基于网络药理学及分子对接技术探究清肝解郁汤加减治疗多囊卵巢综合征的作用机制
Exploring the Mechanism of Action of Qinggan Jieyu Decoction and Its Modified Formula in the Treatment of Polycystic Ovary Syndrome Based on Network Pharmacology and Molecular Docking Technology
DOI: 10.12677/acrem.2025.134057, PDF, HTML, XML,    科研立项经费支持
作者: 刘甜甜*:黑龙江中医药大学第一临床医学院,黑龙江 哈尔滨;姚美玉#:黑龙江中医药大学附属第一医院妇科,黑龙江 哈尔滨
关键词: 清肝解郁汤加减多囊卵巢综合征网络药理学中药复方药物靶点分子对接技术Modified Qinggan Jieyu Decoction Polycystic Ovary Syndrome Network Pharmacology Drug Targets of Chinese Medicine Compounding Molecular Docking
摘要: 目的:通过网络药理学探究中药复方清肝解郁汤加减治疗多囊卵巢综合征的有效分子机制,并通过分子对接技术加以验证。方法:运用TCSMP数据库筛选出清肝解郁汤加减中各中药的活性成分,再用Pubchem及SwissTarget数据库筛选出每个活性成分所对应的靶点,运用Genecards、TTD、Drungbank、OMIM等数据库收集多囊卵巢综合征的疾病靶点;将清肝解郁汤加减的活性成分对应的靶点与多囊卵巢综合征的疾病靶点取交集,作为关键靶点;运用STRING数据库构建蛋白与蛋白互作网络(PPI);再用Cytoscape3.10.1软件构建药物–活性成分–潜在靶点网络;运用DAVID数据库进行GO以及KEGG富集通路的分析;最后应用Autodock Tools及Autodock Vina对中药复方中药物的核心成分与疾病的关键靶点进行分子对接验证,最后运用Pymol进行可视化分析。结果:获得清肝解郁汤加减的活性成分所对应的靶点1054个,多囊卵巢综合征疾病靶点1189个,取交集得到清肝解郁汤加减与多囊卵巢综合征的关键靶点175个;用PPI网络对关键靶点进行分析,根据Degree值大小得到核心靶点4个,分别为甘油醛-3-磷酸脱氢酶(GAPDH)、丝氨酸/苏氨酸蛋白激酶(AKT1)、白细胞介素6 (IL-6)、肿瘤坏死因子(TNF);富集分析结果显示,清肝解郁汤加减可能通过调节缺氧诱导因子1信号通路(HIF-1 signaling pathway)、磷脂酰肌醇3-激酶-蛋白激酶B信号通路(P13K-Akt signaling pathway)、叉头框O类家族成员蛋白(FoxO signaling pathway)等信号通路来改善多囊卵巢综合征。分子对接结果显示,核心化合物槲皮素与GAPDH、TNF,β-谷甾醇与TNF,山柰酚与GAPDH,黄芩素与GAPDH等有良好的结合活性。结论:清肝解郁汤加减可通过多靶点、多通路发挥治疗多囊卵巢综合征的作用,为多囊卵巢综合征的治疗及新药研究提供了新思路。
Abstract: Objective: Exploring the effective molecular mechanism of the addition of the Chinese herbal compound Qinggan Jieyu Decoction and its modified formula for the treatment of polycystic ovary syndrome by network pharmacology and verifying it by molecular docking technique. Methods: Screening of the active ingredients of each Chinese medicine in Chinese medicine compound formulae using the TCSMP database. Then, the Pubchem and SwissTarget databases were used to screen the targets corresponding to each active ingredient. Databases such as Genecards, TTD, Drungbank, and OMIM were used to collect the disease targets of PCOS. The intersection of the targets corresponding to the active ingredients of Qinggan Jieyu Decoction and its modified formula and the disease targets of PCOS was taken as the key targets. Construct protein-protein interaction (PPI) network using STRING database; then construct drug-active ingredient-potential target network using Cytoscape 3.10.1 software. The DAVID website was used for GO analysis and KEGG enrichment analysis. Finally, software such as Pymol and Autodock Tools were applied to verify the molecular docking of the core components and key targets, and Pymol was used for visual analysis. Results: A total of 1054 targets corresponding to the active ingredients of QingganJieyu Decoction and its modified formula were obtained, and 1189 disease targets of PCOS were obtained. By taking the intersection, 175 key targets between Qinggan Jieyu Decoction and its modified formula and PCOS were obtained. The key targets were analyzed using the PPI network. According to the Degree values, 4 core targets were obtained, namely glyceraldehyde-3-phosphate dehydrogenase (GAPDH), serine/threonine protein kinase (AKT1), interleukin-6 (IL-6), and tumor necrosis factor (TNF). The results of the enrichment analysis showed that Qinggan Jieyu Decoction and its modified formula may improve PCOS by modulating signalling pathways such as the hypoxia-inducible factor 1 signalling pathway (HIF-1 signalling pathway), phosphatidylinositol 3-kinase-protein kinase B signalling pathway(P13K-Akt signalling pathway), and the FoxO signalling pathway. The results of molecular docking showed that the core compound quercetin had good binding activities with GAPDH and TNF, β-sitosterol with TNF, kaempferol with GAPDH, and baicalein with GAPDH. Conclusion: Qinggan Jieyu Decoction and its modified formula can play a role in treating PCOS through multiple targets and multiple pathways, providing new ideas for the research of new drugs for treating PCOS.
文章引用:刘甜甜, 姚美玉. 基于网络药理学及分子对接技术探究清肝解郁汤加减治疗多囊卵巢综合征的作用机制[J]. 亚洲急诊医学病例研究, 2025, 13(4): 406-418. https://doi.org/10.12677/acrem.2025.134057

1. 引言

多囊卵巢综合征(PCOS)是影响女性健康最常见的内分泌生殖代谢紊乱疾病之一,影响全球5%~15%的女性健康,PCOS的症状包括雄激素过多症(HA)、排卵功能障碍(OD)、多囊卵巢形态学(PCOM)、促性腺激素异常、胰岛素抵抗和代偿性高胰岛素血症[1],而高雄激素血症是青少年表现的核心[2]。PCOS其长期影响远远超过育龄期,PCOS患者表现出生殖异常、2型糖尿病风险增加、冠心病、动脉粥样硬化血脂异常、脑血管发病率以及焦虑和抑郁等,如果妊娠,这些女性罹患妊娠期糖尿病、先兆子痫等疾病的概率大幅度增加[3]。目前口服避孕药以及生活方式的改变被认为是大多数患有PCOS且不想生育的女性的一线疗法,用于调节月经周期和改善高雄激素血症的临床症状[4],但是,有研究表明,长期口服避孕药增加了患乳腺癌的概率[5]

清肝解郁汤原方出自《医宗金鉴·外科心法要诀》,原文论述为:“乳中结核梅李形,按之不移色不红,时时隐痛劳岩渐,证由肝脾郁结成。”主要用于治疗乳房有结块,初起气实者。而清肝解郁汤加减是导师姚美玉教授经过多年临床实践总结而来的,是导师用于治疗非肥胖型PCOS瘀湿热互结型的协定方,导师平时喜研经典,也喜用原方加减,故此方是在原方基础上,再取小柴胡汤、金铃子散,消瘰丸等方之意,经过长期不断的临床实践加减化裁而来,主要由半夏、柴胡、黄芩、赤芍、川楝子、川芎、牡丹皮、当归、茯苓、桔梗、小通草、延胡索、皂角刺、浙贝母、甘草等药物组成,使其兼备疏肝、清热、化瘀、除湿的优良功效,导师认为非肥胖型PCOS患者主要以肝郁为主,肝郁日久则容易化火,木克脾土而有脾湿,木火刑金则有肺热,肝郁气滞则有血瘀,瘀湿热互结则出现PCOS的一系列症状,除有月经紊乱或不孕的主症外,常伴有烦躁易怒,经前胸胁、乳房胀痛,多食而不胖,面额痤疮明显,唇周细须显现,手足心热,口渴,便秘溲黄等;方中柴胡、黄芩、半夏主要用于和解少阳枢机,枢机利则百气转;当归、川芎养肝血,有增强解肝郁之效;茯苓健脾化湿,配伍川楝子、延胡索奏疏肝养肝,化瘀通经之效,又取柴胡主升,川楝子主降,以调节气机升降功能,延胡索再配伍赤芍,以增强活血化瘀之效,浙贝母配伍牡丹皮、桔梗、皂角刺、小通草奏清热化痰除湿、软坚散结之效。本方临床疗效甚佳,故本研究主要运用网络药理学和分子对接技术,从分子层面为清肝解郁汤加减方治疗多囊卵巢综合征提供科学依据。

2. 资料与方法

2.1. 中药复方中各药物活性成分及其靶点筛选

在TCMSP数据库官方网站中检索中药复方中各药物的有效活性成分,筛选条件设置为口服生物利用度(OB值) ≥ 30%,类药性(DL值) ≥ 0.18,获取得到中药复方中各药物的有效活性成分,再通过Pubchem数据库查询化合物SMILES序列后,导入Swisstarget Pridiction数据库预测靶点,对于无法找到相应序列的成分,则提取TCMSP数据库中提供的靶点信息,然后在Uniprot数据库中将靶点的蛋白名称转化成标准的基因名称,以此方法得到中药复方的靶点信息。

2.2. PCOS疾病的靶点获取

分别在Genecards、Drugbank、TTD、OMIM等4个数据库的官方网址中检索“polycystic ovary syndrome,PCOS”,将4个数据库得到的靶点进行汇总去重,以此得到PCOS的疾病靶点。

2.3. 中药复方作用于PCOS的潜在治疗靶点获取

将中药复方的作用靶点和PCOS的疾病靶点同时录入Venny2.1平台,得到二者的交集靶点,以此视为中药复方治疗PCOS的潜在治疗靶点,并绘制文恩图。

2.4. 药物–活性成分–潜在靶点网络构建及拓扑分析

运用Cytoscape3.10.1软件进行药物–活性成分–潜在靶点的网络构建,并对其进行拓扑分析,根据活性成分的Degree值的大小,判断其与潜在靶点的相关性,以此筛选得到的活性成分,则视为中药复方治疗PCOS的核心成分。

2.5. 蛋白–蛋白相互作用(PPI)网络构建及拓扑分析

将潜在治疗靶点上传至STRING数据库官方网站中,并限定物种,设定置信度为0.4,其余参数不变,绘制出蛋白–蛋白相互作用(PPI)网络图,隐藏游离靶点,将网络图导出,并将获得的数据文件保存备用,然后导入Cytoscape3.10.1软件,通过CytoNCA插件分析得到PPI网络中各个节点的度值排序,根据度值大小,以此筛选得到的靶点,则视为中药复方作用于PCOS的关键靶点。

2.6. GO功能及KEGG通路富集分析

将潜在治疗靶点导进DAVID数据库进行聚类分析,对关键靶点相关的细胞组分(CC)、分子功能(MF)和生物过程(BP)进行GO功能与KEGG通路富集分析,再通过微生信可视化云平台绘制柱状图与气泡图。

2.7. 分子对接验证

将“1.4”下得到的有效成分,导入Pubchem网站中得到小分子的3D结构,并通过Open babel2.3.2软件将其转化为mol2文件后备用;之后通过PDB数据库官方网站查询“1.5”下获取的核心靶点的3D结构文件并进行下载保存,然后在Pymol软件进行去小分子、去水、去氢等基础步骤,然后将处理得到的小分子和大蛋白文件导入Autodock Tools软件,运用Autodock Vina进行分子对接,最后运用Pymol软件进行可视化分析。

3. 结果

3.1. 中药复方中药物有效成分及靶点的获取

在TCMSP数据库官方网站中对中药复方中15味药物分别进行检索,并根据OB及DL值筛选之后,检索得到半夏13个、柴胡17个、赤芍29个、川楝子9个、川芎7个、当归2个、茯苓15个、黄芩36个、桔梗7个、牡丹皮11个、小通草3个、延胡索49个、皂角刺11个、浙贝母7个、甘草92个活性成分,共计得到308个有效活性成分;然后在Pubchem及SwissTarget数据库官方网站中检索活性成分对应的靶点及相应的基因名称,以此方法检索不到靶点信息的,则使用TCMSP数据库提供的靶点信息,并在Uniprot数据库官方网站中转化为相应的标准的基因名称,然后将所得到的靶点汇总去重,共获得中药复方靶点1054个。

3.2. PCOS疾病靶点和交集靶点筛选

分别在Genecards、TTD、Drungbank、OMIM等4个数据库官方网站中检索关键词“polycystic ovary syndrome,PCOS”,整理去重后共获得1189个疾病靶点。将“2.1”下得到的中药复方靶点及本条目下得到的疾病靶点同时导入Venny2.1平台,以此得到中药复方与疾病的交集靶点,共计175个,并绘制韦恩图(图1)。

Figure 1. Venn diagram

1. 韦恩图

3.3. 药物–活性成分–潜在靶点网络构建及拓扑分析

将“2.1”下得到的中药复方靶点与“2.2”下得到175个交集靶点同时导入Cytoscape3.10.1软件,进行网络构建,并绘制网络图(图2图3);再运用Cyto NCA插件进行拓扑分析,根据Degree值排名,以排名前5位的活性成分作为中药复方治疗PCOS的核心成分,分别为槲皮素(quercetin)、豆甾醇(Stigmasterol)、β-谷甾醇(beta-sitosterol)、山柰酚(kaempferol)以及黄芩素(baicalein)。

注:图中绿色矩形代表清肝解郁汤加减中的组成药物,紫色五边形代表每个药物的活性成分,蓝色倒三角代表其中几味药共有的成分,红色菱形代表清肝解郁汤加减与多囊卵巢综合征疾病共有靶点,蓝色正三角代表多囊卵巢综合征疾病。

Figure 2. Drug-Active Ingredient-Potential target network diagram

2. 药物–活性成分–潜在靶点网络图

注:图中蓝色代表药物,粉色代表成分,绿色代表靶点,其中图形越大说明相关性越高。

Figure 3. Drug-Active Ingredient-Potential target network diagram

3. 药物–活性成分–潜在靶点网络图

3.4. 蛋白–蛋白相互作用(PPI)网络构建及拓扑分析

Figure 4. PPI interaction network diagram

4. PPI互作网络图

将获得的175个交集靶点导入STRING数据库官方网站中,得到一个175节点、3633条边的网络图(图4);并将保存的“TSV”文件导入Cytoscape3.10.1软件中进行拓扑分析,按照Degree值排序大小,将排在前4位的靶点作为关键靶点,分别为GAPDH、AKT1、IL-6以及TNF。

3.5. GO功能分析

将得到的175个交集靶点基因在DAVID数据库官方网站中进行功能注释,其中包括生物过程(BP) 860条,此类主要涉及基因表达的正调控(positive regulation of gene expression)、对缺氧的反应(response to hypoxia)以及对外源性刺激的反应(response to xenobiotic stimulus)等;分子功能(CC)73条,涉及细胞外空间(extracellular space)、细胞表面(cell surface)以及胞外区(extracellular region)等;细胞组分(MF) 189条,涉及相同的蛋白结合(identical protein binding)、甾体结合(steroid binding)、酶结合(enzyme binding)等,各列出前10条进行可视化(图5)。

Figure 5. GO enrichment bar chart

5. GO富集条形图

3.6. KEGG通路富集分析

将得到的175个交集靶点基因导入DAVID数据库官方网站中进行KEGG通路富集分析,最终结果显示出169条通路,根据P值大小列举前25条通路,并对其进行可视化分析(图6);根据结果分析可知,中药复方治疗PCOS可能主要涉及HIF-1、PI3K-Akt、FoxO等信号通路。

Figure 6. KEGG bubble plot

6. KEGG气泡图

3.7. 分子对接结果

将核心靶点中排名前4位的靶点(GAPDH, AKT1, IL-6, TNF)与中药复方中关键活性成分槲皮素、豆甾醇,β-谷甾醇、山柰酚、黄芩素两两进行分子对接。一般认为,结合能绝对值越大,结合性越强,结合能 < 0 kcal/mol分子间可进行自发结合;结合能 < −1.2 Kcal/mol时表明分子间有很强结合活性。结果可见,主要活性成分与核心靶点对接结合能均为负值,且都小于−5 kcal/mol,说明分子间对接情况良好,具体结合能计算结果见表1

Table 1. Molecular docking results

1. 分子对接结果

Target/Ingredient

quercetin

stigmasterol

beta-sitosterol

keampferol

baicalein

GAPDH

−0.9

−8.1

−8.1

−9.1

−0.9

AKT

−6.5

47.89

−6.4

−6.5

−7.1

IL-6

−7.0

−7.0

−7.1

−6.7

−6.5

TNF

−9.1

8.6

−9.1

−8.9

−8.6

其中,山柰酚与GAPDH的自由结合能为−9.1 kcal/mol、槲皮素与TNF的自由结合能为−9.1 kcal/mol、β-谷甾醇与TNF的自由结合能为−9.1 kcal/mol、槲皮素和GAPDH结合蛋白预测的结合自由能为−9.0 kcal/mol、黄芩素与GAPDH的自由结合能为−9.0 kcal/mol,以上5组对接结合能相对更低,说明结合活性相对更好,且结合较为稳定,故选择该5组进行可视化展示(图7)。

Figure 7. Molecular docking results display

7. 分子对接结果展示

4. 讨论

PCOS以亚临床炎症状态为特征,其发病机制中炎症反应起关键作用[6]。慢性低度炎症可损害胰岛β细胞及卵巢,导致性激素分泌异常及多囊样改变,患者体内IL-6、TNF等炎症标志物水平升高[7],但具体机制尚未完全明确,因此改善炎症反应成为当前研究热点。基于药物–成分–靶点网络分析,按Degree值排序前列的潜在关键化合物包括quercetin、Stigmasterol、beta-sitosterol、kaempferol和baicalein,其中quercetin的Degree值最高,主要分布于柴胡、延胡索、川楝子等中药中。研究显示quercetin作为天然黄酮类化合物,具有抗氧化、抗炎及抗胰岛素抵抗等作用[8],可降低PCOS大鼠胰岛素、IL-1β、IL-6和TNFα水平,抑制NF-κB核易位及Toll样受体/NF-κB通路,改善卵巢炎症微环境[9];还能调节T、E2、LH、FSH及Bax/Bcl-2表达,并通过雄激素合成及CNP/NPR2信号改善卵母细胞成熟和排卵[10]。Stigmasterol是一种植物甾醇,具有抗氧化、抗糖尿病和降脂等效应[11] [12],可抑制TNFα和IL-1β等促炎因子释放,改善卵巢炎症[13]。beta-sitosterol具有广泛生物活性包括抗炎、抗氧化及抗糖尿病等[14],能促进颗粒细胞增殖并抑制凋亡,其机制与激活PI3K/AKT通路相关[15]。kaempferol作为黄酮醇类化合物,具有抗炎、抗氧化及免疫调节作用[16],可通过PI3K-Akt通路促进卵泡发生和维持卵巢功能[17],从而改善胰岛素抵抗、激素失衡及卵巢功能障碍。baicalein则可减轻卵巢氧化应激及脂质过氧化,调控线粒体功能与铁死亡,缓解慢性炎症[18]。上述化合物共同可能通过调节炎症因子释放、改善胰岛素抵抗与卵巢微环境、调控激素水平及排卵功能,从而有效缓解PCOS临床症状,表明中药复方具有良好治疗潜力。

清肝解郁汤加减治疗PCOS具有多靶点作用特征,通过PPI网络分析按Degree值筛选出前4个关键靶点,分别为GAPDH、AKT1、IL-6和TNF,此外,TP53亦发挥重要作用。GAPDH作为管家蛋白除参与糖酵解外,还涉及RNA转运、DNA修复及细胞凋亡等过程[19],其可促进细胞凋亡[20],与卵泡发育密切相关。研究显示PCOS患者卵巢颗粒细胞存在显著自噬,抑制PI3K/AKT/mTOR通路可激活自噬并诱导颗粒细胞凋亡及滤泡闭锁[21],提示该中药复方可能通过激活PI3K/AKT/mTOR信号通路作用于GAPDH,促进细胞凋亡,改善卵泡发育。AKT1作为丝氨酸/苏氨酸激酶是PI3K/Akt通路关键组分,其在卵巢肿瘤中常失调,参与调控细胞增殖、存活与血管生成[22]。研究证实PCOS患者高雄激素血症组中AKT1、AKT2、AR mRNA及p-AKT蛋白表达升高,且与睾酮水平呈正相关[23],表明AKT1与激素水平异常密切相关,中药可能通过PI3K/Akt通路调节激素水平以改善卵泡发育障碍。IL-6作为肝脏CRP生成的促进因子及主要促炎细胞因子[24]。在PCOS患者中水平升高,与胰岛素抵抗及睾酮水平相关[25]。中药复方可能通过降低IL-6水平改善胰岛素抵抗、雄激素过量及卵巢慢性低度炎症。TNF通过TNFR1/TNFR2信号调控炎症、凋亡、增殖等过程[26]。PCOS患者血清TNF及CRP水平升高,伴有免疫细胞浸润及局部炎症微环境[24]。循环TNFα水平升高与胰岛素抵抗及高雄激素血症相关[27]。中药复方可能通过核受体活性、甾体羟化酶活性及细胞因子活性等分子功能,并借助HIF-1、PI3K-Akt、FOXO等信号通路发挥作用。HIF-1是氧稳态关键转录调节因子,其活性由HIF-1α决定[28]。在缺氧条件下稳定性增加[29]。卵泡液低氧环境为卵泡发育至黄体早期所需[30],优势卵泡中HIF-1 mRNA高表达提示其可能crucial于卵泡发育[31]。PI3K-AKT通路参与细胞存活、代谢及炎症反应,激活后可影响NF-κB及炎症因子释放[32]。其失调与PCOS颗粒细胞炎症及氧化应激相关[33]。FoxO1通过转录调控网络参与细胞分化、代谢、凋亡及炎症过程[34]。在PCOS中其信号异常可能与激素变化、TNFα及葡萄糖转运调控相关,进而促进胰岛素抵抗、慢性炎症及高雄激素血症[35]

最后结论:PCOS患者一般免疫微环境发生变化[36]。槲皮素、豆甾醇、β-谷甾醇、山柰酚和黄芩素是中药复方的主要活性成分,这些成分可能通过GAPDH、AKT1、IL-6、TNF等靶点改善PCOS患者的免疫微环境,并基于HIF-1、P13K-Akt等信号通路,从而改善临床症状,这些发现有望指导清肝解郁汤加减治疗PCOS的应用和进一步发展,但是此研究仍然缺乏完善,更加科学的证据还需后续实验加以验证。

基金项目

第三批全省名中医学术经验继承工作指导项目(黑中科教便函[2023] 31号)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Azziz, R. (2016) Introduction: Determinants of Polycystic Ovary Syndrome. Fertility and Sterility, 106, 4-5. [Google Scholar] [CrossRef] [PubMed]
[2] Legro, R.S., Arslanian, S.A., Ehrmann, D.A., Hoeger, K.M., Murad, M.H., Pasquali, R., et al. (2013) Diagnosis and Treatment of Polycystic Ovary Syndrome: An Endocrine Society Clinical Practice Guideline. The Journal of Clinical Endocrinology & Metabolism, 98, 4565-4592. [Google Scholar] [CrossRef] [PubMed]
[3] Lizneva, D., Suturina, L., Walker, W., Brakta, S., Gavrilova-Jordan, L. and Azziz, R. (2016) Criteria, Prevalence, and Phenotypes of Polycystic Ovary Syndrome. Fertility and Sterility, 106, 6-15. [Google Scholar] [CrossRef] [PubMed]
[4] Ghafari, A., Maftoohi, M., Samarin, M.E., Barani, S., Banimohammad, M. and Samie, R. (2025) The Last Update on Polycystic Ovary Syndrome(PCOS), Diagnosis Criteria, and Novel Treatment. Endocrine and Metabolic Science, 17, Article 100228. [Google Scholar] [CrossRef
[5] Dorchak, J.A., Maria, S., Guarinoni, J.L., Duensing, A., Somiari, S., Cavanaugh, J., et al. (2018) The Impact of Hormonal Contraceptives on Breast Cancer Pathology. Hormones and Cancer, 9, 240-253. [Google Scholar] [CrossRef] [PubMed]
[6] Liu, Y., Bai, H., Guan, H., Wang, C., Song, X., Yong, Z., et al. (2025) Animal Experiments and Network Pharmacology to Explore the Anti-Inflammatory Mechanism of Dapagliflozin in the Treatment of Polycystic Ovary Syndrome. Gynecological Endocrinology, 41, Article 2454432. [Google Scholar] [CrossRef] [PubMed]
[7] Liu, Y., Li, Z., Wang, Y., Cai, Q., Liu, H., Xu, C., et al. (2022) IL-15 Participates in the Pathogenesis of Polycystic Ovary Syndrome by Affecting the Activity of Granulosa Cells. Frontiers in Endocrinology, 13, Article ID: 787876. [Google Scholar] [CrossRef] [PubMed]
[8] Ma, C., Xiang, Q., Song, G. and Wang, X. (2022) Quercetin and Polycystic Ovary Syndrome. Frontiers in Pharmacology, 13, Article ID: 1006678. [Google Scholar] [CrossRef] [PubMed]
[9] Wang, Z., Zhai, D., Zhang, D., Bai, L., Yao, R., Yu, J., et al. (2017) Quercetin Decreases Insulin Resistance in a Polycystic Ovary Syndrome Rat Model by Improving Inflammatory Microenvironment. Reproductive Sciences, 24, 682-690. [Google Scholar] [CrossRef] [PubMed]
[10] Zheng, S., Chen, Y., Ma, M. and Li, M. (2022) Mechanism of Quercetin on the Improvement of Ovulation Disorder and Regulation of Ovarian CNP/NPR2 in PCOS Model Rats. Journal of the Formosan Medical Association, 121, 1081-1092. [Google Scholar] [CrossRef] [PubMed]
[11] Huo, R., Yang, W., Liu, Y., Liu, T., Li, T., Wang, C., et al. (2024) Stigmasterol: Remodeling Gut Microbiota and Suppressing Tumor Growth through Treg and CD8+ T Cells in Hepatocellular Carcinoma. Phytomedicine, 129, Article 155225. [Google Scholar] [CrossRef] [PubMed]
[12] Goswami, M., Jaswal, S., Gupta, G.D. and Verma, S.K. (2023) A Comprehensive Update on Phytochemistry, Analytical Aspects, Medicinal Attributes, Specifications and Stability of Stigmasterol. Steroids, 196, Article 109244. [Google Scholar] [CrossRef] [PubMed]
[13] Jie, F., Yang, X., Yang, B., Liu, Y., Wu, L. and Lu, B. (2022) Stigmasterol Attenuates Inflammatory Response of Microglia via NF-κB and NLRP3 Signaling by AMPK Activation. Biomedicine & Pharmacotherapy, 153, Article 113317. [Google Scholar] [CrossRef] [PubMed]
[14] Babu, S. and Jayaraman, S. (2020) An Update on β-Sitosterol: A Potential Herbal Nutraceutical for Diabetic Management. Biomedicine & Pharmacotherapy, 131, Article 110702. [Google Scholar] [CrossRef] [PubMed]
[15] Gao, M., Hong, Y. and Cui, M. (2022) Bushen Huatan Recipe for Treatment of Polycystic Ovary Syndrome: Therapeutic Mechanism Based on Network Pharmacology and Molecular Docking. Journal of Southern Medical University, 42, 1-12.
[16] 雷晓青, 陈鳌, 刘毅, 等. 山萘酚药理作用的研究进展[J]. 微量元素与健康研究, 2017, 34(2): 61-62.
[17] Mishra, S. and Mittal, P. (2025) Delving into the Therapeutic Prospects of Desmostachya Bipinnata (L.) in the Context of Polycystic Ovary Syndrome (PCOS): A Comprehensive Review. Phytomedicine Plus, 5, Article 100741. [Google Scholar] [CrossRef
[18] Li, Y., Peng, Y., Yang, Y., Shi, T., Liu, R., Luan, Y., et al. (2024) Baicalein Improves the Symptoms of Polycystic Ovary Syndrome by Mitigating Oxidative Stress and Ferroptosis in the Ovary and Gravid Placenta. Phytomedicine, 128, Article 155423. [Google Scholar] [CrossRef] [PubMed]
[19] Wang, J., Yu, X., Cao, X., Tan, L., Jia, B., Chen, R., et al. (2023) GAPDH: A Common Housekeeping Gene with an Oncogenic Role in Pan-Cancer. Computational and Structural Biotechnology Journal, 21, 4056-4069. [Google Scholar] [CrossRef] [PubMed]
[20] 禹淞文, 李清明. 甘油醛-3-磷酸脱氢酶的应用进展[J]. 农产品加工(学刊), 2014(9): 51-53.
[21] Tong, C., Wu, Y., Zhang, L. and Yu, Y. (2022) Insulin Resistance, Autophagy and Apoptosis in Patients with Polycystic Ovary Syndrome: Association with PI3K Signaling Pathway. Frontiers in Endocrinology, 13, Article ID: 1091147. [Google Scholar] [CrossRef] [PubMed]
[22] Islam, M.M., Sreeharsha, N., Alshabrmi, F.M., Asif, A.H., Aldhubiab, B., Anwer, M.K., et al. (2023) From Seeds to Survival Rates: Investigating Linum Usitatissimum’s Potential against Ovarian Cancer through Network Pharmacology. Frontiers in Pharmacology, 14, Article ID: 1285258. [Google Scholar] [CrossRef] [PubMed]
[23] Nekoonam, S., Naji, M., Nashtaei, M.S., Mortezaee, K., Koruji, M., Safdarian, L., et al. (2017) Expression of AKT1 along with AKT2 in Granulosa-Lutein Cells of Hyperandrogenic PCOS Patients. Archives of Gynecology and Obstetrics, 295, 1041-1050. [Google Scholar] [CrossRef] [PubMed]
[24] Rudnicka, E., Suchta, K., Grymowicz, M., Calik-Ksepka, A., Smolarczyk, K., Duszewska, A.M., et al. (2021) Chronic Low Grade Inflammation in Pathogenesis of Pcos. International Journal of Molecular Sciences, 22, Article 3789. [Google Scholar] [CrossRef] [PubMed]
[25] Peng, Z., Sun, Y., Lv, X., Zhang, H., Liu, C. and Dai, S. (2016) Interleukin-6 Levels in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. PLOS ONE, 11, e0148531. [Google Scholar] [CrossRef] [PubMed]
[26] Haider, S. and Knöfler, M. (2009) Human Tumour Necrosis Factor: Physiological and Pathological Roles in Placenta and Endometrium. Placenta, 30, 111-123. [Google Scholar] [CrossRef] [PubMed]
[27] Gao, L., Gu, Y. and Yin, X. (2016) High Serum Tumor Necrosis Factor-Alpha Levels in Women with Polycystic Ovary Syndrome: A Meta-Analysis. PLOS ONE, 11, e0164021. [Google Scholar] [CrossRef] [PubMed]
[28] Du, K.M., Chen, G.Q. and Chen, Z. (2004) Regulation of Hypoxia-Inducible Factor-1alpha Expression. Chinese Journal of Cancer, 23, 1098-1102.
[29] Xie, Y., Shi, X., Sheng, K., Han, G., Li, W., Zhao, Q., et al. (2019) Pi3k/Akt Signaling Transduction Pathway, Erythropoiesis and Glycolysis in Hypoxia (Review). Molecular Medicine Reports, 19, 783-791. [Google Scholar] [CrossRef] [PubMed]
[30] Chen, Y., Chai, X., Zhao, Y., Yang, X., Zhong, C. and Feng, Y. (2021) Investigation of the Mechanism of Zishen Yutai Pills on Polycystic Ovary Syndrome: A Network Pharmacology and Molecular Docking Approach. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 6843828. [Google Scholar] [CrossRef] [PubMed]
[31] Li, C., Liu, Z., Li, W., Zhang, L., Zhou, J., Sun, M., et al. (2020) The FSH-HIF-1α-VEGF Pathway Is Critical for Ovulation and Oocyte Health but Not Necessary for Follicular Growth in Mice. Endocrinology, 161, bqaa038. [Google Scholar] [CrossRef] [PubMed]
[32] Guan, H., Li, B., Zhang, Z., Wu, H., He, X., Dong, Y., et al. (2023) Integrated Bioinformatics and Network Pharmacology to Explore the Therapeutic Target and Molecular Mechanisms of Bailing Capsule on Polycystic Ovary Syndrome. BMC Complementary Medicine and Therapies, 23, Article No. 458. [Google Scholar] [CrossRef] [PubMed]
[33] Zhao, Y., Zhang, C., Huang, Y., Yu, Y., Li, R., Li, M., et al. (2015) Up-Regulated Expression of Wnt5a Increases Inflammation and Oxidative Stress via PI3K/Akt/NF-κB Signaling in the Granulosa Cells of PCOS Patients. The Journal of Clinical Endocrinology & Metabolism, 100, 201-211. [Google Scholar] [CrossRef] [PubMed]
[34] Hu, W., Xie, N., Pan, M., Zhang, Q., Zhang, H., Wang, F., et al. (2024) Chinese Herbal Medicine Alleviates Autophagy and Apoptosis in Ovarian Granulosa Cells Induced by Testosterone through PI3K/AKT1/FOXO1 Pathway. Journal of Ethnopharmacology, 318, Article 117025. [Google Scholar] [CrossRef] [PubMed]
[35] Xu, R. and Wang, Z. (2021) Involvement of Transcription Factor Foxo1 in the Pathogenesis of Polycystic Ovary Syndrome. Frontiers in Physiology, 12, Article ID: 649295. [Google Scholar] [CrossRef] [PubMed]
[36] Liu, D., Wei, C., Guan, L., Ju, W., Xiang, S. and Lian, F. (2024) Combining Single-Cell RNA Sequencing and Network Pharmacology to Explore the Target of Cangfu Daotan Decoction in the Treatment of Obese Polycystic Ovary Syndrome from an Immune Perspective. Frontiers in Pharmacology, 15, Article ID: 1451300. [Google Scholar] [CrossRef] [PubMed]