Vanin-1:肾脏损伤早期诊断的新型生物标志物
Vanin-1: Novel biomarkers for Early Diagnosis of Kidney Injury
DOI: 10.12677/acm.2025.15113289, PDF, HTML, XML,   
作者: 余盛鑫, 傅鹏程, 王粤斌, 温 东, 刘辉权, 万 伟, 帅歌柳, 邹晓峰*:赣南医科大学第一临床医学院,江西 赣州;曾飞飞:江西省胸科医院护理部,江西 南昌
关键词: Vanin-1生物标志物肾损伤早期诊断尿液检查Vanin-1 Biomarker Kidney Injury Early Diagnosis Urinalysis
摘要: 肾损伤作为在临床上肾毒性药物治疗、大型手术及外伤、肾灌注不足、高血压等疾病所引发的需特别关注的并发症,其严重影响了患者的健康及原发病的后续治疗。目前传统的肾损伤检测指标具有明显的时间滞后性,现迫切需要新型的检测手段来早期诊断急性和慢性肾损伤。Vanin-1是一类泛酰巯基乙胺酶,能将泛酰巯基乙胺水解为泛酸(维生素B5)和半胱胺。目前Vanin-1已被证明在早期诊断急慢性肾损伤具有良好的潜力,其在患者尿液中以较高浓度分泌,具有简单、无创、易测等作为良好生物标志物的特征。来自众多动物和临床的研究结论表明,尿Vanin-1是各种类型肾毒性药物的暴露、尿路梗阻、缺血再灌注、高盐摄入等因素引起的肾损伤和慢性肾脏疾病的具有高度敏感性和特异性的生物标志物。
Abstract: Renal injury is a clinically significant complication arising from nephrotoxic drug therapy, major surgeries and trauma, renal hypoperfusion, hypertension, and various other conditions. It severely impacts patient health and hampers the subsequent treatment of underlying diseases. Traditional biomarkers for detecting renal injury exhibit a significant time lag, highlighting the urgent need for novel diagnostic approaches to enable early detection of both acute and chronic renal injury. Vanin-1, a pantetheinase enzyme, catalyzes the hydrolysis of pantetheine into pantothenic acid (vitamin B5) and cysteamine. Recent studies have demonstrated the strong potential of Vanin-1 as an early diagnostic biomarker for acute and chronic renal injury. It is excreted in high concentrations in urine and possesses key advantages such as simplicity, non-invasiveness, and ease of measurement, making it a promising biomarker. Findings from numerous animal and clinical studies indicate that urinary Vanin-1 is a highly sensitive and specific biomarker for renal injury and chronic kidney disease induced by exposure to nephrotoxic drugs, urinary tract obstruction, ischemia-reperfusion injury, and high salt intake.
文章引用:余盛鑫, 傅鹏程, 曾飞飞, 王粤斌, 温东, 刘辉权, 万伟, 帅歌柳, 邹晓峰. Vanin-1:肾脏损伤早期诊断的新型生物标志物[J]. 临床医学进展, 2025, 15(11): 1829-1840. https://doi.org/10.12677/acm.2025.15113289

1. 介绍

生物标志物(Biomarker)是指可以标记系统、器官、组织、细胞及亚细胞结构或功能的改变或可能发生的改变的生化指标,可用于目标人群的疾病诊断、判断疾病进展情况。在近些年的研究中,Vanin-1被认为是多种疾病的生物标志物[1]。其主要的生物学功能包括:1) 催化泛酰巯基乙胺水解并回收泛酸(维生素B5) [2];2) 直接或通过其催化产物间接地促进机体氧化应激和炎症反应;3) 参与体内糖类和脂质的代谢途径[3] [4];4) 维持机体的免疫应答[5]。Vanin编码蛋白为泛酰巯基乙胺酶,包含1个水解酶域,表现为分泌蛋白和膜通道蛋白,可与其它蛋白或者肽段结合参与胸腺细胞的黏附和归巢[6]。有研究发现Vanin-1蛋白存在于胰腺癌细胞外泌体中,这表明其可以通过膜通道或者随着胞内外泌体等方式分泌至细胞外[7]。此外,众多研究表明,早期肾损伤患者Vanin-1在尿液水平显著上升,并且具有良好的敏感性和特异性,有望成为诊断早期肾损伤的新型生物标志物[8]

肾损伤是影响肾脏功能的一个重要因素,临床上遇见的肾功能下降大多数是由于各种因素所诱导肾脏出现急性或慢性损伤[9]。无论是急性或慢性肾损伤,如不及时进行干预,都有可能发展为终末期肾脏疾病(ESRD),尤其是近年来ESRD的发病率逐年上升,成为影响人类健康的全球性疾病。急性肾损伤(AKI)是一种以肾小球滤过率(eGFR)突然降低为特征的异质性疾病,在住院患者中,脓毒症,多器官衰竭,大手术,肾脏灌注不足和肾毒性药物暴露常常会导致AKI。AKI的每次发作都与较高的死亡率和长期不良结局有关,包括心血管并发症、慢性肾脏病(CKD)和ESRD [10]。而AKI的预后及严重程度与疾病进展的时间有密切的关系。晚期AKI意味着有严重的不可逆的损伤,且往往伴随着较高的死亡风险[11]。尤其是在危重病例中更明显,在重症监护病房里合并AKI的发病率高达32%,发生AKI后约有5%~10%的患者需要进行肾脏替代治疗(KRT),进行KRT的患者死亡率接近50% [12]。导致这种情况的主要原因之一是目前早期检测肾损伤的指标并不理想,表现为早期AKI症状不典型、血清肌酐(Scr)水平升高缓慢、尿量减少不明显等,只在肾损害的晚期才会出现明显的升高[13]。越来越多的证据表明,若AKI持续不缓解,超出急性期后会进展为CKD [14]。而慢性肾脏疾病是一类长期持续性肾功能不全为特征的全球性公共卫生问题,在全球范围内的发病率和死亡率都居高不下[15]。早期CKD通常无明显临床症状,且肾功能下降缓慢,然而进展至晚期时通常会导致全身性的并发症,尤其是进展至ESRD时需要终身的透析治疗或者肾移植,此时意味着患者需要支付高昂的医疗费用以及很差的生活质量,病情严重时甚至可能导致患者死亡[16]。如果肾损伤可以在早期进行干预治疗的话,肾功能基本上可以得到逆转,并有效地防止AKI的加重及CKD的发展[17]。但是目前传统生物标志物并不能在早期及时地提示肾损伤,使得大部分患者难以得到及时的相关干预治疗。因此,需要新的生物标志物来更及时、更准确地检测肾损伤,以便于早期治疗干预,避免治疗的进一步复杂化,降低相关并发症发生率和死亡率。Vanin-1由于目前其作为急慢性肾损伤的生物标志物的潜在效用而受到越来越多的研究人员的关注。

2. Vanin-1的生物学功能

2.1. Vanin-1在炎症反应中的作用

有大量研究表明Vanin-1基因在多种疾病进展过程中发挥着促进炎症因子的释放、聚集以及加剧氧化应激反应的作用。而炎症细胞的浸润、机体氧化应激的亢进是肾小管损伤的重要特征[18]。当发生氧化应激时,Vanin-1基因表达增强,环氧化酶-2 (COX-2)、白介素-6 (IL-6)和巨噬细胞炎性蛋白-2 (MIP-2)等促炎性细胞因子的水平进而升高[19]。在慢性炎症中,巨噬细胞泡沫细胞过表达Vanin-1处理后的体内外实验结果都显示出TNF-α,IL-1β和IL-6等炎性细胞因子浓度的显著增加,促进了动脉粥样硬化的进展[20]。此外,有研究提示,Vanin-1可直接通过其产物半胱胺调节酶的活性、机体的氧化应激和炎症反应,也可通过抑制γ-谷氨酰半胱氨酸合成酶来间接减少体内谷胱甘肽(GSH)的合成,从而造成机体抗氧化应激能力的减弱。当Vanin-1表达在肠上皮细胞中时,其缺乏将限制肠上皮细胞产生炎症信号。在给予各种促炎或促氧化因素后Vanin-1 (-/-)小鼠肠炎和结肠炎相关癌症的患病率则会显著下降,并且可以观测到机体内半胱胺表达显著下降、还原性谷胱甘肽(谷胱甘肽是十分有效的细胞抗氧化剂)表达增加以及炎症细胞的活化显著降低;而在给予胱胺治疗后或者在Vanin-1表达正常的小鼠中,小鼠体内的半胱胺的表达和炎症改变急剧增加,同时GSH表达受到半胱胺的抑制而导致体内含量急剧下降,甚至最终导致小鼠死亡的结局[19] [21] [22]。半胱胺的增加会导致超级氧化歧化酶(SOD)含量的下降及谷胱甘肽过氧化物酶(GSH-Px)对活性氧(ROS)毒性的保护作用降低,使得自由基升高从而导致机体抗氧化能力的减弱[23]。已知ROS可导致机体氧化还原失衡,通过激活TNF-α/P38MAPK等通路引发炎症,并在肾脏中通过p58-MAPK途径介导凋亡细胞死亡,这些机制共同导致肾损伤[24]-[26]。以上机制提示Vanin-1一方面可以通过上调半胱胺促进氧化应激,另一方面抑制GSH等的抗氧化应激作用。此外,已被证明具有良好控制炎症作用的过氧化物酶体增殖物激活受体(PPARγ)通过在Vanin-1 (-/-)小鼠的实验中,验证了Vanin-1基因可以通过抑制PPARγ基因以促进炎症细胞及炎性趋化因子的产生[21]。在特发性血小板减少性紫癜(ITP)的一项研究中,血单核细胞经氧化应激诱导剂处理后发现了Vanin-1基因表达显著上调可导致PPARγ基因表达下调[27]。这些研究进一步证明了Vanin-1通过调节半胱胺、GSH及PPARγ等通路促进炎症反应的功能。

2.2. Vanin-1在肾纤维化中的作用

AKI作为慢性肾脏疾病(CKD)发展和进展的重要危险因素,早期干预治疗AKI的一个重要原因就是防止其向CKD的病理转变[28]。这种过程涉及了多种病理生理机制,例如炎症、细胞死亡及内皮功能障碍等,但最终都会导致不同程度的肾纤维化[29]。而Vanin-1似乎可以通过其产物半胱胺和泛酸来促进肾脏纤维化过程[30]。Vanin-1通过产生半胱胺来降低活性氧解毒酶的活性使得机体ROS的含量增加,ROS可介导TGF-β1上皮–间充质转化(EMT)、成纤维细胞活化以及促纤维化介质纤溶酶原激活物抑制剂1 (PAI-1)的表达发挥促纤维化作用[31]-[33]。有数据表明,TGF-β1增加了ROS的产生并激活近端肾小管上皮细胞中的MAPK通路诱导了EMT [34]。ROS介导TGF-β1增强NAD (P) H氧化酶家族中Nox4同源物的表达,而Nox4似乎是肾肌成纤维细胞活化的主要氧化酶[35];肌成纤维细胞活化可大量产生细胞外基质(EMC),以促进肾脏的纤维化。PAI-1则被认为通过抑制纤溶酶原激活和ECM降解在纤维化的发展中发挥重要作用[36];另一方面,Vanin-1可抑制GSH的产生,以此可解除GSH对TGF-β诱导的PAI-1表达的抑制作用[37]。有研究在UUO大鼠模型中发现了Vanin-1可负反馈调节TGF-β1的升高[38]。此外,泛酸作为Vanin-1的另一个分解产物,其似乎具有促纤维化作用,参与促进真皮成纤维细胞的增殖和迁移[39]。在一项研究中,Vanin-1基因的缺失可以阻止系统性硬化症(SSc)的纤维化进程,表明了Vanin-1参与控制SSc的纤维化和氧化应激[40]。因此,可以推测Vanin-1与小鼠肾脏纤维化存在一定的关系。

3. Vanin-1作为肾损伤生物标志物的研究进展

近年来,我们注意到有许多的研究成果证实了Vanin-1在早期诊断肾损伤的价值。因为Vanin-1在患者尿液中以较高浓度分泌,因此,其具有简便、易测、无创、经济等作为良好生物标志物的所有特征。研究发现在建立的药物性和肾毒性导致肾损伤动物模型尿液中都发现了高浓度的Vanin-1;这些结果表明Vanin-1作为肾损伤生物标志物的潜在作用[8]。此外,在上尿路梗阻(UUTO)患者的肾盂尿中,可以高灵敏度和特异性地测量Vanin-1,并且还可以较为准确地监测患者接受治疗后的效果[41]。在肾脏纤维化和肾小管损伤导致慢性肾损伤中,尿液中的Vanin-1在经过众多研究人员的探索后也证实了其早期诊断CKD的潜力[42] [43]。最近有研究表明Vanin-1在促进AKI-CKD的转变过程中扮演了重要角色[44]。因此,无论是在急性或慢性肾脏疾病的众多研究中,Vanin-1都以高浓度在尿液中可以被测量,体现了其可以作为早期诊断肾损伤的独特价值。

3.1. 肾损伤中尿液中Vanin-1的异常增高

很多实验中都发现了观测到当机体出现早期肾损伤时尿液来源中的Vanin-1会异常增高。并且其升高的时期往往会早于传统肾损伤标志物和KIM-1、NGAL、NGA等新型的肾损伤标志物[45] [46]。导致AKI的尿Vanin-1浓度升高主要有两个原因,一个是肾小管损伤、坏死;另一个是氧化应激导致的炎症反应。而慢性疾病中的尿Vanin-1升高目前研究主要集中在机体的高盐负荷以及肾脏纤维化导致的CKD。

急性肾小管坏死(ATN)是肾脏最常见的损伤类型之一。因为肾近端小管损伤参与肾脏疾病的进展,可引起小管细胞的坏死和凋亡,甚至导致急性肾衰竭[47]。目前较多的研究集中在肾毒性药物及尿路梗阻导致ATN,一个是顺铂和庆大霉素诱导的肾损伤动物模型,另一个是尿路梗阻使得上尿路尿液潴留,导致因肾盂及输尿管压力增加而引起肾近端小管的损伤的大鼠模型及临床研究[45] [38]。以上研究都发现在ATN的早期阶段,出现轻微肾小管组织学损害时,受到损伤的肾小管细胞会释放大量的Vanin-1蛋白进入尿液中,导致尿液中Vanin-1的浓度显著增高。在一项研究中发现Vanin-1 mRNA表达量在肾脏中显著升高,而在结肠中无显著升高,说明尿中vainin-1是从肾脏释放[48]。此外,在顺铂和庆大霉素导致肾损伤大鼠模型研究中,尿液中的Vanin-1的浓度随着肾脏中的Vanin-1 mRNA表达下降而持续增高,说明了尿液中的Vanin-1可能是肾脏组织渗露至尿液中[45]。在正常的生理情况下,Vanin-1在肾近端小管的顶端表面一侧的上皮细胞表达[40] [49]。当肾近端小管受到如坏死、炎症或缺血等损伤时,上皮细胞膜完整性受损。而Vanin-1作为一个新型锚定蛋白分子,它是通过GPI锚定在上皮细胞膜的表面,当GPI受到刺激时容易断裂并将Vanin-1从细胞膜上脱离,并释放到细胞外基质环境中[23] [50]。这可能是导致Vanin-1渗漏至原尿中从而引起尿液Vanin-1浓度的升高的原因。

氧化应激通路促进炎症浸润也是导致肾损伤的一种重要机制[51]。炎症过程中,Vanin-1刺激炎症细胞因子的产生和释放会进一步诱导肾小管上皮细胞的损伤[52]。有机溶剂如乙二醇、氯仿等以及肾脏缺血再灌注等因素可对肾脏的损伤激活了氧化应激通路,鉴于Vanin-1作为氧化应激传感器的重要作用,此时会诱导Vanin-1的表达升高,一方面通过其产物半胱胺促进肾脏氧化应激和炎症浸润,另一方面可间接导致机体抗氧化能力的减弱,这些机制共同作用进一步加剧对肾脏的炎症和损伤,进而导致尿液中的Vanin-1浓度上升。例如,在肾缺血/再灌注(I/R)诱导的肾损伤的体内外实验研究中,在I/R诱导肾损伤大鼠的尿液中Vanin-1的增高与肾损伤病理高度相关,而在体外实验中,也得到了与体内实验高度类似的结果[53]。在乙二醇诱导肾损伤大鼠尿液和血清中Vanin-1的浓度分别比对照组大鼠高2.8倍(p = 0.012)和1.8倍(p = 0.018) [50]。在这些研究中我们发现了肾脏mRNA表达、血液及尿液中的Vanin-1浓度均显著增高,而在肾脏Vanin-1 mRNA表达显著上调时进行给药后检测则下降了53% [54]。这可能表示Vanin-1通过其促进氧化应激的机制加剧了肾损伤。

在高血压患者中,长期的高盐摄入会促进肾小球滤过率的下降及尿液中白蛋白的增多进而导致CKD的发展及进展。而在健康人群中,高盐摄入可以在不引起血压升高的同时导致肾脏等器官的损伤,这也加重了诊断早期肾损伤的难度[55]。最近研究发现高盐饮食刺激可促使盐敏感性大鼠高血压形成,大量分泌Vanin-1,诱导肾小管损伤,提示Vanin-1参与氧化应激损伤[56]。根据目前的实验结论推测高盐摄入直接影响肾素–血管紧张素II-醛固酮(RAAS)系统,诱导肾脏氧化应激和炎症反应的产生[57] [58]。高盐负荷下可以抑制肾素的分泌,使得血管紧张素Ⅱ下降。然而其影响远远小于当RAAS系统受到盐刺激时会导致近端小管液中血管紧张素Ⅱ的分泌增加[46]。且肾皮质具有较强的调节肾血管血压的功能,可以较好地保护肾脏免受高血压所带来伤害[59]。血管紧张素Ⅱ可以促进肾脏氧化应激及炎症反应,进而导致肾小管的损伤及肾脏纤维化[46] [60]。同时,也有研究证明了醛固酮在诱导氧化应激的积极作用[61]。盐刺激下促进ROS含量的增加,ROS激活TNF-α通路参与炎症反应及纤维化的发生,最终导致肾脏损伤[24] [62]。Vanin-1与氧化应激的发生及ROS的增加关系密切[20],因此推断Vanin-1的升高可以提示高盐负荷下早期肾脏损伤。有实验利用自发性高血压大鼠高盐摄入后1周便发现尿中Vanin-1排泄量升高,这远早于5周后才显著增高的尿蛋白排泄率,而肌酐清除率在整个实验期间并没有显著变化[63]。在另一项使用正常血压大鼠进行的实验研究中也得出了同样的结论,尿中的Vanin-1在8%盐负荷的正常血压大鼠中显著增加[64]。这些结果意味着尿中的Vanin-1可能是高盐饮食下大鼠肾小管损伤的潜在的早期生物标志物,并且不受血压是否正常的影响。

肾小管间质纤维化是CKD的常见病理途径,现已被证明是ESRD进展的最佳预测指标[65]

有报道称在UUTO肾损伤动物实验中,尿液Vanin-1的升高和肾脏纤维化病理呈高度对应关系[39]。尿路梗阻可通过多种机制引起肾内血管紧张素II升高,血管紧张素II可进一步激活核因子κB,触发细胞因子释放和ROS产生,ROS可介导TGF-β1的促肾脏纤维化[66]。同时,输尿管梗阻所带来的压力性机械损伤会导致肾小管细胞凋亡或坏死,这会引发肾小管间质炎症细胞的浸润和纤维化[67]。二氧化钛纳米颗粒(TiO2 NPs)可激活TGF-β/Smads/p38MAPK通路导致小鼠出现肾脏炎症和纤维化的病理改变,并发现了暴露于TiO2 NPs6个月的小鼠的尿液和血清中的Vanin-1浓度相较于对照组均显著增加10倍以上。以上论述提示了尿液Vanin-1可能是提示肾小管损伤导致肾脏纤维化的一个实验室指标[68]

3.2. 尿Vanin-1在肾损伤患者中的预测价值

目前已经证明,尿液中的Vanin-1用于检测肾损伤的早期阶段时比传统以及一些新兴的肾损伤生物标志物具有更高的敏感性和特异性。这可能得益于在肾小管炎症或损伤的早期阶段Vanin-1便参与了炎症或损伤的过程,而尿液来源的Vanin-1主要由肾小管上皮细胞产生,肾小管是肾脏的主要组成部分[63]。与此相比,传统的肾损伤生物标志物如Scr等,可能受到过度运动等其他因素的影响,而显得不够特异[69]。因此,尿Vanin-1作为肾小管损伤的标志物,能够更准确地反映肾小管的损伤程度。在收集2012~2015年使用顺铂化疗尿路上皮癌的24例患者尿液标本进行临床研究中,采用顺铂给药后6天后eGFR下降超过20%为标准,发现尿Vanin-1在第3天就出现浓度的显著增高,而传统的肾损伤标志物如Scr在第6天才有显著升高;同时进行的ROC分析结果显示尿Vanin-1的曲线下面积(AUC)值(0.83)最高,并且其具有高度的敏感性和特异性预测eGFR下降,分别达到了66.7% (95% CI: 0.30~0.93)和83.3% (95% CI: 0.52~0.97) [70]。而在一项前瞻性队列试点研究结果显示UUTO患者肾盂尿液中Vanin-1具有高度敏感性和特异性,分别为0.867和0.952,比NGAL,KIM-1及NAG水平更具预测性(Vanin-1 AUC-ROC值为0.98);因为完全性尿路梗阻导致尿液无法排至膀胱,所以在膀胱尿中Vanin-1减少并且敏感性较低[42]。Hosohata通过对147名高血压患者进行临床研究,发现了尿Vanin-1的高低与高血压患者的CKD,COX回归分析也证明了尿Vanin-1是肾功能下降的重要独立预测因子,是与CKD有关的肾功能下降密切相且独立的初始指标,并且其预测性高于NGAL及KIM-1等新型肾损伤标志物[71] [72]。以上研究结果都提示了尿Vanin-1在对肾损伤及肾功能下降的早期诊断上具有的高度敏感性和特异性的优势。

3.3. 尿Vanin-1相较于传统肾损伤标志物的优点

首先,早期诊断肾损伤是尿Vanin-1作为肾损伤标志物的最具有优势的一个方面。尿量、sCr和尿白蛋白等作为目前临床传统上用作诊断肾损伤的生物标志物,但其严重缺陷是仅在严重肾损伤后发生显著变化,具有明显的时间延迟,并且敏感性和特异性较差[73]。尿Vanin-1相较于传统肾损伤标志物在诊断时间上具有明显优势[74]。目前所有的实验研究都发现了一个现象——当肾脏组织出现轻微的肾损伤病理学改变时,此时便可观察到尿Vanin-1浓度的显著升高,且发生在Scr、eGFR等传统生物标志物出现明显变化时之前[1]。这是因为Vanin-1在肾损伤早期就开始释放到尿液中,因此能够提供更早的诊断信息[64]。早期诊断对于及时采取治疗干预和预防肾脏损伤疾病的进展至关重要[75]。其次,Vanin-1浓度是在患者尿液当中检测得到的结果,其具有非侵入性、易获取性和可重复性等优势。相对于传统的肾损伤标志物的测试方法(如血液检测等)尿液采样更加简便、无创且易于获取,并且采集过程中患者没有任何痛苦,提高了患者的接受度和便捷性[76]。并且Vanin-1在尿液样本间具有较好的稳定性,能够被多次测定并得出一致的结果;外加最近有相关研究有关于利用化学发光探针提高Vanin-1在尿液中的检出的敏感度[78],提高了检测结果的可靠性。同时外加其经济性,这意味着可以通过连续监测其浓度变化来评估疾病的进展和治疗效果。Oraby分别使用达格列净和利格列汀给药逆转了果糖–链脲佐菌素诱导DN的肾损伤后检测发现Vanin-1及其它肾损伤标志物有明显下降[54] [78]。这表明了尿Vanin-1可以用于评估DN肾损伤的治疗效果。而在使用依普利酮等药物治疗达尔盐敏感大鼠肾损伤后可以发现在肾小管免疫组织学炎症及纤维化等病理改变逆转后尿液中的Vanin-1也及时得到相应的减少,同时在和Vanin-1定位于肾小管相同位置的氧化应激的标志物4-HNE也和Vanin-1呈现相同的趋势,这表明了尿Vanin-1可以用于评估盐负荷下肾损伤的治疗效果[56]。有研究人员重点报告了一名外源性UUTO患者,该患者梗阻的改善和恶化与其尿Vanin-1浓度的变化下降及增高呈高度对应关系[41]。这些研究结论提示尿Vanin-1能够提供一个动态的指标,帮助医生了解肾脏损伤的进展情况,并作出相应的调整和干预措施,及时预测病情发展趋势以便进行长期的疾病管理。

4. Vanin-1临床应用的挑战与前景

4.1. Vanin-1检测方法的标准化难题

在将Vanin-1作为肾脏损伤早期诊断生物标志物的临床应用中,检测方法的标准化是面临的首要挑战。目前,针对Vanin-1的检测方法种类繁多,涵盖了酶联免疫吸附测定(ELISA)、免疫印迹法、实时定量聚合酶链反应(qPCR)以及新兴的化学发光探针技术等。这些不同的检测技术基于各自独特的原理,其检测流程、所需仪器设备以及对样本的要求均存在差异。

4.2. 建立正常参考范围和诊断阈值的紧迫性

在将Vanin-1作为肾脏损伤早期诊断生物标志物的临床应用中,建立正常参考范围和诊断阈值是实现准确诊断的关键环节。正常参考范围能够界定健康人群体内Vanin-1的含量区间,而诊断阈值则是判断肾脏是否发生损伤以及损伤程度的关键数值界限。正常参考范围和诊断阈值的缺失,会使得临床医生难以依据检测结果对患者的病情做出准确判断。若无法明确正常范围,就难以辨别检测值的异常是个体正常波动还是疾病所致;没有精准的诊断阈值,在面对不同程度的肾脏损伤时,极易出现误诊或漏诊的情况,导致患者错过最佳治疗时机。

4.3. Vanin-1检测的成本效益分析

尽管Vanin-1检测存在一定成本,但从其诊断价值所带来的效益角度分析,具有潜在的可观收益。早期准确诊断肾脏损伤,能够使患者及时接受有效的治疗,避免病情进一步恶化,从而减少后续高昂的治疗费用。研究表明,对于急性肾损伤患者,早期干预治疗可显著降低患者的住院时间和医疗费用,减少因病情延误导致的并发症治疗成本。及时准确地诊断还能提高患者的生存质量,减少患者因病痛带来的痛苦和生活不便,从长远来看,具有显著的收益。

5. Vanin-1在多器官表达背景下的特异性挑战及解决方案

特异性是生物标志物临床应用的核心要求之一,特异性是生物标志物临床应用的核心要求之一,而Vanin-1的多器官表达特性使其在肾脏损伤诊断中面临显著的特异性挑战。研究证实,Vanin-1并非肾脏特异性蛋白,除主要表达于肾小管上皮细胞外,还在肝脏、肠道、肺脏、脾脏等多种器官组织中存在不同程度的表达,且在这些器官发生损伤或炎症反应时,Vanin-1的释放水平会显著升高。例如,在急性肝功能损伤患者的血清中,Vanin-1水平可因肝细胞破坏而明显上升;肠道炎症性疾病如溃疡性结肠炎患者的肠黏膜组织中,Vanin-1的表达也会出现上调,且可能通过血液循环或肠黏膜屏障渗漏进入尿液,导致尿液Vanin-1升高,从而干扰肾脏损伤的诊断判断,增加误诊风险。这种多器官来源的干扰,成为制约Vanin-1单独作为肾脏损伤诊断标志物的关键障碍。针对这一问题,目前已有多项潜在解决方案被提出并初步探索。其一,构建“标志物组合”策略,通过检测尿液中Vanin-1与其他肾小管特异性蛋白的比值来提高诊断特异性。例如,肾损伤分子-1 (KIM-1)、中性粒细胞明胶酶相关脂质运载蛋白(NGAL)等均为公认的肾小管特异性损伤标志物,其表达局限于肾脏组织,在其他器官损伤时表达相对稳定。临床研究提示,当尿液Vanin-1/KIM-1比值或Vanin-1/NGAL比值升高时,其诊断肾脏损伤的特异性显著高于单独检测Vanin-1,可有效区分肾脏来源与非肾脏来源的Vanin-1升高。其二,明确Vanin-1的优势应用临床场景,在排除其他器官疾病的患者中优先使用。例如,对于接受氨基糖苷类抗生素治疗的患者,其肾脏损伤风险较高且多无明确肝脏、肠道等其他器官基础疾病,此时检测Vanin-1水平以早期预警药物性肾损伤,可最大限度减少非肾脏来源的干扰,提升诊断效能。此外,结合临床症状、影像学检查及其他实验室指标进行综合判断,也可进一步降低非特异性升高带来的诊断误差,为Vanin-1的特异性应用提供保障。

6. Vanin-1作为其它疾病中生物标志物的研究进展

Vanin-1在人体内多处器官如肾、肝脏、肠道、肺、血液中都有表达,参与了多种人类疾病的进展,尽管其在这些疾病中还有很多的病理生理作用尚不明确,但多项研究表明Vanin-1的上调提示了多种疾病的发生或进展[1]。有报告指出,Vanin-1是IBD的标志物,Vanin-1转录物在IBD患者的结肠中增加400倍,特别是在UC患者中,表明可以将粪便Vanin-1量化为疾病进展的标志[79]。Xue等人对COPD患者研究发现Vanin-1在COPD组的血清和肺组织中均高度表达,然后进行ROC曲线分析进一步证实了血清和组织Vanin-1水平与COPD具有高度相关性,并证明了Vanin-1可作为COPD的新型标志物[80]。通过对胰腺癌相关糖尿病患者、近期诊断为糖尿病患者、无糖尿病胰腺癌患者和健康对照者的外周血样本进行基因表达谱分析,并分析胰腺癌和正常的外周血单核细胞基因表达谱的差异,筛选出Vanin-1为胰腺癌相关糖尿病的潜在生物标志物,用于早期胰腺癌的早期检测[81] [82]。另外一项研究表明Vanin-1在胰腺癌中过表达,能通过氧化应激和诱导β细胞去分化来影响副肿瘤性胰岛的功能障碍,β细胞去分化是糖尿病发病机制之一,证实了Vanin-1参与胰腺癌相关糖尿病的发展,为Vanin-1作为早期胰腺癌相关糖尿病筛查的特异性生物标志物提供证据[7]

7. 讨论

虽然Vanin-1在众多疾病中显示出其预测疾病发生或进展的能力,但是在AKI或CKD中预测肾损伤的能力在许多的研究结果中是被证实了的,而且目前基于肾损伤的研究中,检测方式都是在尿液中检测Vanin-1上升的浓度,有一部分的肾损伤动物模型也可在血液中检测出高浓度的Vanin-1,这是由于Vanin-1的生物学功能所引起的现象,但是这一部分依然可以通过尿液中高浓度的Vanin-1来达到早期预测肾损伤的效果。在Vanin-1作为其余组织疾病的生物标志物时,大多是以血液中的Vanin-1浓度来作为评价指标,也有例如粪便中的Vanin-1表达量化来提示IBD患者疾病进展程度。尿液作为体液检测的一员,其具有简便、经济、无创伤等天然优势。相较于传统的肾损伤生物指标eGFR和蛋白尿只能在出现明显肾脏损伤时才能给予临床医生有效的提示,尿Vanin-1可以在肾损伤的早期便被检测到浓度的显著上升。这显然更有助于医生对AKI患者进行早期干预治疗,或有效地防止CKD的进展。需要注意的是,Vanin-1增高并不是肾损伤的唯一指标,还需要结合其他临床和实验室检查结果综合评估肾功能和损伤程度。例如KIM-1、NGAL、NAG等新兴的潜在的肾损伤标志物,多数情况下尿Vanin-1可以更早期地预测肾损伤,但是在特异性及灵敏性上则各有优劣。因此,对于具体的临床情况,许多研究人员更倾向于尿Vanin-1联合KIM-1、NGAL、NAG等来诊断早期肾损伤,这可以极大地提高这些标志物在早期诊断肾损伤的特异性。总的来说,目前众多研究已经证明了Vanin-1在一些疾病发生或进展中可扮演生物标志物角色的可行性,尤其是在由肾近端小管损伤导致的急慢性肾损伤中的早期诊断上体现得更具临床意义。然而,目前的研究几乎都停留在细胞和动物实验中,或者小样本的前瞻性临床试点研究,而且动物和临床研究尚局限在固定的几个肾损伤类型中。Vanin-1想要从实验室转化为临床可靠的肾损伤的生物标志物,还需要完善更多类型的肾损伤实验研究结论以及更大样本量临床实验研究来增强其可信度。

NOTES

*通讯作者。

参考文献

[1] Bartucci, R., Salvati, A., Olinga, P. and Boersma, Y.L. (2019) Vanin 1: Its Physiological Function and Role in Diseases. International Journal of Molecular Sciences, 20, Article 3891. [Google Scholar] [CrossRef
[2] Pitari, G., Malergue, F., Martin, F., Philippe, J.M., Massucci, M.T., Chabret, C., et al. (2000) Pantetheinase Activity of Membrane-Bound Vanin-1: Lack of Free Cysteam-ine in Tissues of Vanin-1 Deficient Mice. FEBS Letters, 483, 149-154. [Google Scholar] [CrossRef
[3] Motomura, W., Yoshizaki, T., Takahashi, N., Kumei, S., Mizukami, Y., Jang, S., et al. (2012) Analysis of Vanin-1 Upregulation and Lipid Accumulation in Hepatocytes in Response to a High-Fat Diet and Free Fatty Acids. Journal of Clinical Biochemistry and Nutrition, 51, 163-169. [Google Scholar] [CrossRef
[4] Chen, S., Zhang, W., Tang, C., Tang, X., Liu, L. and Liu, C. (2014) Vanin-1 Is a Key Activator for Hepatic Gluconeogenesis. Diabetes, 63, 2073-2085. [Google Scholar] [CrossRef
[5] Ferreira, D.W., Naquet, P. and Manautou, J.E. (2015) Influence of Vanin-1 and Catalytic Products in Liver during Normal and Oxidative Stress Conditions. Current Medicinal Chemistry, 22, 2407-2416. [Google Scholar] [CrossRef
[6] Galland, F., Malergue, F., Bazin, H., Mattei, M.G., Aurrand-Lions, M., Theillet, C., et al. (1998) Two Human Genes Related to Murine Vanin-1 Are Located on the Long Arm of Human Chromosome 6. Genomics, 53, 203-213. [Google Scholar] [CrossRef
[7] Qin, W., Kang, M., Li, C., Zheng, W. and Guo, Q. (2023) VNN1 Overexpression in Pancreatic Cancer Cells Inhibits Paraneoplastic Islet Function by Increasing Oxidative Stress and Inducing Β‑Cell Dedifferentiation. Oncology Reports, 49, Article No. 120. [Google Scholar] [CrossRef
[8] Jana, S., Mitra, P. and Roy, S. (2022) Profi-cient Novel Biomarkers Guide Early Detection of Acute Kidney Injury: A Review. Diseases, 11, Article 8. [Google Scholar] [CrossRef
[9] Bhargava, P. and Schnellmann, R.G. (2017) Mitochondrial Energetics in the Kid-ney. Nature Reviews Nephrology, 13, 629-646. [Google Scholar] [CrossRef
[10] Hoste, E.A.J., Kellum, J.A., Selby, N.M., Zarbock, A., Palevsky, P.M., Bagshaw, S.M., et al. (2018) Global Epidemiology and Outcomes of Acute Kidney Injury. Nature Reviews Nephrology, 14, 607-625. [Google Scholar] [CrossRef
[11] Noble, R.A., Lucas, B.J. and Selby, N.M. (2020) Long-Term Outcomes in Patients with Acute Kidney Injury. Clinical Journal of the American Society of Nephrology, 15, 423-429. [Google Scholar] [CrossRef
[12] Levey, A.S. and James, M.T. (2017) Acute Kidney Injury. Annals of Internal Medi-cine, 167, ITC66-ITC80. [Google Scholar] [CrossRef
[13] Yoon, S.Y., Kim, J.S., Jeong, K.H. and Kim, S.K. (2022) Acute Kidney Injury: Bi-omarker-Guided Diagnosis and Management. Medicina, 58, Article 340. [Google Scholar] [CrossRef
[14] James, M.T., Bhatt, M., Pannu, N. and Tonelli, M. (2020) Long-Term Outcomes of Acute Kidney Injury and Strategies for Improved Care. Nature Reviews Nephrology, 16, 193-205. [Google Scholar] [CrossRef
[15] Chen, T.K., Knicely, D.H. and Grams, M.E. (2019) Chronic Kidney Disease Diagnosis and Management: A Review. Journal of the American Medical Association, 322, 1294-1304. [Google Scholar] [CrossRef
[16] Webster, A.C., Nagler, E.V., Morton, R.L. and Masson, P. (2017) Chronic Kidney Disease. The Lancet, 389, 1238-1252. [Google Scholar] [CrossRef
[17] Rysz, J., Gluba-Brzózka, A., Franczyk, B., Jabłonowski, Z. and Ciałkow-ska-Rysz, A. (2017) Novel Biomarkers in the Diagnosis of Chronic Kidney Disease and the Prediction of Its Outcome. International Journal of Molecular Sciences, 18, Article 1702. [Google Scholar] [CrossRef
[18] Gobe, G.C. and Johnson, D.W. (2007) Distal Tubular Epithelial Cells of the Kidney: Potential Support for Proximal Tubular Cell Survival after Renal Injury. The In-ternational Journal of Biochemistry & Cell Biology, 39, 1551-1561. [Google Scholar] [CrossRef
[19] Martin, F., Penet, M., Malergue, F., Lepidi, H., Dessein, A., Galland, F., et al. (2004) Vanin-1–/– Mice Show Decreased NSAID- and Schistosoma-Induced Intestinal Inflammation Associated with Higher Gluta-thione Stores. Journal of Clinical Investigation, 113, 591-597. [Google Scholar] [CrossRef
[20] Hu, Y.W., Wu, S.G., Zhao, J.J., Ma, X., Lu, J.B., Xiu, J.C., et al. (2016) VNN1 Promotes Atherosclerosis Progression in apoE-/- Mice Fed a High-Fat/High-Cholesterol Diet. Journal of Lipid Research, 57, 1398-1411. [Google Scholar] [CrossRef
[21] Berruyer, C., Martin, F.M., Castellano, R., Macone, A., Malergue, F., Garrido-Urbani, S., et al. (2004) Vanin-1−/− Mice Exhibit a Glutathione-Mediated Tissue Resistance to Oxidative Stress. Molecular and Cellular Biol-ogy, 24, 7214-7224. [Google Scholar] [CrossRef
[22] Berruyer, C., Pouyet, L., Millet, V., Martin, F.M., LeGoffic, A., Canonici, A., et al. (2006) Vanin-1 Licenses Inflammatory Mediator Production by Gut Epithelial Cells and Controls Colitis by Antag-onizing Peroxisome Proliferator-Activated Receptor γ Activity. The Journal of Experimental Medicine, 203, 2817-2827. [Google Scholar] [CrossRef
[23] Saghaei, F., Karimi, I., Jouyban, A. and Samini, M. (2012) Effects of Captopril on the Cysteamine-Induced Duodenal Ulcer in the Rat. Experimental and Toxicologic Pathology, 64, 373-377. [Google Scholar] [CrossRef
[24] Gloire, G., Legrand-Poels, S. and Piette, J. (2006) NF-κB Activation by Reactive Oxygen Species: Fifteen Years Later. Biochemical Pharmacology, 72, 1493-1505. [Google Scholar] [CrossRef
[25] Matoba, K., Kawanami, D., Ishizawa, S., Kanazawa, Y., Yokota, T. and Utsuno-miya, K. (2010) Rho-Kinase Mediates TNF-α-Induced MCP-1 Expression via P38 MAPK Signaling Pathway in Mesangial Cells. Bi-ochemical and Biophysical Research Communications, 402, 725-730. [Google Scholar] [CrossRef
[26] Wu, D., Luo, N., Wang, L., Zhao, Z., Bu, H., Xu, G., et al. (2017) Hydrogen Sulfide Ameliorates Chronic Renal Failure in Rats by Inhibiting Apoptosis and Inflammation through ROS/MAPK and NF-κB Signaling Pathways. Scientific Reports, 7, Article No. 455. [Google Scholar] [CrossRef
[27] Zhang, B., Lo, C., Shen, L., Sood, R., Jones, C., Cusmano-Ozog, K., et al. (2011) The Role of Vanin-1 and Oxidative Stress-Related Pathways in Distinguishing Acute and Chronic Pediatric ITP. Blood, 117, 4569-4579. [Google Scholar] [CrossRef
[28] Kurzhagen, J.T., Dellepiane, S., Cantaluppi, V. and Rabb, H. (2020) AKI: An Increasingly Recognized Risk Factor for CKD Development and Progression. Journal of Nephrology, 33, 1171-1187. [Google Scholar] [CrossRef
[29] Wang, Z. and Zhang, C. (2022) From AKI to CKD: Maladaptive Repair and the Underlying Mechanisms. International Journal of Molecular Sciences, 23, Article 10880. [Google Scholar] [CrossRef
[30] Mizerska-Wasiak, M., Płatos, E., Cichoń-Kawa, K., Demkow, U. and Pańczyk-Tomaszewska, M. (2022) The Usefulness of Vanin-1 and Periostin as Markers of an Active Autoimmune Process or Renal Fibrosis in Children with Iga Nephropathy and IgA Vasculitis with Nephritis—A Pilot Study. Journal of Clinical Medicine, 11, Article 1265. [Google Scholar] [CrossRef
[31] Xiao, Y., Liu, J., Peng, Y., Xiong, X., Huang, L., Yang, H., et al. (2016) GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Ex-pression. PLOS ONE, 11, e0160855. [Google Scholar] [CrossRef
[32] Dammanahalli, K.J., Stevens, S. and Terkeltaub, R. (2012) Vanin-1 Pantetheinase Drives Smooth Muscle Cell Activation in Post-Arterial Injury Neointimal Hyperplasia. PLOS ONE, 7, e39106. [Google Scholar] [CrossRef
[33] Liu, R.M. and Desai, L.P. (2015) Reciprocal Regula-tion of TGF-β and Reactive Oxygen Species: A Perverse Cycle for Fibrosis. Redox Biology, 6, 565-577. [Google Scholar] [CrossRef
[34] Rhyu, D.Y., Yang, Y., Ha, H., Lee, G.T., Song, J.S., Uh, S., et al. (2005) Role of Reactive Oxygen Species in TGF-β1-Induced Mitogen-Activated Protein Kinase Activation and Epithelial-Mesenchymal Transition in Renal Tubular Epithelial Cells. Journal of the American Society of Nephrology, 16, 667-675. [Google Scholar] [CrossRef
[35] Bondi, C.D., Manickam, N., Lee, D.Y., Block, K., Gorin, Y., Abboud, H.E., et al. (2010) NAD(P)H Oxidase Mediates TGF-β1-Induced Activation of Kidney Myofibroblasts. Journal of the American Society of Neph-rology, 21, 93-102. [Google Scholar] [CrossRef
[36] Huang, W., Akhter, H., Jiang, C., MacEwen, M., Ding, Q., Antony, V., et al. (2015) Plasminogen Activator Inhibitor 1, Fibroblast Apoptosis Resistance, and Aging-Related Susceptibility to Lung Fibrosis. Ex-perimental Gerontology, 61, 62-75. [Google Scholar] [CrossRef
[37] Vayalil, P.K., Iles, K.E., Choi, J., Yi, A., Postlethwait, E.M. and Liu, R. (2007) Glutathione Suppresses TGF-β-Induced PAI-1 Expression by Inhibiting P38 and JNK MAPK and the Binding of AP-1, SP-1, and Smad to the PAI-1 Promoter. American Journal of Physiology-Lung Cellular and Molecular Physiology, 293, L1281-L1292. [Google Scholar] [CrossRef
[38] Hosohata, K., Jin, D., Takai, S. and Iwanaga, K. (2018) Vanin-1 in Renal Pelvic Urine Reflects Kidney Injury in a Rat Model of Hydronephrosis. International Journal of Molecular Sciences, 19, Article 3186. [Google Scholar] [CrossRef
[39] Proksch, E., de Bony, R., Trapp, S. and Boudon, S. (2017) Topical Use of Dexpan-thenol: A 70th Anniversary Article. Journal of Dermatological Treatment, 28, 766-773. [Google Scholar] [CrossRef
[40] Kavian, N., Mehlal, S., Marut, W., Servettaz, A., Giessner, C., Bourges, C., et al. (2016) Imbalance of the Vanin-1 Pathway in Systemic Sclerosis. The Journal of Immunology, 197, 3326-3335. [Google Scholar] [CrossRef
[41] Washino, S., Hosohata, K., Oshima, M., Okochi, T., Konishi, T., Nakamura, Y., et al. (2019) A Novel Biomarker for Acute Kidney Injury, Vanin-1, for Obstructive Nephropathy: A Prospective Cohort Pilot Study. International Journal of Molecular Sciences, 20, Article 899. [Google Scholar] [CrossRef
[42] Zhang, Y. and Qin, X. (2020) Urinary Vanin-1 and Chronic Kidney Disease in Hypertensive Patients. The Journal of Clinical Hypertension, 22, 1466-1468. [Google Scholar] [CrossRef
[43] Hosohata, K. (2017) Biomarkers for Chronic Kidney Disease Associated with High Salt Intake. International Journal of Molecular Sciences, 18, Article 2080. [Google Scholar] [CrossRef
[44] Chen, J., Lu, H., Wang, X., Yang, J., Luo, J., Wang, L., et al. (2022) vnn1 Contributes to the Acute Kidney Injury-Chronic Kidney Disease Transi-tion by Promoting Cellular Senescence via Affecting rb1 Expression. The FASEB Journal, 36, e22472. [Google Scholar] [CrossRef
[45] Hosohata, K., Ando, H. and Fujimura, A. (2012) Urinary Vanin-1 as a Novel Bi-omarker for Early Detection of Drug-Induced Acute Kidney Injury. The Journal of Pharmacology and Experimental Therapeutics, 341, 656-662. [Google Scholar] [CrossRef
[46] Hosohata, K. (2021) Biomarkers of High Salt Intake. Advances in Clinical Chemis-try, 104, 71-106.
[47] Bidani, A. and Churchill, P.C. (1989) Acute Renal Failure. Disease-a-Month, 35, 63-132. [Google Scholar] [CrossRef
[48] Hosohata, K., Ando, H. and Fujimura, A. (2014) Early Detection of Renal Injury Using Urinary Vanin-1 in Rats with Experimental Colitis. Journal of Applied Toxicology, 34, 184-190. [Google Scholar] [CrossRef
[49] Hosohata, K., Ando, H., Fujiwara, Y. and Fujimura, A. (2011) Vanin-1; A Potential Bi-omarker for Nephrotoxicant-Induced Renal Injury. Toxicology, 290, 82-88. [Google Scholar] [CrossRef
[50] Weber, S. and Saftig, P. (2012) Ectodomain Shedding and Adams in Development. Development, 139, 3693-3709. [Google Scholar] [CrossRef
[51] Haugen, E. and Nath, K.A. (1999) The Involvement of Oxidative Stress in the Progres-sion of Renal Injury. Blood Purification, 17, 58-65. [Google Scholar] [CrossRef
[52] Jansen, P.A.M., Kamsteeg, M., Rodijk-Olthuis, D., van Vlijmen-Willems, I.M.J.J., de Jongh, G.J., Bergers, M., et al. (2009) Expression of the Vanin Gene Family in Normal and Inflamed Human Skin: Induction by Proinflammatory Cytokines. Journal of Investigative Dermatology, 129, 2167-2174. [Google Scholar] [CrossRef
[53] Hosohata, K., Jin, D. and Takai, S. (2021) In Vivo and in Vitro Evaluation of Urinary Biomarkers in Ischemia/Reperfusion-Induced Kidney Injury. International Journal of Molecular Sciences, 22, Article 11448. [Google Scholar] [CrossRef
[54] Oraby, M.A., El-Yamany, M.F., Safar, M.M., Assaf, N. and Ghoneim, H.A. (2019) Dapagliflozin Attenuates Early Markers of Diabetic Nephropathy in Fructose-Streptozotocin-Induced Diabetes in Rats. Biomedicine & Pharmacotherapy, 109, 910-920. [Google Scholar] [CrossRef
[55] Sullivan, J.M. and Ratts, T.E. (1983) He-modynamic Mechanisms of Adaptation to Chronic High Sodium Intake in Normal Humans. Hypertension, 5, 814-820. [Google Scholar] [CrossRef
[56] Hosohata, K., Jin, D., Takai, S. and Iwanaga, K. (2019) Involvement of Vanin-1 in Ameliorating Effect of Oxidative Renal Tubular Injury in Dahl-Salt Sensitive Rats. International Journal of Molecular Sciences, 20, Article 4481. [Google Scholar] [CrossRef
[57] Kitiyakara, C., Chabrashvili, T., Chen, Y., Blau, J., Karber, A., Aslam, S., et al. (2003) Salt Intake, Oxidative Stress, and Renal Expression of NADPH Oxidase and Superoxide Dismutase. Journal of the American Society of Nephrology, 14, 2775-2782. [Google Scholar] [CrossRef
[58] Lai, E.Y., Luo, Z., Onozato, M.L., Ru-dolph, E.H., Solis, G., Jose, P.A., et al. (2012) Effects of the Antioxidant Drug Tempol on Renal Oxygenation in Mice with Reduced Renal Mass. American Journal of Physiology-Renal Physiology, 303, F64-F74. [Google Scholar] [CrossRef
[59] Hultström, M. (2012) Development of Structural Kidney Damage in Spontane-ously Hypertensive Rats. Journal of Hypertension, 30, 1087-1091. [Google Scholar] [CrossRef
[60] Kai, H., Mori, T., Tokuda, K., Takayama, N., Tahara, N., Takemiya, K., et al. (2006) Pressure Overload-Induced Transient Oxidative Stress Mediates Perivascular Inflammation and Cardiac Fibrosis through Angiotensin II. Hypertension Research, 29, 711-718. [Google Scholar] [CrossRef
[61] Keidar, S., Kaplan, M., Pavlotzky, E., Coleman, R., Hayek, T., Hamoud, S., et al. (2004) Aldosterone Administration to Mice Stimulates Macrophage NADPH Oxidase and Increases Atherosclerosis Development: A Possible Role for Angiotensin-Converting Enzyme and the Receptors for Angiotensin II and Aldosterone. Circulation, 109, 2213-2220. [Google Scholar] [CrossRef
[62] Fellner, R.C., Cook, A.K., O’Connor, P.M., Zhang, S., Pollock, D.M. and Inscho, E.W. (2014) High-Salt Diet Blunts Renal Autoregulation by a Reactive Oxygen Species-Dependent Mechanism. American Journal of Physiology-Renal Physiology, 307, F33-F40. [Google Scholar] [CrossRef
[63] Hosohata, K., Yoshi-oka, D., Tanaka, A., Ando, H. and Fujimura, A. (2016) Early Urinary Biomarkers for Renal Tubular Damage in Spontaneously Hyper-tensive Rats on a High Salt Intake. Hypertension Research, 39, 19-26. [Google Scholar] [CrossRef
[64] Washino, S., Hosohata, K., Jin, D., Takai, S. and Miyagawa, T. (2018) Early Urinary Biomarkers of Renal Tubular Damage by a High-Salt Intake Independent of Blood Pressure in Normotensive Rats. Clinical and Ex-perimental Pharmacology and Physiology, 45, 261-268. [Google Scholar] [CrossRef
[65] Zeng, F., Miyazawa, T., Kloepfer, L.A. and Harris, R.C. (2018) ErbB4 Deletion Accelerates Renal Fibrosis Following Renal Injury. American Journal of Phys-iology-Renal Physiology, 314, F773-F787. [Google Scholar] [CrossRef
[66] Washino, S., Hosohata, K. and Miyagawa, T. (2020) Roles Played by Bi-omarkers of Kidney Injury in Patients with Upper Urinary Tract Obstruction. International Journal of Molecular Sciences, 21, Article 5490. [Google Scholar] [CrossRef
[67] Nilsson, L., Madsen, K., Krag, S., Frøkiær, J., Jensen, B.L. and Nørregaard, R. (2015) Disruption of Cyclooxygenase Type 2 Exacerbates Apoptosis and Renal Damage during Obstructive Nephropathy. American Journal of Physiology-Renal Physiology, 309, F1035-F1048. [Google Scholar] [CrossRef
[68] Hong, F., Wu, N., Ge, Y., Zhou, Y., Shen, T., Qiang, Q., et al. (2016) Nanosized Titanium Dioxide Resulted in the ctiAvation of TGF-Beta/Smads/p38MAPK Pathway in Renal Inflammation and Fibration of Mice. Journal of Biomedical Materials Research Part A, 104, 1452-1461. [Google Scholar] [CrossRef
[69] Juett, L.A., James, L.J. and Mears, S.A. (2020) Effects of Exercise on Acute Kidney Injury Biomarkers and the Potential Influence of Fluid Intake. Annals of Nutrition and Metabolism, 76, 53-59. [Google Scholar] [CrossRef
[70] Hosohata, K., Washino, S., Kubo, T., Natsui, S., Fujisaki, A., Kurokawa, S., et al. (2016) Early Prediction of Cisplatin-Induced Nephrotoxicity by Urinary Vanin-1 in Patients with Urothelial Carcinoma. Toxicology, 359, 71-75. [Google Scholar] [CrossRef
[71] Hosohata, K., Matsuoka, H. and Kumagai, E. (2021) Association of Urinary Vanin-1 with Kidney Function Decline in Hypertensive Patients. The Journal of Clinical Hypertension, 23, 1316-1321. [Google Scholar] [CrossRef
[72] Hosohata, K., Matsuoka, H., Iwanaga, K. and Kumagai, E. (2020) Urinary Vanin-1 Asso-ciated with Chronic Kidney Disease in Hypertensive Patients: A Pilot Study. The Journal of Clinical Hypertension, 22, 1458-1465. [Google Scholar] [CrossRef
[73] Lima, C. and Macedo, E. (2018) Urinary Biochemistry in the Diagnosis of Acute Kidney Injury. Disease Markers, 2018, 1-7. [Google Scholar] [CrossRef
[74] Krzemień, G., Pańczyk-Tomaszewska, M., Górska, E. and Szmigielska, A. (2021) Urinary Vanin-1 for Predicting Acute Pyelonephritis in Young Children with Urinary Tract Infection: A Pilot Study. Biomarkers, 26, 318-324. [Google Scholar] [CrossRef
[75] Rahman, M., Shad, F. and Smith, M.C. (2012) Acute Kidney Injury: A Guide to Diagnosis and Management. American Family Physician, 86, 631-639.
[76] Nolen, B.M. and Lokshin, A.E. (2011) The Ad-vancement of Biomarker-Based Diagnostic Tools for Ovarian, Breast, and Pancreatic Cancer through the Use of Urine as an Analytical Biofluid. The International Journal of Biological Markers, 26, 141-152. [Google Scholar] [CrossRef
[77] Feng, Y., Xu, S., Guo, H., Ren, T., Huan, S., Yuan, L., et al. (2023) Vanin-1-Activated Chemiluminescent Probe: Help to Early Diagnosis of Acute Kidney Injury with High Signal-to-Noise Ratio through Urinalysis. Analytical Chemistry, 95, 14754-14761. [Google Scholar] [CrossRef
[78] Oraby, M.A., El-Yamany, M.F., Safar, M.M., Assaf, N. and Ghoneim, H.A. (2019) Amelioration of Early Markers of Diabetic Nephropathy by Linagliptin in Fructose-Streptozotocin-Induced Type 2 Diabetic Rats. Nephron, 141, 273-286. [Google Scholar] [CrossRef
[79] Gensollen, T., Bourges, C., Rihet, P., Rostan, A., Millet, V., Noguchi, T., et al. (2013) Functional Polymorphisms in the Regulatory Regions of the VNN1 Gene Are Associated with Susceptibility to Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 19, 2315-2325. [Google Scholar] [CrossRef
[80] Zhang, X., Cong, W. and Lu, A. (2022) Vanin-1 as a Novel Biomarker for Chronic Obstructive Pulmonary Disease. Heart & Lung, 56, 91-95. [Google Scholar] [CrossRef
[81] Huang, H., Dong, X., Kang, M.X., Xu, B., Chen, Y., Zhang, B., et al. (2010) Novel Blood Biomarkers of Pancreatic Cancer-Associated Diabetes Mellitus Identified by Peripheral Blood-Based Gene Expression Profiles. American Journal of Gastroenterology, 105, 1661-1669. [Google Scholar] [CrossRef
[82] Kang, M., Qin, W., Buya, M., Dong, X., Zheng, W., Lu, W., et al. (2016) VNN1, a Potential Biomarker for Pancreatic Cancer-Associated New-Onset Diabetes, Aggravates Paraneoplastic Islet Dysfunction by Increasing Oxidative Stress. Cancer Letters, 373, 241-250. [Google Scholar] [CrossRef
[83] Bartucci, R., Salvati, A., Olinga, P. and Boersma, Y.L. (2019) Vanin 1: Its Physiological Function and Role in Diseases. International Journal of Molecular Sciences, 20, Article 3891. [Google Scholar] [CrossRef
[84] Pitari, G., Malergue, F., Martin, F., Philippe, J.M., Massucci, M.T., Chabret, C., et al. (2000) Pantetheinase Activity of Membrane-Bound Vanin-1: Lack of Free Cysteam-ine in Tissues of Vanin-1 Deficient Mice. FEBS Letters, 483, 149-154. [Google Scholar] [CrossRef
[85] Motomura, W., Yoshizaki, T., Takahashi, N., Kumei, S., Mizukami, Y., Jang, S., et al. (2012) Analysis of Vanin-1 Upregulation and Lipid Accumulation in Hepatocytes in Response to a High-Fat Diet and Free Fatty Acids. Journal of Clinical Biochemistry and Nutrition, 51, 163-169. [Google Scholar] [CrossRef
[86] Chen, S., Zhang, W., Tang, C., Tang, X., Liu, L. and Liu, C. (2014) Vanin-1 Is a Key Activator for Hepatic Gluconeogenesis. Diabetes, 63, 2073-2085. [Google Scholar] [CrossRef
[87] Ferreira, D.W., Naquet, P. and Manautou, J.E. (2015) Influence of Vanin-1 and Catalytic Products in Liver during Normal and Oxidative Stress Conditions. Current Medicinal Chemistry, 22, 2407-2416. [Google Scholar] [CrossRef
[88] Galland, F., Malergue, F., Bazin, H., Mattei, M.G., Aurrand-Lions, M., Theillet, C., et al. (1998) Two Human Genes Related to Murine Vanin-1 Are Located on the Long Arm of Human Chromosome 6. Genomics, 53, 203-213. [Google Scholar] [CrossRef
[89] Qin, W., Kang, M., Li, C., Zheng, W. and Guo, Q. (2023) VNN1 Overexpression in Pancreatic Cancer Cells Inhibits Paraneoplastic Islet Function by Increasing Oxidative Stress and Inducing Β‑Cell Dedifferentiation. Oncology Reports, 49, Article No. 120. [Google Scholar] [CrossRef
[90] Jana, S., Mitra, P. and Roy, S. (2022) Profi-cient Novel Biomarkers Guide Early Detection of Acute Kidney Injury: A Review. Diseases, 11, Article 8. [Google Scholar] [CrossRef
[91] Bhargava, P. and Schnellmann, R.G. (2017) Mitochondrial Energetics in the Kid-ney. Nature Reviews Nephrology, 13, 629-646. [Google Scholar] [CrossRef
[92] Hoste, E.A.J., Kellum, J.A., Selby, N.M., Zarbock, A., Palevsky, P.M., Bagshaw, S.M., et al. (2018) Global Epidemiology and Outcomes of Acute Kidney Injury. Nature Reviews Nephrology, 14, 607-625. [Google Scholar] [CrossRef
[93] Noble, R.A., Lucas, B.J. and Selby, N.M. (2020) Long-Term Outcomes in Patients with Acute Kidney Injury. Clinical Journal of the American Society of Nephrology, 15, 423-429. [Google Scholar] [CrossRef
[94] Levey, A.S. and James, M.T. (2017) Acute Kidney Injury. Annals of Internal Medi-cine, 167, ITC66-ITC80. [Google Scholar] [CrossRef
[95] Yoon, S.Y., Kim, J.S., Jeong, K.H. and Kim, S.K. (2022) Acute Kidney Injury: Bi-omarker-Guided Diagnosis and Management. Medicina, 58, Article 340. [Google Scholar] [CrossRef
[96] James, M.T., Bhatt, M., Pannu, N. and Tonelli, M. (2020) Long-Term Outcomes of Acute Kidney Injury and Strategies for Improved Care. Nature Reviews Nephrology, 16, 193-205. [Google Scholar] [CrossRef
[97] Chen, T.K., Knicely, D.H. and Grams, M.E. (2019) Chronic Kidney Disease Diagnosis and Management: A Review. Journal of the American Medical Association, 322, 1294-1304. [Google Scholar] [CrossRef
[98] Webster, A.C., Nagler, E.V., Morton, R.L. and Masson, P. (2017) Chronic Kidney Disease. The Lancet, 389, 1238-1252. [Google Scholar] [CrossRef
[99] Rysz, J., Gluba-Brzózka, A., Franczyk, B., Jabłonowski, Z. and Ciałkow-ska-Rysz, A. (2017) Novel Biomarkers in the Diagnosis of Chronic Kidney Disease and the Prediction of Its Outcome. International Journal of Molecular Sciences, 18, Article 1702. [Google Scholar] [CrossRef
[100] Gobe, G.C. and Johnson, D.W. (2007) Distal Tubular Epithelial Cells of the Kidney: Potential Support for Proximal Tubular Cell Survival after Renal Injury. The In-ternational Journal of Biochemistry & Cell Biology, 39, 1551-1561. [Google Scholar] [CrossRef
[101] Martin, F., Penet, M., Malergue, F., Lepidi, H., Dessein, A., Galland, F., et al. (2004) Vanin-1–/– Mice Show Decreased NSAID- and Schistosoma-Induced Intestinal Inflammation Associated with Higher Gluta-thione Stores. Journal of Clinical Investigation, 113, 591-597. [Google Scholar] [CrossRef
[102] Hu, Y.W., Wu, S.G., Zhao, J.J., Ma, X., Lu, J.B., Xiu, J.C., et al. (2016) VNN1 Promotes Atherosclerosis Progression in apoE-/- Mice Fed a High-Fat/High-Cholesterol Diet. Journal of Lipid Research, 57, 1398-1411. [Google Scholar] [CrossRef
[103] Berruyer, C., Martin, F.M., Castellano, R., Macone, A., Malergue, F., Garrido-Urbani, S., et al. (2004) Vanin-1−/− Mice Exhibit a Glutathione-Mediated Tissue Resistance to Oxidative Stress. Molecular and Cellular Biol-ogy, 24, 7214-7224. [Google Scholar] [CrossRef
[104] Berruyer, C., Pouyet, L., Millet, V., Martin, F.M., LeGoffic, A., Canonici, A., et al. (2006) Vanin-1 Licenses Inflammatory Mediator Production by Gut Epithelial Cells and Controls Colitis by Antag-onizing Peroxisome Proliferator-Activated Receptor γ Activity. The Journal of Experimental Medicine, 203, 2817-2827. [Google Scholar] [CrossRef
[105] Saghaei, F., Karimi, I., Jouyban, A. and Samini, M. (2012) Effects of Captopril on the Cysteamine-Induced Duodenal Ulcer in the Rat. Experimental and Toxicologic Pathology, 64, 373-377. [Google Scholar] [CrossRef
[106] Gloire, G., Legrand-Poels, S. and Piette, J. (2006) NF-κB Activation by Reactive Oxygen Species: Fifteen Years Later. Biochemical Pharmacology, 72, 1493-1505. [Google Scholar] [CrossRef
[107] Matoba, K., Kawanami, D., Ishizawa, S., Kanazawa, Y., Yokota, T. and Utsuno-miya, K. (2010) Rho-Kinase Mediates TNF-α-Induced MCP-1 Expression via P38 MAPK Signaling Pathway in Mesangial Cells. Bi-ochemical and Biophysical Research Communications, 402, 725-730. [Google Scholar] [CrossRef
[108] Wu, D., Luo, N., Wang, L., Zhao, Z., Bu, H., Xu, G., et al. (2017) Hydrogen Sulfide Ameliorates Chronic Renal Failure in Rats by Inhibiting Apoptosis and Inflammation through ROS/MAPK and NF-κB Signaling Pathways. Scientific Reports, 7, Article No. 455. [Google Scholar] [CrossRef
[109] Zhang, B., Lo, C., Shen, L., Sood, R., Jones, C., Cusmano-Ozog, K., et al. (2011) The Role of Vanin-1 and Oxidative Stress-Related Pathways in Distinguishing Acute and Chronic Pediatric ITP. Blood, 117, 4569-4579. [Google Scholar] [CrossRef
[110] Kurzhagen, J.T., Dellepiane, S., Cantaluppi, V. and Rabb, H. (2020) AKI: An Increasingly Recognized Risk Factor for CKD Development and Progression. Journal of Nephrology, 33, 1171-1187. [Google Scholar] [CrossRef
[111] Wang, Z. and Zhang, C. (2022) From AKI to CKD: Maladaptive Repair and the Underlying Mechanisms. International Journal of Molecular Sciences, 23, Article 10880. [Google Scholar] [CrossRef
[112] Mizerska-Wasiak, M., Płatos, E., Cichoń-Kawa, K., Demkow, U. and Pańczyk-Tomaszewska, M. (2022) The Usefulness of Vanin-1 and Periostin as Markers of an Active Autoimmune Process or Renal Fibrosis in Children with Iga Nephropathy and IgA Vasculitis with Nephritis—A Pilot Study. Journal of Clinical Medicine, 11, Article 1265. [Google Scholar] [CrossRef
[113] Xiao, Y., Liu, J., Peng, Y., Xiong, X., Huang, L., Yang, H., et al. (2016) GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Ex-pression. PLOS ONE, 11, e0160855. [Google Scholar] [CrossRef
[114] Dammanahalli, K.J., Stevens, S. and Terkeltaub, R. (2012) Vanin-1 Pantetheinase Drives Smooth Muscle Cell Activation in Post-Arterial Injury Neointimal Hyperplasia. PLOS ONE, 7, e39106. [Google Scholar] [CrossRef
[115] Liu, R.M. and Desai, L.P. (2015) Reciprocal Regula-tion of TGF-β and Reactive Oxygen Species: A Perverse Cycle for Fibrosis. Redox Biology, 6, 565-577. [Google Scholar] [CrossRef
[116] Rhyu, D.Y., Yang, Y., Ha, H., Lee, G.T., Song, J.S., Uh, S., et al. (2005) Role of Reactive Oxygen Species in TGF-β1-Induced Mitogen-Activated Protein Kinase Activation and Epithelial-Mesenchymal Transition in Renal Tubular Epithelial Cells. Journal of the American Society of Nephrology, 16, 667-675. [Google Scholar] [CrossRef
[117] Bondi, C.D., Manickam, N., Lee, D.Y., Block, K., Gorin, Y., Abboud, H.E., et al. (2010) NAD(P)H Oxidase Mediates TGF-β1-Induced Activation of Kidney Myofibroblasts. Journal of the American Society of Neph-rology, 21, 93-102. [Google Scholar] [CrossRef
[118] Huang, W., Akhter, H., Jiang, C., MacEwen, M., Ding, Q., Antony, V., et al. (2015) Plasminogen Activator Inhibitor 1, Fibroblast Apoptosis Resistance, and Aging-Related Susceptibility to Lung Fibrosis. Ex-perimental Gerontology, 61, 62-75. [Google Scholar] [CrossRef
[119] Vayalil, P.K., Iles, K.E., Choi, J., Yi, A., Postlethwait, E.M. and Liu, R. (2007) Glutathione Suppresses TGF-β-Induced PAI-1 Expression by Inhibiting P38 and JNK MAPK and the Binding of AP-1, SP-1, and Smad to the PAI-1 Promoter. American Journal of Physiology-Lung Cellular and Molecular Physiology, 293, L1281-L1292. [Google Scholar] [CrossRef
[120] Hosohata, K., Jin, D., Takai, S. and Iwanaga, K. (2018) Vanin-1 in Renal Pelvic Urine Reflects Kidney Injury in a Rat Model of Hydronephrosis. International Journal of Molecular Sciences, 19, Article 3186. [Google Scholar] [CrossRef
[121] Proksch, E., de Bony, R., Trapp, S. and Boudon, S. (2017) Topical Use of Dexpan-thenol: A 70th Anniversary Article. Journal of Dermatological Treatment, 28, 766-773. [Google Scholar] [CrossRef
[122] Kavian, N., Mehlal, S., Marut, W., Servettaz, A., Giessner, C., Bourges, C., et al. (2016) Imbalance of the Vanin-1 Pathway in Systemic Sclerosis. The Journal of Immunology, 197, 3326-3335. [Google Scholar] [CrossRef
[123] Washino, S., Hosohata, K., Oshima, M., Okochi, T., Konishi, T., Nakamura, Y., et al. (2019) A Novel Biomarker for Acute Kidney Injury, Vanin-1, for Obstructive Nephropathy: A Prospective Cohort Pilot Study. International Journal of Molecular Sciences, 20, Article 899. [Google Scholar] [CrossRef
[124] Zhang, Y. and Qin, X. (2020) Urinary Vanin-1 and Chronic Kidney Disease in Hypertensive Patients. The Journal of Clinical Hypertension, 22, 1466-1468. [Google Scholar] [CrossRef
[125] Hosohata, K. (2017) Biomarkers for Chronic Kidney Disease Associated with High Salt Intake. International Journal of Molecular Sciences, 18, Article 2080. [Google Scholar] [CrossRef
[126] Chen, J., Lu, H., Wang, X., Yang, J., Luo, J., Wang, L., et al. (2022) vnn1 Contributes to the Acute Kidney Injury-Chronic Kidney Disease Transi-tion by Promoting Cellular Senescence via Affecting rb1 Expression. The FASEB Journal, 36, e22472. [Google Scholar] [CrossRef
[127] Hosohata, K., Ando, H. and Fujimura, A. (2012) Urinary Vanin-1 as a Novel Bi-omarker for Early Detection of Drug-Induced Acute Kidney Injury. The Journal of Pharmacology and Experimental Therapeutics, 341, 656-662. [Google Scholar] [CrossRef
[128] Hosohata, K. (2021) Biomarkers of High Salt Intake. Advances in Clinical Chemis-try, 104, 71-106.
[129] Bidani, A. and Churchill, P.C. (1989) Acute Renal Failure. Disease-a-Month, 35, 63-132. [Google Scholar] [CrossRef
[130] Hosohata, K., Ando, H. and Fujimura, A. (2014) Early Detection of Renal Injury Using Urinary Vanin-1 in Rats with Experimental Colitis. Journal of Applied Toxicology, 34, 184-190. [Google Scholar] [CrossRef
[131] Hosohata, K., Ando, H., Fujiwara, Y. and Fujimura, A. (2011) Vanin-1; A Potential Bi-omarker for Nephrotoxicant-Induced Renal Injury. Toxicology, 290, 82-88. [Google Scholar] [CrossRef
[132] Weber, S. and Saftig, P. (2012) Ectodomain Shedding and Adams in Development. Development, 139, 3693-3709. [Google Scholar] [CrossRef
[133] Haugen, E. and Nath, K.A. (1999) The Involvement of Oxidative Stress in the Progres-sion of Renal Injury. Blood Purification, 17, 58-65. [Google Scholar] [CrossRef
[134] Jansen, P.A.M., Kamsteeg, M., Rodijk-Olthuis, D., van Vlijmen-Willems, I.M.J.J., de Jongh, G.J., Bergers, M., et al. (2009) Expression of the Vanin Gene Family in Normal and Inflamed Human Skin: Induction by Proinflammatory Cytokines. Journal of Investigative Dermatology, 129, 2167-2174. [Google Scholar] [CrossRef
[135] Hosohata, K., Jin, D. and Takai, S. (2021) In Vivo and in Vitro Evaluation of Urinary Biomarkers in Ischemia/Reperfusion-Induced Kidney Injury. International Journal of Molecular Sciences, 22, Article 11448. [Google Scholar] [CrossRef
[136] Oraby, M.A., El-Yamany, M.F., Safar, M.M., Assaf, N. and Ghoneim, H.A. (2019) Dapagliflozin Attenuates Early Markers of Diabetic Nephropathy in Fructose-Streptozotocin-Induced Diabetes in Rats. Biomedicine & Pharmacotherapy, 109, 910-920. [Google Scholar] [CrossRef
[137] Sullivan, J.M. and Ratts, T.E. (1983) He-modynamic Mechanisms of Adaptation to Chronic High Sodium Intake in Normal Humans. Hypertension, 5, 814-820. [Google Scholar] [CrossRef
[138] Hosohata, K., Jin, D., Takai, S. and Iwanaga, K. (2019) Involvement of Vanin-1 in Ameliorating Effect of Oxidative Renal Tubular Injury in Dahl-Salt Sensitive Rats. International Journal of Molecular Sciences, 20, Article 4481. [Google Scholar] [CrossRef
[139] Kitiyakara, C., Chabrashvili, T., Chen, Y., Blau, J., Karber, A., Aslam, S., et al. (2003) Salt Intake, Oxidative Stress, and Renal Expression of NADPH Oxidase and Superoxide Dismutase. Journal of the American Society of Nephrology, 14, 2775-2782. [Google Scholar] [CrossRef
[140] Lai, E.Y., Luo, Z., Onozato, M.L., Ru-dolph, E.H., Solis, G., Jose, P.A., et al. (2012) Effects of the Antioxidant Drug Tempol on Renal Oxygenation in Mice with Reduced Renal Mass. American Journal of Physiology-Renal Physiology, 303, F64-F74. [Google Scholar] [CrossRef
[141] Hultström, M. (2012) Development of Structural Kidney Damage in Spontane-ously Hypertensive Rats. Journal of Hypertension, 30, 1087-1091. [Google Scholar] [CrossRef
[142] Kai, H., Mori, T., Tokuda, K., Takayama, N., Tahara, N., Takemiya, K., et al. (2006) Pressure Overload-Induced Transient Oxidative Stress Mediates Perivascular Inflammation and Cardiac Fibrosis through Angiotensin II. Hypertension Research, 29, 711-718. [Google Scholar] [CrossRef
[143] Keidar, S., Kaplan, M., Pavlotzky, E., Coleman, R., Hayek, T., Hamoud, S., et al. (2004) Aldosterone Administration to Mice Stimulates Macrophage NADPH Oxidase and Increases Atherosclerosis Development: A Possible Role for Angiotensin-Converting Enzyme and the Receptors for Angiotensin II and Aldosterone. Circulation, 109, 2213-2220. [Google Scholar] [CrossRef
[144] Fellner, R.C., Cook, A.K., O’Connor, P.M., Zhang, S., Pollock, D.M. and Inscho, E.W. (2014) High-Salt Diet Blunts Renal Autoregulation by a Reactive Oxygen Species-Dependent Mechanism. American Journal of Physiology-Renal Physiology, 307, F33-F40. [Google Scholar] [CrossRef
[145] Hosohata, K., Yoshi-oka, D., Tanaka, A., Ando, H. and Fujimura, A. (2016) Early Urinary Biomarkers for Renal Tubular Damage in Spontaneously Hyper-tensive Rats on a High Salt Intake. Hypertension Research, 39, 19-26. [Google Scholar] [CrossRef
[146] Washino, S., Hosohata, K., Jin, D., Takai, S. and Miyagawa, T. (2018) Early Urinary Biomarkers of Renal Tubular Damage by a High-Salt Intake Independent of Blood Pressure in Normotensive Rats. Clinical and Ex-perimental Pharmacology and Physiology, 45, 261-268. [Google Scholar] [CrossRef
[147] Zeng, F., Miyazawa, T., Kloepfer, L.A. and Harris, R.C. (2018) ErbB4 Deletion Accelerates Renal Fibrosis Following Renal Injury. American Journal of Phys-iology-Renal Physiology, 314, F773-F787. [Google Scholar] [CrossRef
[148] Washino, S., Hosohata, K. and Miyagawa, T. (2020) Roles Played by Bi-omarkers of Kidney Injury in Patients with Upper Urinary Tract Obstruction. International Journal of Molecular Sciences, 21, Article 5490. [Google Scholar] [CrossRef
[149] Nilsson, L., Madsen, K., Krag, S., Frøkiær, J., Jensen, B.L. and Nørregaard, R. (2015) Disruption of Cyclooxygenase Type 2 Exacerbates Apoptosis and Renal Damage during Obstructive Nephropathy. American Journal of Physiology-Renal Physiology, 309, F1035-F1048. [Google Scholar] [CrossRef
[150] Hong, F., Wu, N., Ge, Y., Zhou, Y., Shen, T., Qiang, Q., et al. (2016) Nanosized Titanium Dioxide Resulted in the ctiAvation of TGF-Beta/Smads/p38MAPK Pathway in Renal Inflammation and Fibration of Mice. Journal of Biomedical Materials Research Part A, 104, 1452-1461. [Google Scholar] [CrossRef
[151] Juett, L.A., James, L.J. and Mears, S.A. (2020) Effects of Exercise on Acute Kidney Injury Biomarkers and the Potential Influence of Fluid Intake. Annals of Nutrition and Metabolism, 76, 53-59. [Google Scholar] [CrossRef
[152] Hosohata, K., Washino, S., Kubo, T., Natsui, S., Fujisaki, A., Kurokawa, S., et al. (2016) Early Prediction of Cisplatin-Induced Nephrotoxicity by Urinary Vanin-1 in Patients with Urothelial Carcinoma. Toxicology, 359, 71-75. [Google Scholar] [CrossRef
[153] Hosohata, K., Matsuoka, H. and Kumagai, E. (2021) Association of Urinary Vanin-1 with Kidney Function Decline in Hypertensive Patients. The Journal of Clinical Hypertension, 23, 1316-1321. [Google Scholar] [CrossRef
[154] Hosohata, K., Matsuoka, H., Iwanaga, K. and Kumagai, E. (2020) Urinary Vanin-1 Asso-ciated with Chronic Kidney Disease in Hypertensive Patients: A Pilot Study. The Journal of Clinical Hypertension, 22, 1458-1465. [Google Scholar] [CrossRef
[155] Lima, C. and Macedo, E. (2018) Urinary Biochemistry in the Diagnosis of Acute Kidney Injury. Disease Markers, 2018, 1-7. [Google Scholar] [CrossRef
[156] Krzemień, G., Pańczyk-Tomaszewska, M., Górska, E. and Szmigielska, A. (2021) Urinary Vanin-1 for Predicting Acute Pyelonephritis in Young Children with Urinary Tract Infection: A Pilot Study. Biomarkers, 26, 318-324. [Google Scholar] [CrossRef
[157] Rahman, M., Shad, F. and Smith, M.C. (2012) Acute Kidney Injury: A Guide to Diagnosis and Management. American Family Physician, 86, 631-639.
[158] Nolen, B.M. and Lokshin, A.E. (2011) The Ad-vancement of Biomarker-Based Diagnostic Tools for Ovarian, Breast, and Pancreatic Cancer through the Use of Urine as an Analytical Biofluid. The International Journal of Biological Markers, 26, 141-152. [Google Scholar] [CrossRef
[159] Feng, Y., Xu, S., Guo, H., Ren, T., Huan, S., Yuan, L., et al. (2023) Vanin-1-Activated Chemiluminescent Probe: Help to Early Diagnosis of Acute Kidney Injury with High Signal-to-Noise Ratio through Urinalysis. Analytical Chemistry, 95, 14754-14761. [Google Scholar] [CrossRef
[160] Oraby, M.A., El-Yamany, M.F., Safar, M.M., Assaf, N. and Ghoneim, H.A. (2019) Amelioration of Early Markers of Diabetic Nephropathy by Linagliptin in Fructose-Streptozotocin-Induced Type 2 Diabetic Rats. Nephron, 141, 273-286. [Google Scholar] [CrossRef
[161] Gensollen, T., Bourges, C., Rihet, P., Rostan, A., Millet, V., Noguchi, T., et al. (2013) Functional Polymorphisms in the Regulatory Regions of the VNN1 Gene Are Associated with Susceptibility to Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 19, 2315-2325. [Google Scholar] [CrossRef
[162] Zhang, X., Cong, W. and Lu, A. (2022) Vanin-1 as a Novel Biomarker for Chronic Obstructive Pulmonary Disease. Heart & Lung, 56, 91-95. [Google Scholar] [CrossRef
[163] Huang, H., Dong, X., Kang, M.X., Xu, B., Chen, Y., Zhang, B., et al. (2010) Novel Blood Biomarkers of Pancreatic Cancer-Associated Diabetes Mellitus Identified by Peripheral Blood-Based Gene Expression Profiles. American Journal of Gastroenterology, 105, 1661-1669. [Google Scholar] [CrossRef
[164] Kang, M., Qin, W., Buya, M., Dong, X., Zheng, W., Lu, W., et al. (2016) VNN1, a Potential Biomarker for Pancreatic Cancer-Associated New-Onset Diabetes, Aggravates Paraneoplastic Islet Dysfunction by Increasing Oxidative Stress. Cancer Letters, 373, 241-250. [Google Scholar] [CrossRef