|
[1]
|
Ebrahimi, S., Khaleghi Ghadiri, M., Stummer, W. and Gorji, A. (2024) Enhancing 5-ALA-PDT Efficacy against Resistant Tumor Cells: Strategies and Advances. Life Sciences, 351, 122808. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Dutt, S., Hamza, I. and Bartnikas, T.B. (2022) Molecular Mechanisms of Iron and Heme Metabolism. Annual Review of Nutrition, 42, 311-335. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Abe, K., Ikeda, M., Ide, T., Tadokoro, T., Miyamoto, H.D., Furusawa, S., et al. (2022) Doxorubicin Causes Ferroptosis and Cardiotoxicity by Intercalating into Mitochondrial DNA and Disrupting Alas1-Dependent Heme Synthesis. Science Signaling, 15, eabn8017. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Saitoh, S., Takeda, Y., Araki, A., Nouchi, Y., Yamaguchi, R., Nakajima, O., et al. (2024) 5-Aminolevulinic Acid (5-ALA) Plays an Important Role in the Function of Innate Immune Cells. Inflammation, 48, 2588-2599. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kitagawa, T., Yamamoto, J., Tanaka, T., Nakano, Y., Akiba, D., Ueta, K., et al. (2014) 5-Aminolevulinic Acid Strongly Enhances Delayed Intracellular Production of Reactive Oxygen Species (ROS) Generated by Ionizing Irradiation: Quantitative Analyses and Visualization of Intracellular ROS Production in Glioma Cells in Vitro. Oncology Reports, 33, 583-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Jin, G., Guo, N., Liu, Y., Zhang, L., Chen, L., Dong, T., et al. (2023) 5-Aminolevulinate and CHIL3/CHI3L1 Treatment Amid Ischemia Aids Liver Metabolism and Reduces Ischemia-Reperfusion Injury. Theranostics, 13, 4802-4820. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lin, M.T. and Beal, M.F. (2006) Mitochondrial Dysfunction and Oxidative Stress in Neurodegenerative Diseases. Nature, 443, 787-795. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Rehani, P.R., Iftikhar, H., Nakajima, M., Tanaka, T., Jabbar, Z. and Rehani, R.N. (2019) Safety and Mode of Action of Diabetes Medications in Comparison with 5-Aminolevulinic Acid (5-Ala). Journal of Diabetes Research, 2019, Article ID: 4267357. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kiening, M. and Lange, N. (2022) A Recap of Heme Metabolism Towards Understanding Protoporphyrin IX Selectivity in Cancer Cells. International Journal of Molecular Sciences, 23, Article 7974. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Shimura, M., Nozawa, N., Ogawa-Tominaga, M., Fushimi, T., Tajika, M., Ichimoto, K., et al. (2019) Effects of 5-Aminolevulinic Acid and Sodium Ferrous Citrate on Fibroblasts from Individuals with Mitochondrial Diseases. Scientific Reports, 9, Article No. 10549. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Takase, N., Inden, M., Sekine, S., Ishii, Y., Yonemitsu, H., Iwashita, W., et al. (2017) Neuroprotective Effect of 5-Aminolevulinic Acid against Low Inorganic Phosphate in Neuroblastoma SH-SY5Y Cells. Scientific Reports, 7, Article No. 5768. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Sengupta, A., Hon, T. and Zhang, L. (2005) Heme Deficiency Suppresses the Expression of Key Neuronal Genes and Causes Neuronal Cell Death. Molecular Brain Research, 137, 23-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Li, J., Xie, Y., Li, M., Zhang, S., Cheng, Q. and Yang, W. (2022) Effects of Feeding 5-Aminolevulinic Acid on Iron Status in Weaned Rats from the Female Rats during Gestation and Lactation. Animals, 12, Article 2869. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chen, Y., Zhang, J., Tian, Y., Xu, X., Wang, B., Huang, Z., et al. (2024) Iron Accumulation in Ovarian Microenvironment Damages the Local Redox Balance and Oocyte Quality in Aging Mice. Redox Biology, 73, Article ID: 103195. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cho, H.R., Kim, D.H., Kim, D., Doble, P., Bishop, D., Hare, D., et al. (2014) Malignant Glioma: MR Imaging by Using 5-Aminolevulinic Acid in an Animal Model. Radiology, 272, 720-730. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Brennan, M.J.W., Cantrill, R.C. and Kramer, S. (1980) Effect of δ-Aminolaevulinic Acid on Gaba Receptor Binding in Synaptic Plasma Membranes. International Journal of Biochemistry, 12, 833-835. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhao, M., Guo, H., Chen, J., Fujino, M., Ito, H., Takahashi, K., et al. (2015) 5-aminolevulinic Acid Combined with Sodium Ferrous Citrate Ameliorates H2O2-Induced Cardiomyocyte Hypertrophy via Activation of the MAPK/Nrf2/HO-1 Pathway. American Journal of Physiology-Cell Physiology, 308, C665-C672. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Nimgampalle, M., Chakravarthy, H., Sharma, S., Shree, S., Bhat, A.R., Pradeepkiran, J.A., et al. (2023) Neurotransmitter Systems in the Etiology of Major Neurological Disorders: Emerging Insights and Therapeutic Implications. Ageing Research Reviews, 89, Article ID: 101994. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Nunnari, J. and Suomalainen, A. (2012) Mitochondria: In Sickness and in Health. Cell, 148, 1145-1159. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Virga, D.M., Hamilton, S., Osei, B., Morgan, A., Kneis, P., Zamponi, E., et al. (2024) Activity-Dependent Compartmentalization of Dendritic Mitochondria Morphology through Local Regulation of Fusion-Fission Balance in Neurons in Vivo. Nature Communications, 15, Article No. 2142. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Caicedo, A., Zambrano, K., Sanon, S. and Gavilanes, A.W.D. (2021) Extracellular Mitochondria in the Cerebrospinal Fluid (CSF): Potential Types and Key Roles in Central Nervous System (CNS) Physiology and Pathogenesis. Mitochondrion, 58, 255-269. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Fujii, C., Miyashita, K., Mitsuishi, M., Sato, M., Fujii, K., Inoue, H., et al. (2017) Treatment of Sarcopenia and Glucose Intolerance through Mitochondrial Activation by 5-Aminolevulinic Acid. Scientific Reports, 7, Article No. 4013. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhang, Z., Zhang, Y., Yuan, L., Zhou, F., Gao, Y., Kang, Z., et al. (2022) Exogenous 5-Aminolevulinic Acid Alleviates Low-Temperature Injury by Regulating Glutathione Metabolism and β-Alanine Metabolism in Tomato Seedling Roots. Ecotoxicology and Environmental Safety, 245, Article ID: 114112. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Hijioka, M., Kitamura, K., Yanagisawa, D., Nishimura, K., Takata, K., Inden, M., et al. (2020) Neuroprotective Effects of 5-Aminolevulinic Acid against Neurodegeneration in Rat Models of Parkinson’s Disease and Stroke. Journal of Pharmacological Sciences, 144, 183-187. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, Z., Ma, K., Liu, C., Hu, X., Que, W., Ito, H., et al. (2020) 5-Aminolevulinic Acid Combined with Sodium Ferrous Citrate (5-ALA/SFC) Ameliorated Liver Injury in a Murine Acute Graft-versus-Host Disease Model by Reducing Inflammation Responses through PGC1-α Activation. Drug Discoveries & Therapeutics, 14, 304-312. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liu, C., Fujino, M., Zhu, S., Isaka, Y., Ito, H., Takahashi, K., et al. (2019) 5‐ALA/SFC Enhances HO‐1 Expression through the MAPK/Nrf2 Antioxidant Pathway and Attenuates Murine Tubular Epithelial Cell Apoptosis. FEBS Open Bio, 9, 1928-1938. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Javeed, N. and Matveyenko, A.V. (2018) Circadian Etiology of Type 2 Diabetes Mellitus. Physiology, 33, 138-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Al-Saber, F., Aldosari, W., Alselaiti, M., Khalfan, H., Kaladari, A., Khan, G., et al. (2016) The Safety and Tolerability of 5-Aminolevulinic Acid Phosphate with Sodium Ferrous Citrate in Patients with Type 2 Diabetes Mellitus in Bahrain. Journal of Diabetes Research, 2016, Article ID: 8294805. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kitamura, N., Zhang, S., Morel, J., Nagano, U., Taworntawat, T., Hosoda, S., et al. (2023) Sodium Ferrous Citrate and 5‐Aminolevulinic Acid Improve Type 2 Diabetes by Maintaining Muscle and Mitochondrial Health. Obesity, 31, 1038-1049. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Nakamura, Y., Haraguchi, A., Horie, I., Kawakami, A. and Abiru, N. (2022) Pilot Trial on the Effect of 5-Aminolevulinic Acid on Glucose Tolerance in Patients with Maternally Inherited Diabetes and Deafness. Diabetes Therapy, 14, 447-459. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Kuryata, O., Akimov, O., Riabushko, M., Kostenko, H., Kostenko, V., Mishchenko, A., et al. (2024) Therapeutic Potential of 5-Aminolevulinic Acid in Metabolic Disorders: Current Insights and Future Directions. iScience, 27, Article ID: 111477. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Mastrangelopoulou, M., Grigalavicius, M., Raabe, T.H., Skarpen, E., Juzenas, P., Peng, Q., et al. (2020) Predictive Biomarkers for 5‐ALA‐PDT Can Lead to Personalized Treatments and Overcome Tumor‐Specific Resistances. Cancer Reports, 5, e1278. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Austin, E., Wang, J.Y., Ozog, D.M., Zeitouni, N., Lim, H.W. and Jagdeo, J. (2025) Photodynamic Therapy: Overview and Mechanism of Action. Journal of the American Academy of Dermatology. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Stepp, H. and Stummer, W. (2018) 5‐ALA in the Management of Malignant Glioma. Lasers in Surgery and Medicine, 50, 399-419. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Michael, A.P., Watson, V.L., Ryan, D., Delfino, K.R., Bekker, S.V. and Cozzens, J.W. (2019) Effects of 5-ALA Dose on Resection of Glioblastoma. Journal of Neuro-Oncology, 141, 523-531. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Dugger, B.N. and Dickson, D.W. (2017) Pathology of Neurodegenerative Diseases. Cold Spring Harbor Perspectives in Biology, 9, a028035. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Klemmensen, M.M., Borrowman, S.H., Pearce, C., Pyles, B. and Chandra, B. (2024) Mitochondrial Dysfunction in Neurodegenerative Disorders. Neurotherapeutics, 21, e00292. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Dwyer, B.E., Smith, M.A., Richardson, S.L., Perry, G. and Zhu, X. (2009) Down-Regulation of Aminolevulinate Synthase, the Rate-Limiting Enzyme for Heme Biosynthesis in Alzheimer’s Disease. Neuroscience Letters, 460, 180-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Okano, S., Zhou, L., Kusaka, T., Shibata, K., Shimizu, K., Gao, X., et al. (2009) Indispensable Function for Embryogenesis, Expression and Regulation of the Nonspecific Form of the 5‐Aminolevulinate Synthase Gene in Mouse. Genes to Cells, 15, 77-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Omori, C., Motodate, R., Shiraki, Y., Chiba, K., Sobu, Y., Kimura, A., et al. (2016) Facilitation of Brain Mitochondrial Activity by 5-Aminolevulinic Acid in a Mouse Model of Alzheimer’s Disease. Nutritional Neuroscience, 20, 538-546. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Li, H., Feng, F., Xie, S., Ma, Y., Wang, Y., Zhang, F., et al. (2025) Identification of HIBCH and MGME1 as Mitochondrial Dynamics‐Related Biomarkers in Alzheimer’s Disease via Integrated Bioinformatics Analysis. IET Systems Biology, 19, e70018. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ogura, S., Maruyama, K., Hagiya, Y., Sugiyama, Y., Tsuchiya, K., Takahashi, K., et al. (2011) The Effect of 5-Aminolevulinic Acid on Cytochrome C Oxidase Activity in Mouse Liver. BMC Research Notes, 4, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Matsuo, K., Asamitsu, S., Maeda, K., Suzuki, H., Kawakubo, K., Komiya, G., et al. (2024) RNA G-Quadruplexes Form Scaffolds That Promote Neuropathological α-Synuclein Aggregation. Cell, 187, 6835-6848.e20. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Fredericks, K., Kriel, J., Engelbrecht, L., Mercea, P.A., Widhalm, G., Harrington, B., et al. (2024) 5-ALA Localises to the Autophagy Compartment and Increases Its Fluorescence upon Autophagy Enhancement through Caloric Restriction and Spermidine Treatment in Human Glioblastoma. Biochemistry and Biophysics Reports, 37, Article ID: 101642. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Cabal-Herrera, A.M., Tassanakijpanich, N., Salcedo-Arellano, M.J. and Hagerman, R.J. (2020) Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS): Pathophysiology and Clinical Implications. International Journal of Molecular Sciences, 21, Article 4391. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Valdes, P.A., Millesi, M., Widhalm, G. and Roberts, D.W. (2019) 5-Aminolevulinic Acid Induced Protoporphyrin IX (ALA-PpIX) Fluorescence Guidance in Meningioma Surgery. Journal of Neuro-Oncology, 141, 555-565. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Semyachkina-Glushkovskaya, O., Kurths, J., Borisova, E., Sokolovski, S., Mantareva, V., Angelov, I., et al. (2017) Photodynamic Opening of Blood-Brain Barrier. Biomedical Optics Express, 8, 5040-5048. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
El-Khatib, M., Tepe, C., Senger, B., Dibué-Adjei, M., Riemenschneider, M., Stummer, W., et al. (2015) Aminolevulinic Acid-Mediated Photodynamic Therapy of Human Meningioma: An in Vitro Study on Primary Cell Lines. International Journal of Molecular Sciences, 16, 9936-9948. [Google Scholar] [CrossRef] [PubMed]
|