017) Novel Biomarkers in the Diagnosis of Chronic Kidney Disease and the Prediction of Its Outcome. International Journal of Molecular Sciences, 18, Article 1702. [Google Scholar] [CrossRef]
|
|
[18]
|
Gobe, G.C. and Johnson, D.W. (2007) Distal Tubular Epithelial Cells of the Kidney: Potential Support for Proximal Tubular Cell Survival after Renal Injury. The In-ternational Journal of Biochemistry & Cell Biology, 39, 1551-1561. [Google Scholar] [CrossRef]
|
|
[19]
|
Martin, F., Penet, M., Malergue, F., Lepidi, H., Dessein, A., Galland, F., et al. (2004) Vanin-1–/– Mice Show Decreased NSAID- and Schistosoma-Induced Intestinal Inflammation Associated with Higher Gluta-thione Stores. Journal of Clinical Investigation, 113, 591-597. [Google Scholar] [CrossRef]
|
|
[20]
|
Hu, Y.W., Wu, S.G., Zhao, J.J., Ma, X., Lu, J.B., Xiu, J.C., et al. (2016) VNN1 Promotes Atherosclerosis Progression in apoE-/- Mice Fed a High-Fat/High-Cholesterol Diet. Journal of Lipid Research, 57, 1398-1411. [Google Scholar] [CrossRef]
|
|
[21]
|
Berruyer, C., Martin, F.M., Castellano, R., Macone, A., Malergue, F., Garrido-Urbani, S., et al. (2004) Vanin-1−/− Mice Exhibit a Glutathione-Mediated Tissue Resistance to Oxidative Stress. Molecular and Cellular Biol-ogy, 24, 7214-7224. [Google Scholar] [CrossRef]
|
|
[22]
|
Berruyer, C., Pouyet, L., Millet, V., Martin, F.M., LeGoffic, A., Canonici, A., et al. (2006) Vanin-1 Licenses Inflammatory Mediator Production by Gut Epithelial Cells and Controls Colitis by Antag-onizing Peroxisome Proliferator-Activated Receptor γ Activity. The Journal of Experimental Medicine, 203, 2817-2827. [Google Scholar] [CrossRef]
|
|
[23]
|
Saghaei, F., Karimi, I., Jouyban, A. and Samini, M. (2012) Effects of Captopril on the Cysteamine-Induced Duodenal Ulcer in the Rat. Experimental and Toxicologic Pathology, 64, 373-377. [Google Scholar] [CrossRef]
|
|
[24]
|
Gloire, G., Legrand-Poels, S. and Piette, J. (2006) NF-κB Activation by Reactive Oxygen Species: Fifteen Years Later. Biochemical Pharmacology, 72, 1493-1505. [Google Scholar] [CrossRef]
|
|
[25]
|
Matoba, K., Kawanami, D., Ishizawa, S., Kanazawa, Y., Yokota, T. and Utsuno-miya, K. (2010) Rho-Kinase Mediates TNF-α-Induced MCP-1 Expression via P38 MAPK Signaling Pathway in Mesangial Cells. Bi-ochemical and Biophysical Research Communications, 402, 725-730. [Google Scholar] [CrossRef]
|
|
[26]
|
Wu, D., Luo, N., Wang, L., Zhao, Z., Bu, H., Xu, G., et al. (2017) Hydrogen Sulfide Ameliorates Chronic Renal Failure in Rats by Inhibiting Apoptosis and Inflammation through ROS/MAPK and NF-κB Signaling Pathways. Scientific Reports, 7, Article No. 455. [Google Scholar] [CrossRef]
|
|
[27]
|
Zhang, B., Lo, C., Shen, L., Sood, R., Jones, C., Cusmano-Ozog, K., et al. (2011) The Role of Vanin-1 and Oxidative Stress-Related Pathways in Distinguishing Acute and Chronic Pediatric ITP. Blood, 117, 4569-4579. [Google Scholar] [CrossRef]
|
|
[28]
|
Kurzhagen, J.T., Dellepiane, S., Cantaluppi, V. and Rabb, H. (2020) AKI: An Increasingly Recognized Risk Factor for CKD Development and Progression. Journal of Nephrology, 33, 1171-1187. [Google Scholar] [CrossRef]
|
|
[29]
|
Wang, Z. and Zhang, C. (2022) From AKI to CKD: Maladaptive Repair and the Underlying Mechanisms. International Journal of Molecular Sciences, 23, Article 10880. [Google Scholar] [CrossRef]
|
|
[30]
|
Mizerska-Wasiak, M., Płatos, E., Cichoń-Kawa, K., Demkow, U. and Pańczyk-Tomaszewska, M. (2022) The Usefulness of Vanin-1 and Periostin as Markers of an Active Autoimmune Process or Renal Fibrosis in Children with Iga Nephropathy and IgA Vasculitis with Nephritis—A Pilot Study. Journal of Clinical Medicine, 11, Article 1265. [Google Scholar] [CrossRef]
|
|
[31]
|
Xiao, Y., Liu, J., Peng, Y., Xiong, X., Huang, L., Yang, H., et al. (2016) GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Ex-pression. PLOS ONE, 11, e0160855. [Google Scholar] [CrossRef]
|
|
[32]
|
Dammanahalli, K.J., Stevens, S. and Terkeltaub, R. (2012) Vanin-1 Pantetheinase Drives Smooth Muscle Cell Activation in Post-Arterial Injury Neointimal Hyperplasia. PLOS ONE, 7, e39106. [Google Scholar] [CrossRef]
|
|
[33]
|
Liu, R.M. and Desai, L.P. (2015) Reciprocal Regula-tion of TGF-β and Reactive Oxygen Species: A Perverse Cycle for Fibrosis. Redox Biology, 6, 565-577. [Google Scholar] [CrossRef]
|
|
[34]
|
Rhyu, D.Y., Yang, Y., Ha, H., Lee, G.T., Song, J.S., Uh, S., et al. (2005) Role of Reactive Oxygen Species in TGF-β1-Induced Mitogen-Activated Protein Kinase Activation and Epithelial-Mesenchymal Transition in Renal Tubular Epithelial Cells. Journal of the American Society of Nephrology, 16, 667-675. [Google Scholar] [CrossRef]
|
|
[35]
|
Bondi, C.D., Manickam, N., Lee, D.Y., Block, K., Gorin, Y., Abboud, H.E., et al. (2010) NAD(P)H Oxidase Mediates TGF-β1-Induced Activation of Kidney Myofibroblasts. Journal of the American Society of Neph-rology, 21, 93-102. [Google Scholar] [CrossRef]
|
|
[36]
|
Huang, W., Akhter, H., Jiang, C., MacEwen, M., Ding, Q., Antony, V., et al. (2015) Plasminogen Activator Inhibitor 1, Fibroblast Apoptosis Resistance, and Aging-Related Susceptibility to Lung Fibrosis. Ex-perimental Gerontology, 61, 62-75. [Google Scholar] [CrossRef]
|
|
[37]
|
Vayalil, P.K., Iles, K.E., Choi, J., Yi, A., Postlethwait, E.M. and Liu, R. (2007) Glutathione Suppresses TGF-β-Induced PAI-1 Expression by Inhibiting P38 and JNK MAPK and the Binding of AP-1, SP-1, and Smad to the PAI-1 Promoter. American Journal of Physiology-Lung Cellular and Molecular Physiology, 293, L1281-L1292. [Google Scholar] [CrossRef]
|
|
[38]
|
Hosohata, K., Jin, D., Takai, S. and Iwanaga, K. (2018) Vanin-1 in Renal Pelvic Urine Reflects Kidney Injury in a Rat Model of Hydronephrosis. International Journal of Molecular Sciences, 19, Article 3186. [Google Scholar] [CrossRef]
|
|
[39]
|
Proksch, E., de Bony, R., Trapp, S. and Boudon, S. (2017) Topical Use of Dexpan-thenol: A 70th Anniversary Article. Journal of Dermatological Treatment, 28, 766-773. [Google Scholar] [CrossRef]
|
|
[40]
|
Kavian, N., Mehlal, S., Marut, W., Servettaz, A., Giessner, C., Bourges, C., et al. (2016) Imbalance of the Vanin-1 Pathway in Systemic Sclerosis. The Journal of Immunology, 197, 3326-3335. [Google Scholar] [CrossRef]
|
|
[41]
|
Washino, S., Hosohata, K., Oshima, M., Okochi, T., Konishi, T., Nakamura, Y., et al. (2019) A Novel Biomarker for Acute Kidney Injury, Vanin-1, for Obstructive Nephropathy: A Prospective Cohort Pilot Study. International Journal of Molecular Sciences, 20, Article 899. [Google Scholar] [CrossRef]
|
|
[42]
|
Zhang, Y. and Qin, X. (2020) Urinary Vanin-1 and Chronic Kidney Disease in Hypertensive Patients. The Journal of Clinical Hypertension, 22, 1466-1468. [Google Scholar] [CrossRef]
|
|
[43]
|
Hosohata, K. (2017) Biomarkers for Chronic Kidney Disease Associated with High Salt Intake. International Journal of Molecular Sciences, 18, Article 2080. [Google Scholar] [CrossRef]
|
|
[44]
|
Chen, J., Lu, H., Wang, X., Yang, J., Luo, J., Wang, L., et al. (2022) vnn1 Contributes to the Acute Kidney Injury-Chronic Kidney Disease Transi-tion by Promoting Cellular Senescence via Affecting rb1 Expression. The FASEB Journal, 36, e22472. [Google Scholar] [CrossRef]
|
|
[45]
|
Hosohata, K., Ando, H. and Fujimura, A. (2012) Urinary Vanin-1 as a Novel Bi-omarker for Early Detection of Drug-Induced Acute Kidney Injury. The Journal of Pharmacology and Experimental Therapeutics, 341, 656-662. [Google Scholar] [CrossRef]
|
|
[46]
|
Hosohata, K. (2021) Biomarkers of High Salt Intake. Advances in Clinical Chemis-try, 104, 71-106.
|
|
[47]
|
Bidani, A. and Churchill, P.C. (1989) Acute Renal Failure. Disease-a-Month, 35, 63-132. [Google Scholar] [CrossRef]
|
|
[48]
|
Hosohata, K., Ando, H. and Fujimura, A. (2014) Early Detection of Renal Injury Using Urinary Vanin-1 in Rats with Experimental Colitis. Journal of Applied Toxicology, 34, 184-190. [Google Scholar] [CrossRef]
|
|
[49]
|
Hosohata, K., Ando, H., Fujiwara, Y. and Fujimura, A. (2011) Vanin-1; A Potential Bi-omarker for Nephrotoxicant-Induced Renal Injury. Toxicology, 290, 82-88. [Google Scholar] [CrossRef]
|
|
[50]
|
Weber, S. and Saftig, P. (2012) Ectodomain Shedding and Adams in Development. Development, 139, 3693-3709. [Google Scholar] [CrossRef]
|
|
[51]
|
Haugen, E. and Nath, K.A. (1999) The Involvement of Oxidative Stress in the Progres-sion of Renal Injury. Blood Purification, 17, 58-65. [Google Scholar] [CrossRef]
|
|
[52]
|
Jansen, P.A.M., Kamsteeg, M., Rodijk-Olthuis, D., van Vlijmen-Willems, I.M.J.J., de Jongh, G.J., Bergers, M., et al. (2009) Expression of the Vanin Gene Family in Normal and Inflamed Human Skin: Induction by Proinflammatory Cytokines. Journal of Investigative Dermatology, 129, 2167-2174. [Google Scholar] [CrossRef]
|
|
[53]
|
Hosohata, K., Jin, D. and Takai, S. (2021) In Vivo and in Vitro Evaluation of Urinary Biomarkers in Ischemia/Reperfusion-Induced Kidney Injury. International Journal of Molecular Sciences, 22, Article 11448. [Google Scholar] [CrossRef]
|
|
[54]
|
Oraby, M.A., El-Yamany, M.F., Safar, M.M., Assaf, N. and Ghoneim, H.A. (2019) Dapagliflozin Attenuates Early Markers of Diabetic Nephropathy in Fructose-Streptozotocin-Induced Diabetes in Rats. Biomedicine & Pharmacotherapy, 109, 910-920. [Google Scholar] [CrossRef]
|
|
[55]
|
Sullivan, J.M. and Ratts, T.E. (1983) He-modynamic Mechanisms of Adaptation to Chronic High Sodium Intake in Normal Humans. Hypertension, 5, 814-820. [Google Scholar] [CrossRef]
|
|
[56]
|
Hosohata, K., Jin, D., Takai, S. and Iwanaga, K. (2019) Involvement of Vanin-1 in Ameliorating Effect of Oxidative Renal Tubular Injury in Dahl-Salt Sensitive Rats. International Journal of Molecular Sciences, 20, Article 4481. [Google Scholar] [CrossRef]
|
|
[57]
|
Kitiyakara, C., Chabrashvili, T., Chen, Y., Blau, J., Karber, A., Aslam, S., et al. (2003) Salt Intake, Oxidative Stress, and Renal Expression of NADPH Oxidase and Superoxide Dismutase. Journal of the American Society of Nephrology, 14, 2775-2782. [Google Scholar] [CrossRef]
|
|
[58]
|
Lai, E.Y., Luo, Z., Onozato, M.L., Ru-dolph, E.H., Solis, G., Jose, P.A., et al. (2012) Effects of the Antioxidant Drug Tempol on Renal Oxygenation in Mice with Reduced Renal Mass. American Journal of Physiology-Renal Physiology, 303, F64-F74. [Google Scholar] [CrossRef]
|
|
[59]
|
Hultström, M. (2012) Development of Structural Kidney Damage in Spontane-ously Hypertensive Rats. Journal of Hypertension, 30, 1087-1091. [Google Scholar] [CrossRef]
|
|
[60]
|
Kai, H., Mori, T., Tokuda, K., Takayama, N., Tahara, N., Takemiya, K., et al. (2006) Pressure Overload-Induced Transient Oxidative Stress Mediates Perivascular Inflammation and Cardiac Fibrosis through Angiotensin II. Hypertension Research, 29, 711-718. [Google Scholar] [CrossRef]
|
|
[61]
|
Keidar, S., Kaplan, M., Pavlotzky, E., Coleman, R., Hayek, T., Hamoud, S., et al. (2004) Aldosterone Administration to Mice Stimulates Macrophage NADPH Oxidase and Increases Atherosclerosis Development: A Possible Role for Angiotensin-Converting Enzyme and the Receptors for Angiotensin II and Aldosterone. Circulation, 109, 2213-2220. [Google Scholar] [CrossRef]
|
|
[62]
|
Fellner, R.C., Cook, A.K., O’Connor, P.M., Zhang, S., Pollock, D.M. and Inscho, E.W. (2014) High-Salt Diet Blunts Renal Autoregulation by a Reactive Oxygen Species-Dependent Mechanism. American Journal of Physiology-Renal Physiology, 307, F33-F40. [Google Scholar] [CrossRef]
|
|
[63]
|
Hosohata, K., Yoshi-oka, D., Tanaka, A., Ando, H. and Fujimura, A. (2016) Early Urinary Biomarkers for Renal Tubular Damage in Spontaneously Hyper-tensive Rats on a High Salt Intake. Hypertension Research, 39, 19-26. [Google Scholar] [CrossRef]
|
|
[64]
|
Washino, S., Hosohata, K., Jin, D., Takai, S. and Miyagawa, T. (2018) Early Urinary Biomarkers of Renal Tubular Damage by a High-Salt Intake Independent of Blood Pressure in Normotensive Rats. Clinical and Ex-perimental Pharmacology and Physiology, 45, 261-268. [Google Scholar] [CrossRef]
|
|
[65]
|
Zeng, F., Miyazawa, T., Kloepfer, L.A. and Harris, R.C. (2018) ErbB4 Deletion Accelerates Renal Fibrosis Following Renal Injury. American Journal of Phys-iology-Renal Physiology, 314, F773-F787. [Google Scholar] [CrossRef]
|
|
[66]
|
Washino, S., Hosohata, K. and Miyagawa, T. (2020) Roles Played by Bi-omarkers of Kidney Injury in Patients with Upper Urinary Tract Obstruction. International Journal of Molecular Sciences, 21, Article 5490. [Google Scholar] [CrossRef]
|
|
[67]
|
Nilsson, L., Madsen, K., Krag, S., Frøkiær, J., Jensen, B.L. and Nørregaard, R. (2015) Disruption of Cyclooxygenase Type 2 Exacerbates Apoptosis and Renal Damage during Obstructive Nephropathy. American Journal of Physiology-Renal Physiology, 309, F1035-F1048. [Google Scholar] [CrossRef]
|
|
[68]
|
Hong, F., Wu, N., Ge, Y., Zhou, Y., Shen, T., Qiang, Q., et al. (2016) Nanosized Titanium Dioxide Resulted in the ctiAvation of TGF-Beta/Smads/p38MAPK Pathway in Renal Inflammation and Fibration of Mice. Journal of Biomedical Materials Research Part A, 104, 1452-1461. [Google Scholar] [CrossRef]
|
|
[69]
|
Juett, L.A., James, L.J. and Mears, S.A. (2020) Effects of Exercise on Acute Kidney Injury Biomarkers and the Potential Influence of Fluid Intake. Annals of Nutrition and Metabolism, 76, 53-59. [Google Scholar] [CrossRef]
|
|
[70]
|
Hosohata, K., Washino, S., Kubo, T., Natsui, S., Fujisaki, A., Kurokawa, S., et al. (2016) Early Prediction of Cisplatin-Induced Nephrotoxicity by Urinary Vanin-1 in Patients with Urothelial Carcinoma. Toxicology, 359, 71-75. [Google Scholar] [CrossRef]
|
|
[71]
|
Hosohata, K., Matsuoka, H. and Kumagai, E. (2021) Association of Urinary Vanin-1 with Kidney Function Decline in Hypertensive Patients. The Journal of Clinical Hypertension, 23, 1316-1321. [Google Scholar] [CrossRef]
|
|
[72]
|
Hosohata, K., Matsuoka, H., Iwanaga, K. and Kumagai, E. (2020) Urinary Vanin-1 Asso-ciated with Chronic Kidney Disease in Hypertensive Patients: A Pilot Study. The Journal of Clinical Hypertension, 22, 1458-1465. [Google Scholar] [CrossRef]
|
|
[73]
|
Lima, C. and Macedo, E. (2018) Urinary Biochemistry in the Diagnosis of Acute Kidney Injury. Disease Markers, 2018, 1-7. [Google Scholar] [CrossRef]
|
|
[74]
|
Krzemień, G., Pańczyk-Tomaszewska, M., Górska, E. and Szmigielska, A. (2021) Urinary Vanin-1 for Predicting Acute Pyelonephritis in Young Children with Urinary Tract Infection: A Pilot Study. Biomarkers, 26, 318-324. [Google Scholar] [CrossRef]
|
|
[75]
|
Rahman, M., Shad, F. and Smith, M.C. (2012) Acute Kidney Injury: A Guide to Diagnosis and Management. American Family Physician, 86, 631-639.
|
|
[76]
|
Nolen, B.M. and Lokshin, A.E. (2011) The Ad-vancement of Biomarker-Based Diagnostic Tools for Ovarian, Breast, and Pancreatic Cancer through the Use of Urine as an Analytical Biofluid. The International Journal of Biological Markers, 26, 141-152. [Google Scholar] [CrossRef]
|
|
[77]
|
Feng, Y., Xu, S., Guo, H., Ren, T., Huan, S., Yuan, L., et al. (2023) Vanin-1-Activated Chemiluminescent Probe: Help to Early Diagnosis of Acute Kidney Injury with High Signal-to-Noise Ratio through Urinalysis. Analytical Chemistry, 95, 14754-14761. [Google Scholar] [CrossRef]
|
|
[78]
|
Oraby, M.A., El-Yamany, M.F., Safar, M.M., Assaf, N. and Ghoneim, H.A. (2019) Amelioration of Early Markers of Diabetic Nephropathy by Linagliptin in Fructose-Streptozotocin-Induced Type 2 Diabetic Rats. Nephron, 141, 273-286. [Google Scholar] [CrossRef]
|
|
[79]
|
Gensollen, T., Bourges, C., Rihet, P., Rostan, A., Millet, V., Noguchi, T., et al. (2013) Functional Polymorphisms in the Regulatory Regions of the VNN1 Gene Are Associated with Susceptibility to Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 19, 2315-2325. [Google Scholar] [CrossRef]
|
|
[80]
|
Zhang, X., Cong, W. and Lu, A. (2022) Vanin-1 as a Novel Biomarker for Chronic Obstructive Pulmonary Disease. Heart & Lung, 56, 91-95. [Google Scholar] [CrossRef]
|
|
[81]
|
Huang, H., Dong, X., Kang, M.X., Xu, B., Chen, Y., Zhang, B., et al. (2010) Novel Blood Biomarkers of Pancreatic Cancer-Associated Diabetes Mellitus Identified by Peripheral Blood-Based Gene Expression Profiles. American Journal of Gastroenterology, 105, 1661-1669. [Google Scholar] [CrossRef]
|
|
[82]
|
Kang, M., Qin, W., Buya, M., Dong, X., Zheng, W., Lu, W., et al. (2016) VNN1, a Potential Biomarker for Pancreatic Cancer-Associated New-Onset Diabetes, Aggravates Paraneoplastic Islet Dysfunction by Increasing Oxidative Stress. Cancer Letters, 373, 241-250. [Google Scholar] [CrossRef]
|
|
[83]
|
Bartucci, R., Salvati, A., Olinga, P. and Boersma, Y.L. (2019) Vanin 1: Its Physiological Function and Role in Diseases. International Journal of Molecular Sciences, 20, Article 3891. [Google Scholar] [CrossRef]
|
|
[84]
|
Pitari, G., Malergue, F., Martin, F., Philippe, J.M., Massucci, M.T., Chabret, C., et al. (2000) Pantetheinase Activity of Membrane-Bound Vanin-1: Lack of Free Cysteam-ine in Tissues of Vanin-1 Deficient Mice. FEBS Letters, 483, 149-154. [Google Scholar] [CrossRef]
|
|
[85]
|
Motomura, W., Yoshizaki, T., Takahashi, N., Kumei, S., Mizukami, Y., Jang, S., et al. (2012) Analysis of Vanin-1 Upregulation and Lipid Accumulation in Hepatocytes in Response to a High-Fat Diet and Free Fatty Acids. Journal of Clinical Biochemistry and Nutrition, 51, 163-169. [Google Scholar] [CrossRef]
|
|
[86]
|
Chen, S., Zhang, W., Tang, C., Tang, X., Liu, L. and Liu, C. (2014) Vanin-1 Is a Key Activator for Hepatic Gluconeogenesis. Diabetes, 63, 2073-2085. [Google Scholar] [CrossRef]
|
|
[87]
|
Ferreira, D.W., Naquet, P. and Manautou, J.E. (2015) Influence of Vanin-1 and Catalytic Products in Liver during Normal and Oxidative Stress Conditions. Current Medicinal Chemistry, 22, 2407-2416. [Google Scholar] [CrossRef]
|
|
[88]
|
Galland, F., Malergue, F., Bazin, H., Mattei, M.G., Aurrand-Lions, M., Theillet, C., et al. (1998) Two Human Genes Related to Murine Vanin-1 Are Located on the Long Arm of Human Chromosome 6. Genomics, 53, 203-213. [Google Scholar] [CrossRef]
|
|
[89]
|
Qin, W., Kang, M., Li, C., Zheng, W. and Guo, Q. (2023) VNN1 Overexpression in Pancreatic Cancer Cells Inhibits Paraneoplastic Islet Function by Increasing Oxidative Stress and Inducing Β‑Cell Dedifferentiation. Oncology Reports, 49, Article No. 120. [Google Scholar] [CrossRef]
|
|
[90]
|
Jana, S., Mitra, P. and Roy, S. (2022) Profi-cient Novel Biomarkers Guide Early Detection of Acute Kidney Injury: A Review. Diseases, 11, Article 8. [Google Scholar] [CrossRef]
|
|
[91]
|
Bhargava, P. and Schnellmann, R.G. (2017) Mitochondrial Energetics in the Kid-ney. Nature Reviews Nephrology, 13, 629-646. [Google Scholar] [CrossRef]
|
|
[92]
|
Hoste, E.A.J., Kellum, J.A., Selby, N.M., Zarbock, A., Palevsky, P.M., Bagshaw, S.M., et al. (2018) Global Epidemiology and Outcomes of Acute Kidney Injury. Nature Reviews Nephrology, 14, 607-625. [Google Scholar] [CrossRef]
|
|
[93]
|
Noble, R.A., Lucas, B.J. and Selby, N.M. (2020) Long-Term Outcomes in Patients with Acute Kidney Injury. Clinical Journal of the American Society of Nephrology, 15, 423-429. [Google Scholar] [CrossRef]
|
|
[94]
|
Levey, A.S. and James, M.T. (2017) Acute Kidney Injury. Annals of Internal Medi-cine, 167, ITC66-ITC80. [Google Scholar] [CrossRef]
|
|
[95]
|
Yoon, S.Y., Kim, J.S., Jeong, K.H. and Kim, S.K. (2022) Acute Kidney Injury: Bi-omarker-Guided Diagnosis and Management. Medicina, 58, Article 340. [Google Scholar] [CrossRef]
|
|
[96]
|
James, M.T., Bhatt, M., Pannu, N. and Tonelli, M. (2020) Long-Term Outcomes of Acute Kidney Injury and Strategies for Improved Care. Nature Reviews Nephrology, 16, 193-205. [Google Scholar] [CrossRef]
|
|
[97]
|
Chen, T.K., Knicely, D.H. and Grams, M.E. (2019) Chronic Kidney Disease Diagnosis and Management: A Review. Journal of the American Medical Association, 322, 1294-1304. [Google Scholar] [CrossRef]
|
|
[98]
|
Webster, A.C., Nagler, E.V., Morton, R.L. and Masson, P. (2017) Chronic Kidney Disease. The Lancet, 389, 1238-1252. [Google Scholar] [CrossRef]
|
|
[99]
|
Rysz, J., Gluba-Brzózka, A., Franczyk, B., Jabłonowski, Z. and Ciałkow-ska-Rysz, A. (2017) Novel Biomarkers in the Diagnosis of Chronic Kidney Disease and the Prediction of Its Outcome. International Journal of Molecular Sciences, 18, Article 1702. [Google Scholar] [CrossRef]
|
|
[100]
|
Gobe, G.C. and Johnson, D.W. (2007) Distal Tubular Epithelial Cells of the Kidney: Potential Support for Proximal Tubular Cell Survival after Renal Injury. The In-ternational Journal of Biochemistry & Cell Biology, 39, 1551-1561. [Google Scholar] [CrossRef]
|
|
[101]
|
Martin, F., Penet, M., Malergue, F., Lepidi, H., Dessein, A., Galland, F., et al. (2004) Vanin-1–/– Mice Show Decreased NSAID- and Schistosoma-Induced Intestinal Inflammation Associated with Higher Gluta-thione Stores. Journal of Clinical Investigation, 113, 591-597. [Google Scholar] [CrossRef]
|
|
[102]
|
Hu, Y.W., Wu, S.G., Zhao, J.J., Ma, X., Lu, J.B., Xiu, J.C., et al. (2016) VNN1 Promotes Atherosclerosis Progression in apoE-/- Mice Fed a High-Fat/High-Cholesterol Diet. Journal of Lipid Research, 57, 1398-1411. [Google Scholar] [CrossRef]
|
|
[103]
|
Berruyer, C., Martin, F.M., Castellano, R., Macone, A., Malergue, F., Garrido-Urbani, S., et al. (2004) Vanin-1−/− Mice Exhibit a Glutathione-Mediated Tissue Resistance to Oxidative Stress. Molecular and Cellular Biol-ogy, 24, 7214-7224. [Google Scholar] [CrossRef]
|
|
[104]
|
Berruyer, C., Pouyet, L., Millet, V., Martin, F.M., LeGoffic, A., Canonici, A., et al. (2006) Vanin-1 Licenses Inflammatory Mediator Production by Gut Epithelial Cells and Controls Colitis by Antag-onizing Peroxisome Proliferator-Activated Receptor γ Activity. The Journal of Experimental Medicine, 203, 2817-2827. [Google Scholar] [CrossRef]
|
|
[105]
|
Saghaei, F., Karimi, I., Jouyban, A. and Samini, M. (2012) Effects of Captopril on the Cysteamine-Induced Duodenal Ulcer in the Rat. Experimental and Toxicologic Pathology, 64, 373-377. [Google Scholar] [CrossRef]
|
|
[106]
|
Gloire, G., Legrand-Poels, S. and Piette, J. (2006) NF-κB Activation by Reactive Oxygen Species: Fifteen Years Later. Biochemical Pharmacology, 72, 1493-1505. [Google Scholar] [CrossRef]
|
|
[107]
|
Matoba, K., Kawanami, D., Ishizawa, S., Kanazawa, Y., Yokota, T. and Utsuno-miya, K. (2010) Rho-Kinase Mediates TNF-α-Induced MCP-1 Expression via P38 MAPK Signaling Pathway in Mesangial Cells. Bi-ochemical and Biophysical Research Communications, 402, 725-730. [Google Scholar] [CrossRef]
|
|
[108]
|
Wu, D., Luo, N., Wang, L., Zhao, Z., Bu, H., Xu, G., et al. (2017) Hydrogen Sulfide Ameliorates Chronic Renal Failure in Rats by Inhibiting Apoptosis and Inflammation through ROS/MAPK and NF-κB Signaling Pathways. Scientific Reports, 7, Article No. 455. [Google Scholar] [CrossRef]
|
|
[109]
|
Zhang, B., Lo, C., Shen, L., Sood, R., Jones, C., Cusmano-Ozog, K., et al. (2011) The Role of Vanin-1 and Oxidative Stress-Related Pathways in Distinguishing Acute and Chronic Pediatric ITP. Blood, 117, 4569-4579. [Google Scholar] [CrossRef]
|
|
[110]
|
Kurzhagen, J.T., Dellepiane, S., Cantaluppi, V. and Rabb, H. (2020) AKI: An Increasingly Recognized Risk Factor for CKD Development and Progression. Journal of Nephrology, 33, 1171-1187. [Google Scholar] [CrossRef]
|
|
[111]
|
Wang, Z. and Zhang, C. (2022) From AKI to CKD: Maladaptive Repair and the Underlying Mechanisms. International Journal of Molecular Sciences, 23, Article 10880. [Google Scholar] [CrossRef]
|
|
[112]
|
Mizerska-Wasiak, M., Płatos, E., Cichoń-Kawa, K., Demkow, U. and Pańczyk-Tomaszewska, M. (2022) The Usefulness of Vanin-1 and Periostin as Markers of an Active Autoimmune Process or Renal Fibrosis in Children with Iga Nephropathy and IgA Vasculitis with Nephritis—A Pilot Study. Journal of Clinical Medicine, 11, Article 1265. [Google Scholar] [CrossRef]
|
|
[113]
|
Xiao, Y., Liu, J., Peng, Y., Xiong, X., Huang, L., Yang, H., et al. (2016) GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Ex-pression. PLOS ONE, 11, e0160855. [Google Scholar] [CrossRef]
|
|
[114]
|
Dammanahalli, K.J., Stevens, S. and Terkeltaub, R. (2012) Vanin-1 Pantetheinase Drives Smooth Muscle Cell Activation in Post-Arterial Injury Neointimal Hyperplasia. PLOS ONE, 7, e39106. [Google Scholar] [CrossRef]
|
|
[115]
|
Liu, R.M. and Desai, L.P. (2015) Reciprocal Regula-tion of TGF-β and Reactive Oxygen Species: A Perverse Cycle for Fibrosis. Redox Biology, 6, 565-577. [Google Scholar] [CrossRef]
|
|
[116]
|
Rhyu, D.Y., Yang, Y., Ha, H., Lee, G.T., Song, J.S., Uh, S., et al. (2005) Role of Reactive Oxygen Species in TGF-β1-Induced Mitogen-Activated Protein Kinase Activation and Epithelial-Mesenchymal Transition in Renal Tubular Epithelial Cells. Journal of the American Society of Nephrology, 16, 667-675. [Google Scholar] [CrossRef]
|
|
[117]
|
Bondi, C.D., Manickam, N., Lee, D.Y., Block, K., Gorin, Y., Abboud, H.E., et al. (2010) NAD(P)H Oxidase Mediates TGF-β1-Induced Activation of Kidney Myofibroblasts. Journal of the American Society of Neph-rology, 21, 93-102. [Google Scholar] [CrossRef]
|
|
[118]
|
Huang, W., Akhter, H., Jiang, C., MacEwen, M., Ding, Q., Antony, V., et al. (2015) Plasminogen Activator Inhibitor 1, Fibroblast Apoptosis Resistance, and Aging-Related Susceptibility to Lung Fibrosis. Ex-perimental Gerontology, 61, 62-75. [Google Scholar] [CrossRef]
|
|
[119]
|
Vayalil, P.K., Iles, K.E., Choi, J., Yi, A., Postlethwait, E.M. and Liu, R. (2007) Glutathione Suppresses TGF-β-Induced PAI-1 Expression by Inhibiting P38 and JNK MAPK and the Binding of AP-1, SP-1, and Smad to the PAI-1 Promoter. American Journal of Physiology-Lung Cellular and Molecular Physiology, 293, L1281-L1292. [Google Scholar] [CrossRef]
|
|
[120]
|
Hosohata, K., Jin, D., Takai, S. and Iwanaga, K. (2018) Vanin-1 in Renal Pelvic Urine Reflects Kidney Injury in a Rat Model of Hydronephrosis. International Journal of Molecular Sciences, 19, Article 3186. [Google Scholar] [CrossRef]
|
|
[121]
|
Proksch, E., de Bony, R., Trapp, S. and Boudon, S. (2017) Topical Use of Dexpan-thenol: A 70th Anniversary Article. Journal of Dermatological Treatment, 28, 766-773. [Google Scholar] [CrossRef]
|
|
[122]
|
Kavian, N., Mehlal, S., Marut, W., Servettaz, A., Giessner, C., Bourges, C., et al. (2016) Imbalance of the Vanin-1 Pathway in Systemic Sclerosis. The Journal of Immunology, 197, 3326-3335. [Google Scholar] [CrossRef]
|
|
[123]
|
Washino, S., Hosohata, K., Oshima, M., Okochi, T., Konishi, T., Nakamura, Y., et al. (2019) A Novel Biomarker for Acute Kidney Injury, Vanin-1, for Obstructive Nephropathy: A Prospective Cohort Pilot Study. International Journal of Molecular Sciences, 20, Article 899. [Google Scholar] [CrossRef]
|
|
[124]
|
Zhang, Y. and Qin, X. (2020) Urinary Vanin-1 and Chronic Kidney Disease in Hypertensive Patients. The Journal of Clinical Hypertension, 22, 1466-1468. [Google Scholar] [CrossRef]
|
|
[125]
|
Hosohata, K. (2017) Biomarkers for Chronic Kidney Disease Associated with High Salt Intake. International Journal of Molecular Sciences, 18, Article 2080. [Google Scholar] [CrossRef]
|
|
[126]
|
Chen, J., Lu, H., Wang, X., Yang, J., Luo, J., Wang, L., et al. (2022) vnn1 Contributes to the Acute Kidney Injury-Chronic Kidney Disease Transi-tion by Promoting Cellular Senescence via Affecting rb1 Expression. The FASEB Journal, 36, e22472. [Google Scholar] [CrossRef]
|
|
[127]
|
Hosohata, K., Ando, H. and Fujimura, A. (2012) Urinary Vanin-1 as a Novel Bi-omarker for Early Detection of Drug-Induced Acute Kidney Injury. The Journal of Pharmacology and Experimental Therapeutics, 341, 656-662. [Google Scholar] [CrossRef]
|
|
[128]
|
Hosohata, K. (2021) Biomarkers of High Salt Intake. Advances in Clinical Chemis-try, 104, 71-106.
|
|
[129]
|
Bidani, A. and Churchill, P.C. (1989) Acute Renal Failure. Disease-a-Month, 35, 63-132. [Google Scholar] [CrossRef]
|
|
[130]
|
Hosohata, K., Ando, H. and Fujimura, A. (2014) Early Detection of Renal Injury Using Urinary Vanin-1 in Rats with Experimental Colitis. Journal of Applied Toxicology, 34, 184-190. [Google Scholar] [CrossRef]
|
|
[131]
|
Hosohata, K., Ando, H., Fujiwara, Y. and Fujimura, A. (2011) Vanin-1; A Potential Bi-omarker for Nephrotoxicant-Induced Renal Injury. Toxicology, 290, 82-88. [Google Scholar] [CrossRef]
|
|
[132]
|
Weber, S. and Saftig, P. (2012) Ectodomain Shedding and Adams in Development. Development, 139, 3693-3709. [Google Scholar] [CrossRef]
|
|
[133]
|
Haugen, E. and Nath, K.A. (1999) The Involvement of Oxidative Stress in the Progres-sion of Renal Injury. Blood Purification, 17, 58-65. [Google Scholar] [CrossRef]
|
|
[134]
|
Jansen, P.A.M., Kamsteeg, M., Rodijk-Olthuis, D., van Vlijmen-Willems, I.M.J.J., de Jongh, G.J., Bergers, M., et al. (2009) Expression of the Vanin Gene Family in Normal and Inflamed Human Skin: Induction by Proinflammatory Cytokines. Journal of Investigative Dermatology, 129, 2167-2174. [Google Scholar] [CrossRef]
|
|
[135]
|
Hosohata, K., Jin, D. and Takai, S. (2021) In Vivo and in Vitro Evaluation of Urinary Biomarkers in Ischemia/Reperfusion-Induced Kidney Injury. International Journal of Molecular Sciences, 22, Article 11448. [Google Scholar] [CrossRef]
|
|
[136]
|
Oraby, M.A., El-Yamany, M.F., Safar, M.M., Assaf, N. and Ghoneim, H.A. (2019) Dapagliflozin Attenuates Early Markers of Diabetic Nephropathy in Fructose-Streptozotocin-Induced Diabetes in Rats. Biomedicine & Pharmacotherapy, 109, 910-920. [Google Scholar] [CrossRef]
|
|
[137]
|
Sullivan, J.M. and Ratts, T.E. (1983) He-modynamic Mechanisms of Adaptation to Chronic High Sodium Intake in Normal Humans. Hypertension, 5, 814-820. [Google Scholar] [CrossRef]
|
|
[138]
|
Hosohata, K., Jin, D., Takai, S. and Iwanaga, K. (2019) Involvement of Vanin-1 in Ameliorating Effect of Oxidative Renal Tubular Injury in Dahl-Salt Sensitive Rats. International Journal of Molecular Sciences, 20, Article 4481. [Google Scholar] [CrossRef]
|
|
[139]
|
Kitiyakara, C., Chabrashvili, T., Chen, Y., Blau, J., Karber, A., Aslam, S., et al. (2003) Salt Intake, Oxidative Stress, and Renal Expression of NADPH Oxidase and Superoxide Dismutase. Journal of the American Society of Nephrology, 14, 2775-2782. [Google Scholar] [CrossRef]
|
|
[140]
|
Lai, E.Y., Luo, Z., Onozato, M.L., Ru-dolph, E.H., Solis, G., Jose, P.A., et al. (2012) Effects of the Antioxidant Drug Tempol on Renal Oxygenation in Mice with Reduced Renal Mass. American Journal of Physiology-Renal Physiology, 303, F64-F74. [Google Scholar] [CrossRef]
|
|
[141]
|
Hultström, M. (2012) Development of Structural Kidney Damage in Spontane-ously Hypertensive Rats. Journal of Hypertension, 30, 1087-1091. [Google Scholar] [CrossRef]
|
|
[142]
|
Kai, H., Mori, T., Tokuda, K., Takayama, N., Tahara, N., Takemiya, K., et al. (2006) Pressure Overload-Induced Transient Oxidative Stress Mediates Perivascular Inflammation and Cardiac Fibrosis through Angiotensin II. Hypertension Research, 29, 711-718. [Google Scholar] [CrossRef]
|
|
[143]
|
Keidar, S., Kaplan, M., Pavlotzky, E., Coleman, R., Hayek, T., Hamoud, S., et al. (2004) Aldosterone Administration to Mice Stimulates Macrophage NADPH Oxidase and Increases Atherosclerosis Development: A Possible Role for Angiotensin-Converting Enzyme and the Receptors for Angiotensin II and Aldosterone. Circulation, 109, 2213-2220. [Google Scholar] [CrossRef]
|
|
[144]
|
Fellner, R.C., Cook, A.K., O’Connor, P.M., Zhang, S., Pollock, D.M. and Inscho, E.W. (2014) High-Salt Diet Blunts Renal Autoregulation by a Reactive Oxygen Species-Dependent Mechanism. American Journal of Physiology-Renal Physiology, 307, F33-F40. [Google Scholar] [CrossRef]
|
|
[145]
|
Hosohata, K., Yoshi-oka, D., Tanaka, A., Ando, H. and Fujimura, A. (2016) Early Urinary Biomarkers for Renal Tubular Damage in Spontaneously Hyper-tensive Rats on a High Salt Intake. Hypertension Research, 39, 19-26. [Google Scholar] [CrossRef]
|
|
[146]
|
Washino, S., Hosohata, K., Jin, D., Takai, S. and Miyagawa, T. (2018) Early Urinary Biomarkers of Renal Tubular Damage by a High-Salt Intake Independent of Blood Pressure in Normotensive Rats. Clinical and Ex-perimental Pharmacology and Physiology, 45, 261-268. [Google Scholar] [CrossRef]
|
|
[147]
|
Zeng, F., Miyazawa, T., Kloepfer, L.A. and Harris, R.C. (2018) ErbB4 Deletion Accelerates Renal Fibrosis Following Renal Injury. American Journal of Phys-iology-Renal Physiology, 314, F773-F787. [Google Scholar] [CrossRef]
|
|
[148]
|
Washino, S., Hosohata, K. and Miyagawa, T. (2020) Roles Played by Bi-omarkers of Kidney Injury in Patients with Upper Urinary Tract Obstruction. International Journal of Molecular Sciences, 21, Article 5490. [Google Scholar] [CrossRef]
|
|
[149]
|
Nilsson, L., Madsen, K., Krag, S., Frøkiær, J., Jensen, B.L. and Nørregaard, R. (2015) Disruption of Cyclooxygenase Type 2 Exacerbates Apoptosis and Renal Damage during Obstructive Nephropathy. American Journal of Physiology-Renal Physiology, 309, F1035-F1048. [Google Scholar] [CrossRef]
|
|
[150]
|
Hong, F., Wu, N., Ge, Y., Zhou, Y., Shen, T., Qiang, Q., et al. (2016) Nanosized Titanium Dioxide Resulted in the ctiAvation of TGF-Beta/Smads/p38MAPK Pathway in Renal Inflammation and Fibration of Mice. Journal of Biomedical Materials Research Part A, 104, 1452-1461. [Google Scholar] [CrossRef]
|
|
[151]
|
Juett, L.A., James, L.J. and Mears, S.A. (2020) Effects of Exercise on Acute Kidney Injury Biomarkers and the Potential Influence of Fluid Intake. Annals of Nutrition and Metabolism, 76, 53-59. [Google Scholar] [CrossRef]
|
|
[152]
|
Hosohata, K., Washino, S., Kubo, T., Natsui, S., Fujisaki, A., Kurokawa, S., et al. (2016) Early Prediction of Cisplatin-Induced Nephrotoxicity by Urinary Vanin-1 in Patients with Urothelial Carcinoma. Toxicology, 359, 71-75. [Google Scholar] [CrossRef]
|
|
[153]
|
Hosohata, K., Matsuoka, H. and Kumagai, E. (2021) Association of Urinary Vanin-1 with Kidney Function Decline in Hypertensive Patients. The Journal of Clinical Hypertension, 23, 1316-1321. [Google Scholar] [CrossRef]
|
|
[154]
|
Hosohata, K., Matsuoka, H., Iwanaga, K. and Kumagai, E. (2020) Urinary Vanin-1 Asso-ciated with Chronic Kidney Disease in Hypertensive Patients: A Pilot Study. The Journal of Clinical Hypertension, 22, 1458-1465. [Google Scholar] [CrossRef]
|
|
[155]
|
Lima, C. and Macedo, E. (2018) Urinary Biochemistry in the Diagnosis of Acute Kidney Injury. Disease Markers, 2018, 1-7. [Google Scholar] [CrossRef]
|
|
[156]
|
Krzemień, G., Pańczyk-Tomaszewska, M., Górska, E. and Szmigielska, A. (2021) Urinary Vanin-1 for Predicting Acute Pyelonephritis in Young Children with Urinary Tract Infection: A Pilot Study. Biomarkers, 26, 318-324. [Google Scholar] [CrossRef]
|
|
[157]
|
Rahman, M., Shad, F. and Smith, M.C. (2012) Acute Kidney Injury: A Guide to Diagnosis and Management. American Family Physician, 86, 631-639.
|
|
[158]
|
Nolen, B.M. and Lokshin, A.E. (2011) The Ad-vancement of Biomarker-Based Diagnostic Tools for Ovarian, Breast, and Pancreatic Cancer through the Use of Urine as an Analytical Biofluid. The International Journal of Biological Markers, 26, 141-152. [Google Scholar] [CrossRef]
|
|
[159]
|
Feng, Y., Xu, S., Guo, H., Ren, T., Huan, S., Yuan, L., et al. (2023) Vanin-1-Activated Chemiluminescent Probe: Help to Early Diagnosis of Acute Kidney Injury with High Signal-to-Noise Ratio through Urinalysis. Analytical Chemistry, 95, 14754-14761. [Google Scholar] [CrossRef]
|
|
[160]
|
Oraby, M.A., El-Yamany, M.F., Safar, M.M., Assaf, N. and Ghoneim, H.A. (2019) Amelioration of Early Markers of Diabetic Nephropathy by Linagliptin in Fructose-Streptozotocin-Induced Type 2 Diabetic Rats. Nephron, 141, 273-286. [Google Scholar] [CrossRef]
|
|
[161]
|
Gensollen, T., Bourges, C., Rihet, P., Rostan, A., Millet, V., Noguchi, T., et al. (2013) Functional Polymorphisms in the Regulatory Regions of the VNN1 Gene Are Associated with Susceptibility to Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 19, 2315-2325. [Google Scholar] [CrossRef]
|
|
[162]
|
Zhang, X., Cong, W. and Lu, A. (2022) Vanin-1 as a Novel Biomarker for Chronic Obstructive Pulmonary Disease. Heart & Lung, 56, 91-95. [Google Scholar] [CrossRef]
|
|
[163]
|
Huang, H., Dong, X., Kang, M.X., Xu, B., Chen, Y., Zhang, B., et al. (2010) Novel Blood Biomarkers of Pancreatic Cancer-Associated Diabetes Mellitus Identified by Peripheral Blood-Based Gene Expression Profiles. American Journal of Gastroenterology, 105, 1661-1669. [Google Scholar] [CrossRef]
|
|
[164]
|
Kang, M., Qin, W., Buya, M., Dong, X., Zheng, W., Lu, W., et al. (2016) VNN1, a Potential Biomarker for Pancreatic Cancer-Associated New-Onset Diabetes, Aggravates Paraneoplastic Islet Dysfunction by Increasing Oxidative Stress. Cancer Letters, 373, 241-250. [Google Scholar] [CrossRef]
|