叶酸水平与妊娠结局相关性研究进展
Advances in Research on the Correlation between Folic Acid Levels and Pregnancy Outcomes
DOI: 10.12677/acm.2025.15113309, PDF, HTML, XML,    科研立项经费支持
作者: 王晓孟, 李晓敏, 陈雅暖, 赵 敏, 徐 琳*:青岛大学附属医院产科,山东 青岛
关键词: 红细胞叶酸妊娠母胎结局叶酸早产RBC Folate Pregnancy Maternal-Fetal Outcomes Folic Acid Preterm Birth
摘要: 叶酸作为一碳代谢核心底物,参与核苷酸合成与DNA甲基化,影响胚胎细胞分裂和胎盘功能。流行病学与政策实践一致证实,围受孕期补充叶酸可显著降低神经管畸形(NTD)发生。除NTD外,较佳叶酸状态与早产、低出生体重/小于胎龄儿及部分先天畸形(如口腔裂、部分心脏畸形)风险下降相关,但对子痫前期与妊娠期糖尿病的证据尚存分歧,可能受剂量、起始时机、合并B12状态、肥胖等因素影响。生物标志物方面,红细胞叶酸能反映中期储备,建议人群目标 ≥ 906 nmol/L。实践上,育龄女性应自受孕前至少1个月起每日补充400 μg并持续至孕早期;既往有NTD患儿、抗癫痫药物使用等高危人群需个体化方案。安全性总体良好,但不宜长期超剂量,以避免潜在未代谢叶酸与U形风险信号。未来研究应聚焦精准营养与因果推断,明确不同人群的最佳剂量–时程窗口,并阐明叶酸对表观遗传及母胎结局的长期影响。
Abstract: Folic acid, a core substrate in one-carbon metabolism, supports nucleotide synthesis and DNA methylation, thereby influencing embryonic cell division and placental function. Epidemiologic evidence and policy experience consistently show that periconceptional folic acid supplementation substantially reduces neural tube defects (NTDs). Beyond NTDs, optimal folic acid status is associated with reduced risks of preterm birth, low birth weight/small for gestational age, and selected congenital anomalies (e.g., orofacial clefts and some congenital heart defects). Evidence regarding preeclampsia and gestational diabetes mellitus (GDM) remains mixed, potentially modified by dose, timing of initiation, vitamin B12 status, and obesity. As a biomarker, red blood cell (RBC) folic acid reflects medium-term stores; a population target of ≥906 nmol/L is recommended. In practice, women of reproductive age should take 400 μg/day starting ≥1 month before conception and continuing through early pregnancy; high-risk groups (e.g., prior NTD-affected pregnancy, antiepileptic drug use) require individualized regimens. Overall safety is favorable, but prolonged high doses are discouraged to avoid potential unmetabolized folic acid and possible U-shaped risk signals. Future research should emphasize precision nutrition and causal inference to define subgroup-specific dose-timing windows and to clarify folic acid’s epigenetic and long-term maternal-fetal outcomes.
文章引用:王晓孟, 李晓敏, 陈雅暖, 赵敏, 徐琳. 叶酸水平与妊娠结局相关性研究进展[J]. 临床医学进展, 2025, 15(11): 1987-1992. https://doi.org/10.12677/acm.2025.15113309

1. 引言

叶酸(Folic acid, FA),即维生素B9,天然食物中叶酸的生物利用率约为50%,而叶酸补充剂的利用率能达到100%,可显著提高血清叶酸水平[1]。叶酸被小肠黏膜上皮细胞吸收后,在细胞中通过二氢叶酸还原酶(dihydrofolate reductase, HFR)依次转化为二氢叶酸(Dihydrofolate, DHF)和四氢叶酸(tetrahydrofolate, THF)。THF可通过丝氨酸羟甲基转移酶(Serine hydroxymethyltransferase, SHMT)可逆地转化为5,10-亚甲基四氢叶酸(5,10-Methylenetetrahydrofolate, 5,10-MTHF)和甘氨酸,在亚甲基四氢叶酸还原酶(methylenetetrahydrofolate reductase, MTHFR)的作用下,5,10-MTHF可进一步催化为5-甲基四氢叶酸(5-Methyltetrahydrofolate, 5-MTHF),促进分子之间甲基传递,对氨基酸代谢和核苷酸合成至关重要[2]

在胚胎发育的关键时期,叶酸缺乏后导致甲基供体的S腺苷甲硫氨酸(S-adenosylmethionine, SAM)缺乏,从而导致脱氧核糖核酸(DeoxyriboNucleic Acid, DNA)和蛋白质(如组蛋白)的甲基化缺陷。因此叶酸参与妊娠早期胎盘形成,并在整个妊娠期间维持胎盘功能、改善不良妊娠结局尤为重要。维生素B2、B6和B12,是叶酸代谢所必需的,这些维生素含量不足会损害新陈代谢,从而导致功能性叶酸缺乏,并伴有同型半胱氨酸水平升高[3]。Zhao等人[4]的回顾性研究发现叶酸代谢基因多态性、同型半胱氨酸、维生素B12和红细胞叶酸水平与不良妊娠结局密切相关。

2. 叶酸生物学机制与生物标志物

叶酸通过5-MTHF参与甲基供体的再生,调控DNA甲基化与核苷酸合成;其缺乏可升高同型半胱氨酸,诱发内皮功能障碍与胎盘灌注受限,从而增加早产、子痫前期等并发症的风险。临床/人群监测中常用的生物标志物包括:血清(或血浆)叶酸、红细胞(RBC)叶酸与同型半胱氨酸。RBC叶酸较少受短期饮食波动影响,反映近2~4个月叶酸储备,被WHO用于人群层面评估:育龄女性RBC叶酸 ≥ 400 ng/mL (≈906 nmol/L)与NTD最小化相关。

3. 叶酸水平与主要妊娠结局

1) 神经管畸形(NTD)

神经管缺陷(neural tube defects, NTDs)是一种严重的先天性畸形,主要发生在胚胎发育早期神经管闭合不全时。常见的类型包括无脑儿、脊柱裂和脑脊膜膨出等。大量人群流行病学调查及干预研究[5]已经证实,增加叶酸摄入能够有效降低神经管缺陷的发生率,孕妇在怀孕前一个月及怀孕后前三个月每日摄入400 μ的叶酸,可以显著降低NTDs的发生率。叶酸代谢途径的基因在NTDs的发生机制中扮演着重要角色,MTHFR和甲硫氨酸合成酶还原酶(methionine synthase reductase, MTRR)等基因位点多态性与NTDs的发生风险密切相关。世界卫生组织建议育龄期妇女的红细胞叶酸浓度大于906 nmol/L,以最大限度地降低NTDs。

2) 流产/早产/死胎

Bodnar等人的研究[6]表明,反复自然流产患者胚胎染色体异常的发生率约为50%~70%。叶酸缺乏可能是通过影响滋养层细胞、胚胎DNA甲基化、胎盘功能等引起自然流产。研究表明低叶酸浓度会增加胎盘血管阻力,叶酸缺乏导致的高同型半胱氨酸水平也可诱导滋养层凋亡并显着减少体外人绒毛膜促性腺激素分泌,这可能导致胚胎停育和自然流产[7]。叶酸缺乏还可能会增加35岁以上女性发生减数分裂错误的风险。孕前较高的补充叶酸摄入与自发流产与死胎风险降低相关。一项荟萃分析显示,妊娠晚期较高叶酸水平与早产风险降低显著(OR ≈ 0.58),早期开始补充亦有益;在中国20万样本的前瞻性研究也观察到围受孕期补充与早产风险下降相关[8]

  • 胎儿生长与出生体重

多项基于中国人群的大样本研究报告表明[9],围受孕期或孕早期叶酸补充与小于胎龄儿(Small for gestational age infant, SGA)与低出生体重风险降低相关,且在足月儿与初产妇中关联更为清晰;也有研究提示多种微量营养素联合(含铁/叶酸)可降低低出生体重并可能减少SGA。一项基于人群的前瞻性队列研究发现[10],围孕期补充叶酸与胎儿生长加快显着相关,导致胎盘和出生体重增加,并降低生下低出生体重或SGA孩子的风险,这种影响在孕前开始使用叶酸补充剂的女性中最为明显,并且通过胎次而改变。

4) 子痫前期

Zhang等人[11]发现,患有子痫前期和子痫的孕妇发生胎盘早剥、血小板减少、弥散性血管内凝血、肺水肿和吸入性肺炎的风险高出3至25倍,并且超过一半的患有先兆子痫和子痫的女性经剖宫产分娩。妊娠期高血压疾病也是产后患心血管疾病的危险因素。Smith [12]比较了有子痫前期病史的女性和血压正常女性,并表明PE会使产后一年后的心血管风险增加2至3倍。

血液同型半胱氨酸水平升高是妊娠期高血压和子痫前期的病因之一。Roberts [13]认为高同型半胱氨酸血症可损害胎盘血管内皮,增加促凝血剂和血管收缩剂的产生。而补充叶酸可以降低血液中的同型半胱氨酸水平,在整个怀孕期间每天摄入0.5毫克或5毫克的叶酸可显着降低血浆中Hcy的水平。孕早期和中期子痫前期的发生与胎盘灌注减少、异常植入有关,孕晚期子痫前期的发生与母体全身性内皮功能障碍有关。而叶酸可预防和逆转母体内皮功能障碍,与血浆同型半胱氨酸无关,这表明叶酸补充剂可能在孕晚期预防子痫前期方面发挥作用。

5) 妊娠期糖尿病(GDM)

有报道发现[14],妊娠期糖尿病患者叶酸水平相较于正常孕妇明显较低,补充叶酸可以降低血液中的同型半胱氨酸水平,而血清Hcy可促进妊娠期糖尿病的炎性反应。一项前瞻性队列研究[15]显示,孕前较高的叶酸摄入量与较低的GDM风险显著相关。孕期未服用叶酸和长期服用叶酸(0.4 mg/d) > 90 d的孕妇其GDM发生率高于服用叶酸 ≤ 60 d的孕妇。

6) 先天性心脏病

最新的人群研究[16]提示血清叶酸与先天性心脏病呈“U形”关联,叶酸过低或过高均可能增加风险;叶酸可以通过影响胚胎心脏发育的关键心脏神经嵴细胞迁移来预防先天性心脏病。叶酸补充开始后红细胞叶酸浓度迅速增加,先天性心脏病的风险随着红细胞叶酸浓度的增加而降低。一项大型国内病例对照研究发现,孕妇在妊娠早期补充叶酸可降低后代患严重先天性心脏病的风险[17]

4. 叶酸依赖的一碳代谢:从分子机制到疾病表型

叶酸以四氢叶酸(THF)衍生物携带一碳单位,参与两大通路:胞质/线粒体一碳循环与甲硫氨酸循环[18]。前者提供嘌呤与胸苷(dTMP)合成所需的10-formyl-THF与5,10-methylene-THF;后者在维生素B12 (甲基钴胺素)依赖的甲硫氨酸合成酶(MTR)催化下,将同型半胱氨酸再甲基化为甲硫氨酸,生成S-腺苷甲硫氨酸(SAM)以供全基因组甲基化与表观遗传调控之用。该代谢网络在组织间分区(细胞质/线粒体)与通量调控方面具有明确可塑性,这一“代谢–表型”耦合决定了多种疾病的易感与进程。

1) 胚胎神经管闭合与先天缺陷。胎儿器官发生早期对dTMP与SAM高度依赖;围受孕期补充0.4 mg/日叶酸可显著降低神经管缺陷(NTD)风险,已被世卫组织与多国指南反复证实并采纳为一线公共卫生策略[19]

2) 心脑血管系统。一碳循环失衡导致同型半胱氨酸升高(高同型半胱氨酸血症),与动脉粥样硬化/卒中风险相关。二级预防人群(既往动脉粥样硬化患者)中,大剂量叶酸 + B族维生素虽可降同型半胱氨酸,但未降低主要心血管终点(HOPE-2) [20]。相反,在基础叶酸水平较低的人群,如中国高血压成年人,一线治疗联用叶酸可显著降低首发卒中风险(CSPPT)。

3) 神经系统与认知。在维生素B12缺乏状态下,5-甲基-THF被“叶酸陷阱”锁定,导致功能性叶酸不足与甲基供体匮乏。流行病学数据显示:高叶酸状态叠加低B12与贫血及认知受损的风险升高有关,强调了两者协同评估与干预的重要性[21]

4) 肿瘤发生与进展。叶酸缺乏可致尿嘧啶误掺入与DNA断裂(致癌促变环境) [22];而在已存在的隐匿性病灶中,过剩的一碳通量又可能为快速增殖提供核苷酸与甲基化优势,形成潜在“U形”风险曲线。

5. 个性化补充叶酸

整个妊娠过程中,母体血浆叶酸浓度稳步下降至非妊娠水平的50%左右,这可能与血液稀释、肾功能改变和激素变化有关[23]。另外胎盘和胎儿需求的增加也可能导致这种下降,并且有证据表明随着妊娠的进展,母体叶酸分解代谢增加,与细胞快速增殖期相吻合,相当于到妊娠晚期每天代谢近400 μg叶酸[24]。加倍的叶酸需求可能会导致怀孕期间没有额外摄入叶酸的女性有更加明显的叶酸负平衡,并可能大大促进叶酸缺乏症的进展。叶酸缺乏通常是由于饮食摄入不足或吸收不良引起的[25]

因此,随着胎儿生长发育消耗,仅依靠饮食摄入或补充小剂量叶酸制剂难以满足围孕期的高叶酸需求,而根据代谢相关酶的基因多态性制定妊娠早、中、晚期个性化补充叶酸方案,可能会降低 Hcy 水平、提高红细胞及血清叶酸水平,并进一步降低不良妊娠结局发生率。

基金项目

2022年度山东省医学会红细胞叶酸与妊娠合并症、并发症及妊娠结局的关联性研究专项资金——红细胞叶酸与妊娠结局研究(YXH2022DZX06010)。

NOTES

*通讯作者。

参考文献

[1] Elkin, A.C. and Higham, J. (2000) Folic Acid Supplements Are More Effective than Increased Dietary Folate Intake in Elevating Serum Folate Levels. BJOG: An International Journal of Obstetrics & Gynaecology, 107, 285-289. [Google Scholar] [CrossRef] [PubMed]
[2] Berry, R.J., Bailey, L., Mulinare, J., Bower, C. and Dary, O. (2010) Fortification of Flour with Folic Acid. Food and Nutrition Bulletin, 31, S22-S35. [Google Scholar] [CrossRef] [PubMed]
[3] Rampersaud, G.C., Kauwell, G.P., Hutson, A.D., Cerda, J.J. and Bailey, L.B. (2000) Genomic DNA Methylation Decreases in Response to Moderate Folate Depletion in Elderly Women. The American Journal of Clinical Nutrition, 72, 998-1003. [Google Scholar] [CrossRef] [PubMed]
[4] Zhao, X., Yang, L., Wang, M., et al. (2024) Correlation of Folic Acid Metabolic Gene Polymorphisms, Homocysteine, Vitamin B12, and Red Blood Cell Folate with Adverse Pregnancy Outcomes. Alternative Therapies in Health and Medicine, 30, 284-288.
[5] Williams, P.J., Bulmer, J.N., Innes, B.A. and Broughton Pipkin, F. (2011) Possible Roles for Folic Acid in the Regulation of Trophoblast Invasion and Placental Development in Normal Early Human Pregnancy. Biology of Reproduction, 84, 1148-1153. [Google Scholar] [CrossRef] [PubMed]
[6] Bodnar, L.M., Tang, G., Ness, R.B., Harger, G. and Roberts, J.M. (2006) Periconceptional Multivitamin Use Reduces the Risk of Preeclampsia. American Journal of Epidemiology, 164, 470-477. [Google Scholar] [CrossRef] [PubMed]
[7] Giugliani, E.R.J., Jorge, S.M. and Gonçalves, A.L. (1985) Serum and Red Blood Cell Folate Levels in Parturients, in the Intervillous Space of the Placenta and in Full-Term Newborns. Journal of Perinatal Medicine, 13, 55-60. [Google Scholar] [CrossRef] [PubMed]
[8] Ueland, P.M., Hustad, S., Schneede, J., Refsum, H. and Vollset, S.E. (2001) Biological and Clinical Implications of the MTHFR C677T Polymorphism. Trends in Pharmacological Sciences, 22, 195-201. [Google Scholar] [CrossRef] [PubMed]
[9] Rady, P.L., Szucs, S., Grady, J., Hudnall, S.D., Kellner, L.H., Nitowsky, H., et al. (2001) Genetic Polymorphisms of Methylenetetrahydrofolate Reductase (mthfr) and Methionine Synthase Reductase (mtrr) in Ethnic Populations in Texas; a Report of a Novel mthfr Polymorphic Site, G1793a. American Journal of Medical Genetics, 107, 162-168. [Google Scholar] [CrossRef] [PubMed]
[10] Tsang, B.L., Devine, O.J., Cordero, A.M., Marchetta, C.M., Mulinare, J., Mersereau, P., et al. (2015) Assessing the Association between the Methylenetetrahydrofolate Reductase (MTHFR) 677c>t Polymorphism and Blood Folate Concentrations: A Systematic Review and Meta-Analysis of Trials and Observational Studies. The American Journal of Clinical Nutrition, 101, 1286-1294. [Google Scholar] [CrossRef] [PubMed]
[11] Zhang, L., Sun, L. and Wei, T. (2021) Correlation between MTHFR Gene Polymorphism and Homocysteine Levels for Prognosis in Patients with Pregnancy-Induced Hypertension. American Journal of Translational Research, 13, 8253-8261.
[12] Smith, G.N., Walker, M.C., Liu, A., Wen, S.W., Swansburg, M., Ramshaw, H., et al. (2009) A History of Preeclampsia Identifies Women Who Have Underlying Cardiovascular Risk Factors. American Journal of Obstetrics and Gynecology, 200, 58.e1-58.e8. [Google Scholar] [CrossRef] [PubMed]
[13] Roberts, J. and Cooper, D. (2001) Pathogenesis and Genetics of Pre-Eclampsia. The Lancet, 357, 53-56. [Google Scholar] [CrossRef] [PubMed]
[14] Zhao, M., Chen, Y., Dong, X., Zhou, J., Chen, X., Wang, H., et al. (2013) Folic Acid Protects against Lipopolysaccharide-Induced Preterm Delivery and Intrauterine Growth Restriction through Its Anti-Inflammatory Effect in Mice. PLOS ONE, 8, e82713. [Google Scholar] [CrossRef] [PubMed]
[15] Siega-Riz, A.M., Savitz, D.A., Zeisel, S.H., Thorp, J.M. and Herring, A. (2004) Second Trimester Folate Status and Preterm Birth. American Journal of Obstetrics and Gynecology, 191, 1851-1857. [Google Scholar] [CrossRef] [PubMed]
[16] Mistry, H.D., Kurlak, L.O., Gardner, D.S., Torffvit, O., Hansen, A., Broughton Pipkin, F., et al. (2019) Evidence of Augmented Intrarenal Angiotensinogen Associated with Glomerular Swelling in Gestational Hypertension and Preeclampsia: Clinical Implications. Journal of the American Heart Association, 8, e012611. [Google Scholar] [CrossRef] [PubMed]
[17] Moat, S.J., Lang, D., McDowell, I.F.W., Clarke, Z.L., Madhavan, A.K., Lewis, M.J., et al. (2004) Folate, Homocysteine, Endothelial Function and Cardiovascular Disease. The Journal of Nutritional Biochemistry, 15, 64-79. [Google Scholar] [CrossRef] [PubMed]
[18] Hernandez-Diaz, S. (2002) Risk of Gestational Hypertension in Relation to Folic Acid Supplementation during Pregnancy. American Journal of Epidemiology, 156, 806-812. [Google Scholar] [CrossRef] [PubMed]
[19] Ducker, G.S. and Rabinowitz, J.D. (2017) One-Carbon Metabolism in Health and Disease. Cell Metabolism, 25, 27-42. [Google Scholar] [CrossRef] [PubMed]
[20] Lonn, E., Yusuf, S., Arnold, M.J., et al. (2006) Homocysteine Lowering with Folic Acid and B Vitamins in Vascular Disease (HOPE-2). The New England Journal of Medicine, 354, 1567-1577.
[21] Huo, Y., Li, J., Qin, X., Huang, Y., Wang, X., Gottesman, R.F., et al. (2015) Efficacy of Folic Acid Therapy in Primary Prevention of Stroke among Adults with Hypertension in China. JAMA, 313, 1325-1335. [Google Scholar] [CrossRef] [PubMed]
[22] Scholl, T.O. and Johnson, W.G. (2000) Folic Acid: Influence on the Outcome of Pregnancy. The American Journal of Clinical Nutrition, 71, 1295S-1303S. [Google Scholar] [CrossRef] [PubMed]
[23] Cole, B.F., Baron, J.A., Sandler, R.S., Haile, R.W., Ahnen, D.J., Bresalier, R.S., et al. (2007) Folic Acid for the Prevention of Colorectal Adenomas. JAMA, 297, 2351-2359. [Google Scholar] [CrossRef] [PubMed]
[24] Van de Velde, A., Van Droogenbroeck, J., Tjalma, W., Jorens, P.G., Schroyens, W. and Berneman, Z. (2002) Folate and Vitamin B12 Deficiency Presenting as Pancytopenia in Pregnancy: A Case Report and Review of the Literature. European Journal of Obstetrics & Gynecology and Reproductive Biology, 100, 251-254. [Google Scholar] [CrossRef] [PubMed]
[25] Walker, S., Wein, P. and Ihle, B. (1997) Severe Folate Deficiency Masquerading as the Syndrome of Hemolysis, Elevated Liver Enzymes, and Low Platelets. Obstetrics & Gynecology, 90, 655-657. [Google Scholar] [CrossRef] [PubMed]