|
[1]
|
Yusefi, A.R., Bagheri Lankarani, K., Bastani, P., et al. (2018) Risk Factors for Gastric Cancer: A Systematic Review. Asian Pacific Journal of Cancer Prevention, 19, 591-603.
|
|
[2]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Biondi, A., Persiani, R., Cananzi, F., et al. (2010) R0 Resection in the Treatment of Gastric Cancer: Room for Improvement. World Journal of Gastroenterology, 16, 3358-3370. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Park, J.S., Lim, J.Y., Park, S.K., Kim, M.K., Ko, H.S., Yoon, S.O., et al. (2011) Prognostic Factors of Second and Third Line Chemotherapy Using 5-FU with Platinum, Irinotecan, and Taxane for Advanced Gastric Cancer. Cancer Research and Treatment, 43, 236-243. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
He, X., Guan, X. and Li, Y. (2025) Clinical Significance of the Tumor Microenvironment on Immune Tolerance in Gastric Cancer. Frontiers in Immunology, 16, Article ID: 1532605. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Shang, Z., Ma, Z., Wu, E., Chen, X., Tuo, B., Li, T., et al. (2024) Effect of Metabolic Reprogramming on the Immune Microenvironment in Gastric Cancer. Biomedicine & Pharmacotherapy, 170, Article ID: 116030. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Gajewski, T.F., Schreiber, H. and Fu, Y. (2013) Innate and Adaptive Immune Cells in the Tumor Microenvironment. Nature Immunology, 14, 1014-1022. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ishimoto, T., Sawayama, H., Sugihara, H. and Baba, H. (2014) Interaction between Gastric Cancer Stem Cells and the Tumor Microenvironment. Journal of Gastroenterology, 49, 1111-1120. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Tiwari, A., Trivedi, R. and Lin, S. (2022) Tumor Microenvironment: Barrier or Opportunity Towards Effective Cancer Therapy. Journal of Biomedical Science, 29, Article No. 83. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yasuda, T. and Wang, Y.A. (2024) Gastric Cancer Immunosuppressive Microenvironment Heterogeneity: Implications for Therapy Development. Trends in Cancer, 10, 627-642. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhang, Z., Zhang, W., Liu, X., Yan, Y. and Fu, W. (2024) T Lymphocyte-Related Immune Response and Immunotherapy in Gastric Cancer (Review). Oncology Letters, 28, Article No. 537. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Farhood, B., Najafi, M. and Mortezaee, K. (2018) CD8(+) Cytotoxic T Lymphocytes in Cancer Immunotherapy: A Review. Journal of Cellular Physiology, 234, 8509-8521. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wei, X., Zhang, J., Gu, Q., Huang, M., Zhang, W., Guo, J., et al. (2017) Reciprocal Expression of IL-35 and IL-10 Defines Two Distinct Effector Treg Subsets that Are Required for Maintenance of Immune Tolerance. Cell Reports, 21, 1853-1869. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Budhu, S., Schaer, D.A., Li, Y., Toledo-Crow, R., Panageas, K., Yang, X., et al. (2017) Blockade of Surface-Bound TGF-β on Regulatory T Cells Abrogates Suppression of Effector T Cell Function in the Tumor Microenvironment. Science Signaling, 10, Article No. 494. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Liu, C., Chikina, M., Deshpande, R., Menk, A.V., Wang, T., Tabib, T., et al. (2019) Treg Cells Promote the Srebp1-Dependent Metabolic Fitness of Tumor-Promoting Macrophages via Repression of CD8+ T Cell-Derived Interferon-γ. Immunity, 51, 381-397.e6. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Chen, D., Zhang, X., Li, Z. and Zhu, B. (2021) Metabolic Regulatory Crosstalk between Tumor Microenvironment and Tumor-Associated Macrophages. Theranostics, 11, 1016-1030. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, D., Xia, L., Huang, P., Wang, Z., Guo, Q., Huang, C., et al. (2023) Cancer-Associated Fibroblast-Secreted IGFBP7 Promotes Gastric Cancer by Enhancing Tumor Associated Macrophage Infiltration via FGF2/FGFR1/PI3K/AKT Axis. Cell Death Discovery, 9, Article No. 17. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Park, R., Williamson, S., Kasi, A. and Saeed, A. (2018) Immune Therapeutics in the Treatment of Advanced Gastric and Esophageal Cancer. Anticancer Research, 38, 5569-5580. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, X., Sun, Z., Peng, G., Xiao, Y., Guo, J., Wu, B., et al. (2022) Single-Cell RNA Sequencing Reveals a Pro-Invasive Cancer-Associated Fibroblast Subgroup Associated with Poor Clinical Outcomes in Patients with Gastric Cancer. Theranostics, 12, 620-638. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Jang, M., Koh, I., Lee, J.E., Lim, J.Y., Cheong, J. and Kim, P. (2018) Increased Extracellular Matrix Density Disrupts E-Cadherin/β-Catenin Complex in Gastric Cancer Cells. Biomaterials Science, 6, 2704-2713. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Giubelan, A., Stancu, M.I., Honţaru, S.O., Mălăescu, G.D., Badea-Voiculescu, O., Firoiu, C., et al. (2023) Tumor Angiogenesis in Gastric Cancer. Romanian Journal of Morphology and Embryology, 64, 311-318. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, C., Yang, Z., Xu, E., Shen, X., Wang, X., Li, Z., et al. (2021) Apolipoprotein C‐II Induces EMT to Promote Gastric Cancer Peritoneal Metastasis via PI3K/AKT/mTOR Pathway. Clinical and Translational Medicine, 11, e522. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Vaupel, P., Schmidberger, H. and Mayer, A. (2019) The Warburg Effect: Essential Part of Metabolic Reprogramming and Central Contributor to Cancer Progression. International Journal of Radiation Biology, 95, 912-919. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Bader, J.E., Voss, K. and Rathmell, J.C. (2020) Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Molecular Cell, 78, 1019-1033. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Matés, J.M., Campos-Sandoval, J.A., Santos-Jiménez, J.d.l. and Márquez, J. (2019) Dysregulation of Glutaminase and Glutamine Synthetase in Cancer. Cancer Letters, 467, 29-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Qian, S., Xie, F., Zhao, H., Liu, Q. and Cai, D. (2024) Prospects in the Application of Ultrasensitive Chromosomal Aneuploidy Detection in Precancerous Lesions of Gastric Cancer. World Journal of Gastrointestinal Surgery, 16, 6-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Shinozaki-Ushiku, A., Kunita, A. and Fukayama, M. (2015) Update on Epstein-Barr Virus and Gastric Cancer (Review). International Journal of Oncology, 46, 1421-1434. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Strong, M.J., Xu, G., Coco, J., Baribault, C., Vinay, D.S., Lacey, M.R., et al. (2013) Differences in Gastric Carcinoma Microenvironment Stratify According to EBV Infection Intensity: Implications for Possible Immune Adjuvant Therapy. PLOS Pathogens, 9, e1003341. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kim, S.Y., Park, C., Kim, H., Park, J., Hwang, J., Kim, J., et al. (2015) Deregulation of Immune Response Genes in Patients with Epstein-Barr Virus-Associated Gastric Cancer and Outcomes. Gastroenterology, 148, 137-147.e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chao, J., Fuchs, C.S., Shitara, K., Tabernero, J., Muro, K., Van Cutsem, E., et al. (2021) Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability-High Gastric or Gastroesophageal Junction Cancer among Patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials. JAMA Oncology, 7, 895-902. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Suh, Y., Na, D., Lee, J., Chae, J., Kim, E., Jang, G., et al. (2020) Comprehensive Molecular Characterization of Adenocarcinoma of the Gastroesophageal Junction between Esophageal and Gastric Adenocarcinomas. Annals of Surgery, 275, 706-717. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ries, C.H., Cannarile, M.A., Hoves, S., Benz, J., Wartha, K., Runza, V., et al. (2014) Targeting Tumor-Associated Macrophages with Anti-CSF-1R Antibody Reveals a Strategy for Cancer Therapy. Cancer Cell, 25, 846-859. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Peyraud, F., Cousin, S. and Italiano, A. (2017) CSF-1R Inhibitor Development: Current Clinical Status. Current Oncology Reports, 19, Article No. 70. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Huang, C., Zhao, L., Rao, X., Zheng, R., Liu, Z., Cai, H., et al. (2024) Chlorin E6 and BLZ945 Based Self‐Assembly for Photodynamic Immunotherapy through Immunogenic Tumor Induction and Tumor‐Associated Macrophage Depletion. Advanced Healthcare Materials, 13, e2304576. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Okugawa, Y., Toiyama, Y., Ichikawa, T., Kawamura, M., Yasuda, H., Fujikawa, H., et al. (2018) Colony-Stimulating Factor-1 and Colony-Stimulating Factor-1 Receptor Co-Expression Is Associated with Disease Progression in Gastric Cancer. International Journal of Oncology, 53, 737-749. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Gelderblom, H. and de Sande, M.v. (2020) Pexidartinib: First Approved Systemic Therapy for Patients with Tenosynovial Giant Cell Tumor. Future Oncology, 16, 2345-2356. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Li, Y., Zheng, Y., Huang, J., Nie, R., Wu, Q., Zuo, Z., et al. (2024) Caf-Macrophage Crosstalk in Tumour Microenvironments Governs the Response to Immune Checkpoint Blockade in Gastric Cancer Peritoneal Metastases. Gut, 74, 350-363. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
He, Z., Chen, D., Wu, J., Sui, C., Deng, X., Zhang, P., et al. (2021) Yes Associated Protein 1 Promotes Resistance to 5-Fluorouracil in Gastric Cancer by Regulating GLUT3-Dependent Glycometabolism Reprogramming of Tumor-Associated Macrophages. Archives of Biochemistry and Biophysics, 702, Article ID: 108838. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Yao, X., He, Z., Qin, C., Deng, X., Bai, L., Li, G., et al. (2020) SLC2A3 Promotes Macrophage Infiltration by Glycolysis Reprogramming in Gastric Cancer. Cancer Cell International, 20, Article No. 503. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhou, X., Fang, D., Liu, H., Ou, X., Zhang, C., Zhao, Z., et al. (2022) PMN-MDSCs Accumulation Induced by CXCL1 Promotes CD8+ T Cells Exhaustion in Gastric Cancer. Cancer Letters, 532, Article ID: 215598. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Cao, J., Liao, S., Zeng, F., Liao, Q., Luo, G. and Zhou, Y. (2023) Effects of Altered Glycolysis Levels on CD8+ T Cell Activation and Function. Cell Death & Disease, 14, Article No. 407. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Wu, L., Jin, Y., Zhao, X., Tang, K., Zhao, Y., Tong, L., et al. (2023) Tumor Aerobic Glycolysis Confers Immune Evasion through Modulating Sensitivity to T Cell-Mediated Bystander Killing via TNF-α. Cell Metabolism, 35, 1580-1596.e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Wang, Y., Zhang, J., Shi, H., Wang, M., Yu, D., Fu, M., et al. (2024) M2 Tumor‐Associated Macrophages‐Derived Exosomal malat1 Promotes Glycolysis and Gastric Cancer Progression. Advanced Science, 11, e2309298. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Joshi, S.S. and Badgwell, B.D. (2021) Current Treatment and Recent Progress in Gastric Cancer. CA: A Cancer Journal for Clinicians, 71, 264-279. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Kang, Y., Boku, N., Satoh, T., Ryu, M., Chao, Y., Kato, K., et al. (2017) Nivolumab in Patients with Advanced Gastric or Gastro-Oesophageal Junction Cancer Refractory to, or Intolerant of, at Least Two Previous Chemotherapy Regimens (ONO-4538-12, ATTRACTION-2): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet, 390, 2461-2471. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Janjigian, Y.Y., Shitara, K., Moehler, M., Garrido, M., Salman, P., Shen, L., et al. (2021) First-Line Nivolumab plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, and Oesophageal Adenocarcinoma (CheckMate 649): A Randomised, Open-Label, Phase 3 Trial. The Lancet, 398, 27-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Tang, Z., Wang, Y., Liu, D., Wang, X., Xu, C., Yu, Y., et al. (2022) The Neo-PLANET Phase II Trial of Neoadjuvant Camrelizumab plus Concurrent Chemoradiotherapy in Locally Advanced Adenocarcinoma of Stomach or Gastroesophageal Junction. Nature Communications, 13, Article No. 6807. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kang, Y., Terashima, M., Kim, Y., Boku, N., Chung, H.C., Chen, J., et al. (2024) Adjuvant Nivolumab plus Chemotherapy versus Placebo plus Chemotherapy for Stage III Gastric or Gastro-Oesophageal Junction Cancer after Gastrectomy with D2 or More Extensive Lymph-Node Dissection (ATTRACTION-5): A Randomised, Multicentre, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet Gastroenterology & Hepatology, 9, 705-717. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Kelly, R.J., Ajani, J.A., Kuzdzal, J., Zander, T., Van Cutsem, E., Piessen, G., et al. (2021) Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. New England Journal of Medicine, 384, 1191-1203. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Janjigian, Y.Y., Kawazoe, A., Bai, Y., Xu, J., Lonardi, S., Metges, J.P., et al. (2023) Pembrolizumab plus Trastuzumab and Chemotherapy for HER2-Positive Gastric or Gastro-Oesophageal Junction Adenocarcinoma: Interim Analyses from the Phase 3 KEYNOTE-811 Randomised Placebo-Controlled Trial. The Lancet, 402, 2197-2208. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Johnson, L.A. and June, C.H. (2016) Driving Gene-Engineered T Cell Immunotherapy of Cancer. Cell Research, 27, 38-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Bębnowska, D., Grywalska, E., Niedźwiedzka-Rystwej, P., Sosnowska-Pasiarska, B., Smok-Kalwat, J., Pasiarski, M., et al. (2020) CAR-T Cell Therapy—An Overview of Targets in Gastric Cancer. Journal of Clinical Medicine, 9, Article No. 1894. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Zhou, Z., Tao, C., Li, J., Tang, J.C., Chan, A.S. and Zhou, Y. (2022) Chimeric Antigen Receptor T Cells Applied to Solid Tumors. Frontiers in Immunology, 13, Article ID: 984864. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Song, Y., Tong, C., Wang, Y., Gao, Y., Dai, H., Guo, Y., et al. (2017) Effective and Persistent Antitumor Activity of Her2-Directed CAR-T Cells against Gastric Cancer Cells in Vitro and Xenotransplanted Tumors in Vivo. Protein & Cell, 9, 867-878. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Lordick, F., Rha, S.Y., Muro, K., Yong, W.P. and Lordick Obermannová, R. (2024) Systemic Therapy of Gastric Cancer—State of the Art and Future Perspectives. Cancers, 16, Article No. 3337. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Singh, P., Toom, S. and Huang, Y. (2017) Anti-Claudin 18.2 Antibody as New Targeted Therapy for Advanced Gastric Cancer. Journal of Hematology & Oncology, 10, Article No. 105. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Jiang, H., Shi, Z., Wang, P., Wang, C., Yang, L., Du, G., et al. (2018) Claudin18.2-Specific Chimeric Antigen Receptor Engineered T Cells for the Treatment of Gastric Cancer. JNCI: Journal of the National Cancer Institute, 111, 409-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Li, D., Guo, X., Yang, K., Yang, Y., Zhou, W., Huang, Y., et al. (2023) EpCAM-Targeting CAR-T Cell Immunotherapy Is Safe and Efficacious for Epithelial Tumors. Science Advances, 9, eadg9721. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Fang, W., Lu, Z., Ge, J., Zhang, S., Zheng, R., Yin, W., et al. (2025) Preclinical Development and a Phase 1 Trial of IMC001, an EpCAM-Targeted CAR-T Cell Therapy, in Patients with Advanced Gastric Cancer. Molecular Therapy, 33, 5516-5529. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Johnson, L.A., Morgan, R.A., Dudley, M.E., Cassard, L., Yang, J.C., Hughes, M.S., et al. (2009) Gene Therapy with Human and Mouse T-Cell Receptors Mediates Cancer Regression and Targets Normal Tissues Expressing Cognate Antigen. Blood, 114, 535-546. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Lee, D.W., Santomasso, B.D., Locke, F.L., Ghobadi, A., Turtle, C.J., Brudno, J.N., et al. (2019) ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biology of Blood and Marrow Transplantation, 25, 625-638. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Kloss, C.C., Lee, J., Zhang, A., Chen, F., Melenhorst, J.J., Lacey, S.F., et al. (2018) Dominant-Negative TGF-β Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation and Augments Prostate Cancer Eradication. Molecular Therapy, 26, 1855-1866. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Wang, S., Sun, J., Chen, K., Ma, P., Lei, Q., Xing, S., et al. (2021) Perspectives of Tumor-Infiltrating Lymphocyte Treatment in Solid Tumors. BMC Medicine, 19, Article No. 140. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Betof Warner, A., Hamid, O., Komanduri, K., Amaria, R., Butler, M.O., Haanen, J., et al. (2024) Expert Consensus Guidelines on Management and Best Practices for Tumor-Infiltrating Lymphocyte Cell Therapy. Journal for ImmunoTherapy of Cancer, 12, e008735. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Tseng, D. and Lee, S. (2025) Tumor-Infiltrating Lymphocyte Therapy: A New Frontier. Transplantation and Cellular Therapy, 31, S599-S609. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Zeng, Q., Zhang, S., Leng, N. and Xing, Y. (2025) Advancing Tumor Vaccines: Overcoming TME Challenges, Delivery Strategies, and Biomaterial-Based Vaccine for Enhanced Immunotherapy. Critical Reviews in Oncology/Hematology, 205, Article ID: 104576. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Saxena, M., van der Burg, S.H., Melief, C.J.M. and Bhardwaj, N. (2021) Therapeutic Cancer Vaccines. Nature Reviews Cancer, 21, 360-378. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Wargowski, E., Johnson, L.E., Eickhoff, J.C., Delmastro, L., Staab, M.J., Liu, G., et al. (2018) Prime-Boost Vaccination Targeting Prostatic Acid Phosphatase (PAP) in Patients with Metastatic Castration-Resistant Prostate Cancer (mCRPC) Using Sipuleucel-T and a DNA Vaccine. Journal for ImmunoTherapy of Cancer, 6, Article No. 21. [Google Scholar] [CrossRef] [PubMed]
|