|
[1]
|
Yuan, Z., Zou, Y., Liu, X., Wang, L. and Chen, C. (2023) Longitudinal Study on Blood and Biochemical Indexes of Tibetan and Han in High Altitude Area. Frontiers in Public Health, 11, Article 1282051. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Garrido, E., Botella de Maglia, J. and Castillo, O. (2021) Acute, Subacute and Chronic Mountain Sickness. Revista Clínica Española (English Edition), 221, 481-490. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Mallet, R.T., Burtscher, J., Pialoux, V., Pasha, Q., Ahmad, Y., Millet, G.P., et al. (2023) Molecular Mechanisms of High-Altitude Acclimatization. International Journal of Molecular Sciences, 24, Article 1698. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
汪晓洲, 边惠萍, 杨蕾, 等. 高原地区原发性高血压与高原高血压患者的临床特征比较[J]. 中华高血压杂志, 2022, 30(1): 51-57.
|
|
[5]
|
于冬梅, 李淑娟, 琚腊红, 等. 2010-2012年中国成年居民高血压知晓率、治疗率和控制率现况[J]. 卫生研究, 2019, 48(6): 913-918.
|
|
[6]
|
中国高血压防治指南修订委员会, 高血压联盟(中国), 中国医疗保健国际交流促进会高血压病学分会, 等. 中国高血压防治指南(2024年修订版) [J]. 中华高血压杂志(中英文), 2024, 32(7): 603-700.
|
|
[7]
|
国家基层高血压防治管理指南2020版[J]. 中国医学前沿杂志(电子版), 2021, 13(4): 26-37.
|
|
[8]
|
夏宇, 杨娟, 庞林鸿, 等. 高原少数民族高血压患者基本公共卫生服务管理现状与血压控制结果分析[J]. 现代预防医学, 2024, 51(13): 2411-2416.
|
|
[9]
|
Boos, C.J., Woods, D.R., Varias, A., Biscocho, S., Heseltine, P. and Mellor, A.J. (2016) High Altitude and Acute Mountain Sickness and Changes in Circulating Endothelin-1, Interleukin-6, and Interleukin-17a. High Altitude Medicine & Biology, 17, 25-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bilo, G., Caravita, S., Torlasco, C. and Parati, G. (2019) Blood Pressure at High Altitude: Physiology and Clinical Implications. Kardiologia Polska, 77, 596-603. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Richalet, J., Letournel, M. and Souberbielle, J. (2010) Effects of High-Altitude Hypoxia on the Hormonal Response to Hypothalamic Factors. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 299, R1685-R1692. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Woods, D.R., O’Hara, J.P., Boos, C.J., Hodkinson, P.D., Tsakirides, C., Hill, N.E., et al. (2017) Markers of Physiological Stress during Exercise under Conditions of Normoxia, Normobaric Hypoxia, Hypobaric Hypoxia, and Genuine High Altitude. European Journal of Applied Physiology, 117, 893-900. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Narvaez-Guerra, O., Herrera-Enriquez, K., Medina-Lezama, J. and Chirinos, J.A. (2018) Systemic Hypertension at High Altitude. Hypertension, 72, 567-578. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Xanthakis, V. and Vasan, R.S. (2013) Aldosterone and the Risk of Hypertension. Current Hypertension Reports, 15, 102-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
刘钢, 吴新华, 董榆, 等. ACE基因I/D多态性与云南纳西族人群高原低氧习服、高血压及血脂异常的相关性研究[J]. 高原医学杂志, 2024, 34(2): 16-23.
|
|
[16]
|
俞佳利, 项彦琳, 薛金贵. 血管紧张素转换酶I/D基因多态性与原发性高血压关系的研究进展[J]. 中西医结合心脑血管病杂志, 2024, 22(17): 3161-3163.
|
|
[17]
|
Parati, G., Bilo, G., Faini, A., Bilo, B., Revera, M., Giuliano, A., et al. (2014) Changes in 24H Ambulatory Blood Pressure and Effects of Angiotensin II Receptor Blockade during Acute and Prolonged High-Altitude Exposure: A Randomized Clinical Trial. European Heart Journal, 35, 3113-3122. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yfantis, A., Mylonis, I., Chachami, G., Nikolaidis, M., Amoutzias, G.D., Paraskeva, E., et al. (2023) Transcriptional Response to Hypoxia: The Role of HIF-1-Associated Co-Regulators. Cells, 12, Article 798. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ramakrishnan, S., Anand, V. and Roy, S. (2014) Vascular Endothelial Growth Factor Signaling in Hypoxia and Inflammation. Journal of Neuroimmune Pharmacology, 9, 142-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ahmad, A. and Nawaz, M.I. (2022) Molecular Mechanism of VEGF and Its Role in Pathological Angiogenesis. Journal of Cellular Biochemistry, 123, 1938-1965. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Armenis, I., Kalotychou, V., Tzanetea, R., Konstantopoulos, K. and Rombos, I. (2021) The Effect of Endothelial Nitric Oxide Synthase G894T and T786C Polymorphisms on Hypoxia-Inducible Factor-1 Alpha Expression in Sickle Cell Disease. Nitric Oxide, 111, 31-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Jones, A.M., Vanhatalo, A., Seals, D.R., Rossman, M.J., Piknova, B. and Jonvik, K.L. (2020) Dietary Nitrate and Nitric Oxide Metabolism: Mouth, Circulation, Skeletal Muscle, and Exercise Performance. Medicine & Science in Sports & Exercise, 53, 280-294. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Mugele, H., Marume, K., Amin, S.B., Possnig, C., Kühn, L.C., Riehl, L., et al. (2022) Control of Blood Pressure in the Cold: Differentiation of Skin and Skeletal Muscle Vascular Resistance. Experimental Physiology, 108, 38-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
卫华. 高原高寒环境因素对内皮细胞的损伤作用及其保护作用化合物研究[D]: [硕士学位论文]. 北京: 中国人民解放军军事医学科学院, 2012.
|
|
[25]
|
Konukoglu, D. and Uzun, H. (2016) Endothelial Dysfunction and Hypertension. In: Islam, M.S., Ed., Hypertension: From Basic Research to Clinical Practice, Springer, 511-540. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
郭于琳, 姚巍. 全身免疫炎症指数与高血压病相关性的研究进展[J]. 中西医结合心脑血管病杂志, 2024, 22(8): 1442-1444.
|
|
[27]
|
Lodge, K.M., Vassallo, A., Liu, B., Long, M., Tong, Z., Newby, P.R., et al. (2022) Hypoxia Increases the Potential for Neutrophil-Mediated Endothelial Damage in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 205, 903-916. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
刘从娜, 吴新华,刘宏, 氧化应激在高原病中的研究进展[J]. 医学综述, 2024. 30(18): 2221-2226.
|
|
[29]
|
瓦永禄, 郝丽娟, 瓦永凌. 高原病与氧化应激的关联[J]. 高原医学杂志, 2023, 33(2): 58-63.
|
|
[30]
|
Cong, X. and Kong, W. (2020) Endothelial Tight Junctions and Their Regulatory Signaling Pathways in Vascular Homeostasis and Disease. Cellular Signalling, 66, Article ID: 109485. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Xue, Y., Wang, X., Wan, B., Wang, D., Li, M., Cheng, K., et al. (2022) Caveolin-1 Accelerates Hypoxia-Induced Endothelial Dysfunction in High-Altitude Cerebral Edema. Cell Communication and Signaling, 20, Article No. 160. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
季敏. 老年原发性高血压与血液粘滞度的相关性研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2015.
|
|
[33]
|
曾垦. 血液流变学、血脂与高血压关系的探讨[J]. 数理医药学杂志, 2012, 25(5): 604-605.
|
|
[34]
|
陈聪, 刘宏, 吴新华. 高原地区高血压病机制的研究进展[J]. 高原医学杂志, 2021, 31(4): 53-58.
|
|
[35]
|
罗强, 杨文娟, 张艺, 等. 藏药三果汤散对高原红细胞增多症模型大鼠氧化应激损伤的作用机制研究[J]. 中华中医药学刊, 2018, 36(10): 2401-2406.
|
|
[36]
|
杨欢, 石玉红, 冉海凤, 等. 促红细胞生成素的生理功能及生成来源[J]. 中国临床药理学与治疗学, 2021, 26(4): 434-443.
|
|
[37]
|
Sloop, G.D., Weidman, J.J. and St. Cyr, J.A. (2015) The Systemic Vascular Resistance Response: A Cardiovascular Response Modulating Blood Viscosity with Implications for Primary Hypertension and Certain Anemias. Therapeutic Advances in Cardiovascular Disease, 9, 403-411. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Yin, R., Wu, Y., Li, M., Liu, C., Pu, X. and Yi, W. (2024) Association between High-Altitude Polycythemia and Hypertension: A Cross-Sectional Study in Adults at Tibetan Ultrahigh Altitudes. Journal of Human Hypertension, 38, 555-560. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ribatti, D. (2012) Angiogenic Effects of Erythropoietin. International Review of Cell and Molecular Biology, 299, 199-234. [Google Scholar] [CrossRef]
|
|
[40]
|
Salazar Vázquez, B.Y., Martini, J., Chávez Negrete, A., Cabrales, P., Tsai, A.G. and Intaglietta, M. (2009) Microvascular Benefits of Increasing Plasma Viscosity and Maintaining Blood Viscosity: Counterintuitive Experimental Findings. Biorheology, 46, 167-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Sidekhmenova, A.V., Aliev, O.I., Anishchenko, A.M., Dunaeva, O.I., Ulyakhina, O.A. and Plotnikov, M.B. (2024) Influence of a Decrease in Blood Viscosity on Arterial Pressure in Normotensive and Spontaneously Hypertensive Rats. Bulletin of Experimental Biology and Medicine, 176, 419-422. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhou, M., Mei, L., Jing, J., Yang, Y., Cai, X., Meng, X., et al. (2024) Blood Pressure Partially Mediated the Association of Insulin Resistance and Cerebral Small Vessel Disease: A Community‐Based Study. Journal of the American Heart Association, 13, e031723. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zhao, F., Liu, Q., Li, Y., Feng, X., Chang, H. and Lyu, J. (2020) Association between Alcohol Consumption and Hypertension in Chinese Adults: Findings from the CHNS. Alcohol, 83, 83-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Biddinger, K.J., Emdin, C.A., Haas, M.E., et al. (2022) Association of Habitual Alcohol Intake with Risk of Cardiovascular Disease. JAMA Network Open, 5, e223849.
|
|
[45]
|
中国心血管健康与疾病报告2023概要[J]. 中国循环杂志, 2024, 39(7): 625-660.
|
|
[46]
|
Tatsumi, Y., Morimoto, A., Asayama, K., Sonoda, N., Miyamatsu, N., Ohno, Y., et al. (2018) Association between Alcohol Consumption and Incidence of Impaired Insulin Secretion and Insulin Resistance in Japanese: The Saku Study. Diabetes Research and Clinical Practice, 135, 11-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
普珍, 秦珊珊, 白玛央吉, 等. 海拔对高血压患者肠道菌群影响的研究进展[J]. 西藏科技, 2024, 46(6): 35-41.
|
|
[48]
|
林玥, 梁彤, 任明. 中、高海拔地区高血压患者肠道菌群的特点[J]. 中国心血管病研究, 2023, 21(10): 934-942.
|
|
[49]
|
Lv, J., Qi, P., Bai, L., Yan, X. and Zhang, L. (2022) Review of the Relationship and Underlying Mechanisms between the Qinghai-Tibet Plateau and Host Intestinal Flora. Frontiers in Microbiology, 13, Article 1055632. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
朱露露. 青海地区高血压患者的肠道菌群分布特点[D]: [硕士学位论文]. 西宁: 青海大学, 2020.
|
|
[51]
|
Abbasalizad Farhangi, M. and Vajdi, M. (2020) Gut Microbiota-Associated Trimethylamine n-Oxide and Increased Cardiometabolic Risk in Adults: A Systematic Review and Dose-Response Meta-Analysis. Nutrition Reviews, 79, 1022-1042. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Robles-Vera, I., Toral, M. and Duarte, J. (2020) Microbiota and Hypertension: Role of the Sympathetic Nervous System and the Immune System. American Journal of Hypertension, 33, 890-901. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Wang, L., Zhu, Q., Lu, A., Liu, X., Zhang, L., Xu, C., et al. (2017) Sodium Butyrate Suppresses Angiotensin II-Induced Hypertension by Inhibition of Renal (Pro)renin Receptor and Intrarenal Renin-Angiotensin System. Journal of Hypertension, 35, 1899-1908. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Verhaar, B.J.H., Prodan, A., Nieuwdorp, M. and Muller, M. (2020) Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients, 12, Article 2982. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
宋佳颖, 梁贞, 强巴单增, 等. 高原地区高血压的研究进展[J]. 西藏医药, 2021, 42(2): 144-148.
|
|
[56]
|
Peng, W., Li, K., Yan, A.F., Shi, Z., Zhang, J., Cheskin, L.J., et al. (2022) Prevalence, Management, and Associated Factors of Obesity, Hypertension, and Diabetes in Tibetan Population Compared with China Overall. International Journal of Environmental Research and Public Health, 19, Article 8787. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
吴新华, 陈章荣, 刘宏, 等. 跨高原心血管疾病研究进展[J]. 大理大学学报, 2019, 4(10): 71-74.
|
|
[58]
|
王啟秀, 王云超, 张春艳, 等. 不同海拔高度对高血压患病风险影响的Meta分析[J]. 中国循证心血管医学杂志, 2023, 15(12): 1281-1286.
|
|
[59]
|
Pei, L., Wu, J., Wang, Z., Wang, X., Chen, Z., Li, J., et al. (2020) Geographic Variations and Potential Macro-Environmental Exposure of Hypertension: From the China Hypertension Survey. Journal of Hypertension, 38, 829-838. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
亢玉婷, 王馨, 陈祚, 等. 西藏不同海拔地区高血压患病情况调查[J]. 中国慢性病预防与控制, 2017, 25(6): 427-431.
|
|
[61]
|
Song, C., Chongsuvivatwong, V., Zhu Luo Bu, O., Ji, D., Sang Zhuo Ma, B. and Sriplung, H. (2020) Relationship between Hypertension and Geographic Altitude: A Cross-Sectional Survey among Residents in Tibet. Journal of International Medical Research, 48, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
朱秀丽, 李晓云, 裴峰, 等. 急性高原暴露血压变化与急性高原病关系的临床研究[J]. 青春期健康, 2023, 21(8): 72-74.
|
|
[63]
|
时明远, 李宗斌, 石亚君, 等. 高原对健康青年男性24 h动态血压的影响[J]. 军事医学, 2017, 41(8): 667-669, 683.
|
|
[64]
|
Yang, W., Melgarejo, J.D., Thijs, L., Zhang, Z., Boggia, J., Wei, F., et al. (2019) Association of Office and Ambulatory Blood Pressure with Mortality and Cardiovascular Outcomes. JAMA, 322, 409-420. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Chen, R., Yang, J., Liu, C., Ke, J., Gao, X., Yang, Y., et al. (2021) Blood Pressure and Left Ventricular Function Changes in Different Ambulatory Blood Pressure Patterns at High Altitude. The Journal of Clinical Hypertension, 23, 1133-1143. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
杨兵, 潘肯林, 刘新忠. 首次进入高海拔地区军人短期血压及生化指标变化情况的调查研究[J]. 河北医药, 2017, 39(9): 1413-1417.
|
|
[67]
|
Torlasco, C., Bilo, G., Giuliano, A., Soranna, D., Ravaro, S., Oliverio, G., et al. (2020) Effects of Acute Exposure to Moderate Altitude on Blood Pressure and Sleep Breathing Patterns. International Journal of Cardiology, 301, 173-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
刘阳, 张继航, 武晓静, 等. 高原暴露人群动脉血压变化与急性高原病的相关性分析[J]. 解放军医学杂志, 2014, 39(3): 226-230.
|
|
[69]
|
Burtscher, M., Philadelphy, M., Burtscher, J. and Likar, R. (2021) Sex-Specific Differences in Blood Pressure Responses Following Acute High-Altitude Exposure. Journal of Travel Medicine, 29, taab035. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
张涛, 郭文昀, 陈敏, 等. 高原世居人群高血压最新诊疗进展[J]. 中西医结合心血管病电子杂志, 2019, 7(3): 28-31.
|
|
[71]
|
赵青跃, 胡进明. 高原不同海拔地区正常人血压变化的分析[J]. 青海医药杂志, 2010, 40(7): 25-26.
|
|
[72]
|
Siqués, P., Brito, J., Banegas, J.R., León-Velarde, F., de la Cruz-Troca, J.J., López, V., et al. (2009) Blood Pressure Responses in Young Adults First Exposed to High Altitude for 12 Months at 3550 M. High Altitude Medicine & Biology, 10, 329-335. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Yan, Y., Mao, Z., Jia, Q., Zhao, X. and Yang, S. (2023) Changes in Blood Pressure, Oxygen Saturation, Hemoglobin Concentration, and Heart Rate among Low‐Altitude Migrants Living at High Altitude (5380 m) for 360 Days. American Journal of Human Biology, 35, e23913. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
李昊, 刘晓彤, 吴怡璠, 等. 高原习服与适应的评估模型构建[J]. 科学通报, 2024, 69(24): 3628-3641.
|
|
[75]
|
魏燕玲, 渡边丈真, 田中豊穗, 等. 青藏高原藏族移民的血压与血管性状特征[J]. 运动精品, 2020, 39(10): 75-78.
|
|
[76]
|
周晓波, 李素芝, 黄跃, 等. 汉族男青年移居高原不同时间血压观察[J]. 解放军预防医学杂志, 2009, 27(6): 453-454.
|
|
[77]
|
吕媛, 李永德, 刘金娴, 等. 久居高原、高高原超重肥胖中老年人血压及血脂的对比研究[C]//广州体育学院, 中国体育科学学会运动生理生化分会, 中国体育科学学会运动医学分会. 2022年第七届广州运动与健康国际学术研讨会论文集. 2022: 261-262.
|
|
[78]
|
梁贞. 西藏不同海拔各慢性高原病的患病率调查与研究[D]: [硕士学位论文]. 拉萨: 西藏大学, 2021.
|
|
[79]
|
Yue, L., Fan, Z., Sun, L., Feng, W. and Li, J. (2017) Prevalence of Essential Hypertension and Its Complications among Chinese Population at High Altitude. High Altitude Medicine & Biology, 18, 140-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Wander, K., Su, M., Mattison, P.M., Sum, C., Witt, C.C., Shenk, M.K., et al. (2020) High‐Altitude Adaptations Mitigate Risk for Hypertension and Diabetes‐Associated Anemia. American Journal of Physical Anthropology, 172, 156-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Vashishtha, V., Barhwal, K.K., Malhotra, V.K., Kumar, A., Hota, S.K., Norboo, T., et al. (2018) Prevalence and Risk Factors of Hypertension in Acclimatized Lowlanders Staying at High Altitude for Different Durations. Journal of Human Hypertension, 32, 359-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Luks, A.M., Swenson, E.R. and Bärtsch, P. (2017) Acute High-Altitude Sickness. European Respiratory Review, 26, Article ID: 160096. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
胡力芹, 徐海峰, 张帆, 等. 高原高血压的防治进展及“真实世界”诊治现状[J]. 中华高血压杂志, 2024, 32(1): 24-28.
|
|
[84]
|
Caravita, S., Faini, A., Baratto, C., Bilo, G., Macarlupu, J.L., Lang, M., et al. (2018) Upward Shift and Steepening of the Blood Pressure Response to Exercise in Hypertensive Subjects at High Altitude. Journal of the American Heart Association, 7, e008506. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Guo, Y., Liu, X., Zhang, Q., Shi, Z., Zhang, M. and Chen, J. (2022) Can Acute High-Altitude Sickness Be Predicted in Advance? Reviews on Environmental Health, 39, 27-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
刘明波, 何新叶, 杨晓红, 等. 《中国心血管健康与疾病报告2023》要点解读[J]. 中国全科医学, 2025, 28(1): 20-38.
|
|
[87]
|
李杰, 赵英强. 藏药组药联合西医治疗高海拔地区世居者高血压的临床研究[J]. 中国疗养医学, 2021, 30(11): 1121-1126.
|
|
[88]
|
李杰, 米玛国杰, 赵英强. 高海拔地区世居居民高血压药物治疗进展[J]. 实用心脑肺血管病杂志, 2021, 29(8): 130-134.
|
|
[89]
|
Zhou, B., Yuan, Y., Zhang, S., Guo, C., Li, X., Li, G., et al. (2020) Intestinal Flora and Disease Mutually Shape the Regional Immune System in the Intestinal Tract. Frontiers in Immunology, 11, Article 575. [Google Scholar] [CrossRef] [PubMed]
|