pDoC的脑肠轴失衡:炎症因子谱特征与意识水平评估的关联
pDoC’s Brain-Gut Axis Imbalance: Association between Inflammatory Factor Profiles and Consciousness Level Assessment
摘要: 本文综述慢性意识障碍(Prolonged Disorders of Consciousness, pDoC)与脑肠轴失衡、炎症因子的关联机制及研究进展。脑肠轴失衡(菌群失调、肠屏障受损)引发全身炎症,破坏血脑屏障并诱发神经炎症,同时干扰神经递质与内分泌功能;IL-6、IL-1β等炎症因子直接损伤神经细胞、干扰递质代谢,其水平与意识障碍程度相关。文章旨在为pDoC的研究与治疗提供参考。
Abstract: This review summarizes the associative mechanisms and research progress between prolonged disorders of consciousness (pDoC), gut-brain axis imbalance, and inflammatory factors. Gut-brain axis imbalance, characterized by dysbiosis and impaired intestinal barrier function, triggers systemic inflammation, disrupts the blood-brain barrier, and induces neuroinflammation, while also interfering with neurotransmitter and endocrine functions. Inflammatory factors such as IL-6 and IL-1β directly damage neural cells, disturb neurotransmitter metabolism, and their levels correlate with the severity of consciousness disorders. This review aims to provide a comprehensive reference for the research and treatment of pDoC.
文章引用:李毅, 申峤, 白康康. pDoC的脑肠轴失衡:炎症因子谱特征与意识水平评估的关联[J]. 临床医学进展, 2025, 15(11): 2010-2015. https://doi.org/10.12677/acm.2025.15113313

1. 介绍

脑肠轴作为连接中枢神经系统与胃肠道系统的复杂网络,对人体生理和心理功能具有关键调节作用[1]。包含神经、内分泌、免疫等多个子系统,实现脑与肠之间双向信息交流。生理状态下,肠道菌群通过影响神经递质合成与释放、调节免疫反应及内分泌功能,与中枢神经系统相互作用[2]。肠道内的短链脂肪酸可通过迷走神经或血液循环影响大脑神经活动[3]。致使意识丧失超过28天的病理状态一般被归为慢性意识障碍(Prolonged Disorders of Consciousness, pDoC),患者处于这些状态时一般呈现意识缺失或者觉醒状态波动的情况。pDoC的流行病学特征受多种因素影响,不同病因导致的pDoC发病率有所差异,如心搏骤停后引发的pDoC,奥地利的一项前瞻性研究中,其年发病率为1.88/100,000人,男性居多,主要病因是心肺复苏后的脑缺氧(63%) [4]。而在日本青森县,持续性植物状态患者中80岁以上人群最为常见(63.4%),脑血管卒中是主要病因(64.4%) [5]。脑肠轴失衡在pDoC中扮演重要角色。肠道菌群作为脑肠轴的重要组成部分,其失衡可能通过多种途径影响意识状态。肠道菌群产生的代谢产物如脂多糖等可引发全身炎症反应,破坏血脑屏障,导致神经炎症,进而影响意识[6]。脑肠轴失衡可能干扰神经内分泌系统,影响下丘脑–垂体–肾上腺轴功能,导致皮质醇等激素分泌异常,影响神经细胞功能和可塑性,与pDoC的发生发展相关[3]。本文将从以下方面综述炎症因子改变引起的脑肠轴失衡与pDoC的关联,以期为pDoC患者诊疗提供帮助。

2. pDoC与脑肠轴炎症因子失衡的病理生理机制

2.1. pDoC的炎症因子谱特征

pDoC患者中,脑肠轴生理机制可能发生改变。研究表明,肠道菌群失衡可能引发神经炎症和神经递质紊乱,进而影响意识水平[6]。动物实验中,肠道菌群失调导致神经炎症标志物增加,同时出现类似意识障碍的行为改变[7]。同时脑肠轴失衡还可能影响神经可塑性,对pDoC的发生发展产生影响[8]。pDoC患者常伴有炎症因子谱的改变。研究发现,多种炎症因子如白细胞介素(IL)-6、IL-1β、肿瘤坏死因子(TNF)-α等在患者体内表达异常[9]。在一项针对22例严重创伤性脑损伤且伴有pDoC患者的研究中,发现慢性期患者血浆中IL-6、IL-1β、TNF-α等细胞因子持续处于高水平,且与认知功能障碍相关[9]。炎症因子谱的改变可能与pDoC的病理过程相互作用。炎症因子可直接损伤神经细胞,影响神经递质代谢和神经信号传导,导致意识障碍[10] [11]。pDoC引发的机体应激反应也可能进一步激活免疫系统,促使炎症因子释放,形成恶性循环[12]

2.2. 脑肠轴失衡与pDoC的病理机制

脑肠轴失衡与pDoC的病理机制密切相关。脑肠轴失衡时,肠道屏障功能受损,肠道菌群易位,激活免疫系统,释放炎症因子,引发神经炎症[6]。氨暴露可通过改变与氧化代谢、炎症和凋亡相关的基因网络,导致脑肠轴失衡,引发神经病理损伤[13]。脑肠轴失衡可能影响神经递质代谢,肠道菌群可调节血清素等神经递质的合成与释放,失衡时神经递质水平改变,影响神经信号传递,导致意识障碍[2]。脑肠轴失衡还可能干扰神经内分泌调节,影响激素水平,进一步加重神经功能损伤[3]

2.3. 炎症因子在pDoC中的作用机制

炎症因子在pDoC中通过多种机制发挥作用。炎症因子可直接损伤神经细胞,诱导细胞凋亡,破坏神经组织结构和功能[10]。动物实验中,给予脂多糖诱导炎症反应,导致海马区神经细胞凋亡增加,认知功能受损,类似pDoC表现[14]。炎症因子还可影响神经递质代谢。炎症状态下,多巴胺、谷氨酸等神经递质的合成、释放和代谢受到干扰,导致神经信号传导异常,影响意识水平[15]。炎症因子可激活小胶质细胞,引发神经炎症级联反应,进一步加重神经损伤,在pDoC的发展过程中起到推动作用[14]

3. 炎症因子相关的脑肠轴失衡对于pDoC诊断帮助

3.1. 脑肠轴失衡的生物标志物检测

检测脑肠轴失衡的生物标志物对pDoC诊断具有潜在价值。研究发现,肠道菌群的特定变化可作为生物标志物。自闭症谱系障碍患者中,肠道菌群中乳酸杆菌科、双歧杆菌科等相对丰度增加,普雷沃氏菌科在健康儿童中占主导[16]。这些菌群变化可能与脑肠轴失衡及pDoC相关。代谢产物也可作为生物标志物。在抑郁症患者中,粪便中的异戊酸与抑郁状态及皮质醇水平显著相关,提示其可能是脑肠轴失衡的生物标志物[17]。通过检测这些生物标志物,有助于早期发现脑肠轴失衡,为pDoC的诊断提供依据。

3.2. 炎症因子谱在pDoC诊断中的应用

炎症因子谱可辅助pDoC的诊断。胆红素脑病患者中,血清中白细胞介素-1β (IL-1β)和肿瘤生长因子-β (TGF-β)水平升高,且与胆红素水平呈正相关,通过检测这两种炎症因子可区分患者与健康对照,具有一定诊断价值[18]。pDoC患者中,监测炎症因子谱的动态变化可能有助于评估病情。在一项研究中,对pDoC患者进行随访,发现炎症因子水平的变化与患者意识状态的改变存在关联,为诊断和病情监测提供参考[9]。目前炎症因子谱在pDoC诊断中的应用仍需进一步验证和标准化。

4. 治疗

pDoC患者的临床管理中,抗生素、肠内营养配方、机械通气等常规干预措施,并非仅发挥治疗原发疾病或维持生命体征的作用,更会作为关键混杂变量,通过调控肠道微生态、肠道屏障功能及全身应激反应,间接影响脑肠轴稳态与机体炎症状态,进而可能对意识恢复进程产生潜在干扰[19]-[21]。抗生素的核心作用是抑制或杀灭病原微生物,但同时会破坏肠道内正常菌群的多样性与丰度,引发肠道菌群失调[22]。这种失调会从两方面影响脑肠轴与炎症:一方面,菌群结构紊乱导致短链脂肪酸、色氨酸代谢物等脑肠轴关键信号分子合成减少,削弱对中枢神经系统的保护作用,间接加剧中枢炎症反应[23];另一方面,有害菌过度增殖会破坏肠道黏膜屏障的完整性,促使内毒素等促炎物质入血,激活全身炎症反应综合征,而炎症因子可通过血液循环或迷走神经通路逆行作用于中枢,进一步扰动脑内炎症微环境,形成“肠道炎症–脑炎症”的恶性循环,加重意识程度。肠内营养配方作为患者主要营养来源,其成分组成(如蛋白质类型、脂肪比例、益生元添加与否)直接决定肠道微生态结构与肠道屏障功能状态,进而成为影响脑肠轴与炎症的重要混杂变量[24]。合理的配方(如添加益生元、谷氨酰胺)可促进肠道有益菌(如双歧杆菌、乳酸菌)增殖,增强肠道黏膜细胞的紧密连接,减少肠道细菌移位与内毒素释放,从源头抑制全身炎症启动[25]。综上所述,通过不同机制对pDoC患者的脑肠轴与炎症状态产生调控作用,其自身的多样性与个体化应用特征,使其成为影响临床研究结果与治疗效果评估的重要混杂变量。

针对脑肠轴失衡的治疗方法逐渐受到关注。益生菌作为调节肠道菌群的常用手段,在多项研究中显示出潜在疗效。抗生素诱导的肠道菌群失调小鼠模型中,给予益生菌可改善肠道菌群组成,减轻认知功能下降、焦虑等行为改变,提示益生菌可能通过调节脑肠轴改善pDoC相关症状[26] [27]。饮食干预也具有重要作用,富含膳食纤维的饮食可促进肠道有益菌生长,调节肠道菌群平衡。在针对阿尔茨海默病患者的研究中,通过饮食干预调节肠道菌群,发现患者认知功能有所改善,可能与脑肠轴调节有关[28]。中药提取物如黄连素等也被发现具有调节肠道菌群、改善脑肠轴功能的作用,为pDoC治疗提供新思路[29]

调节炎症因子是pDoC治疗的重要策略。在帕金森病模型中,从霍山石斛中分离出的毛兰素可通过抑制NF-κB/NLRP3信号通路,减轻神经炎症,改善运动功能,提示其可能对pDoC治疗有益[30]。抗炎药物也在研究中显示出潜在疗效。在蛛网膜下腔出血导致的早期脑损伤研究中,预处理运动可通过激活Nrf2/HO-1通路,减少氧化应激和炎症反应,改善意识障碍等症状,为pDoC治疗提供参考[31]。炎症因子调节治疗需注意药物的安全性和有效性,避免过度抑制炎症反应带来的不良影响。

5. 局限性与展望

目前脑肠轴失衡与pDoC的关系仍存在争议。研究表明肠道菌群失衡、脑肠轴功能紊乱与pDoC相关,脑肠轴失衡影响pDoC的具体机制尚未完全阐明。尽管提出了神经炎症、神经递质紊乱等多种假说,但各机制之间的相互作用及主次关系仍需进一步研究。部分研究认为炎症因子水平与意识障碍程度呈正相关,在一些创伤性脑损伤导致的pDoC患者中,炎症因子IL-6、TNF-α等水平越高,意识障碍越严重[9]。同时研究发现炎症因子与意识水平的关系并非简单线性。炎症因子可能作为神经保护因子发挥作用,低水平的炎症因子可能促进神经修复和再生[32]。炎症因子谱的复杂性以及个体差异,使得其与意识水平的关联难以准确界定,需要更多研究明确炎症因子在意识障碍发生发展中的具体作用及机制。

6. 总结

脑肠轴失衡通过引发全身炎症反应、破坏血脑屏障、诱发神经炎症及干扰神经递质与内分泌功能,对pDoC的发生发展产生重要影响。炎症因子IL-6、IL-1β等不仅直接损伤神经细胞,还通过影响神经递质代谢和神经信号传导,进一步加重意识障碍。本文还综述了炎症因子谱特征、脑肠轴失衡的生物标志物检测在pDoC诊断中的应用,以及针对脑肠轴失衡和炎症因子的治疗策略。尽管目前具体机制尚未完全阐明,但本文为pDoC的研究与治疗提供了全面参考,指明未来研究方向。

NOTES

*通讯作者。

参考文献

[1] Tait, C. and Sayuk, G.S. (2021) The Brain-Gut-Microbiotal Axis: A Framework for Understanding Functional GI Illness and Their Therapeutic Interventions. European Journal of Internal Medicine, 84, 1-9. [Google Scholar] [CrossRef] [PubMed]
[2] Jiang, M., Kang, L., Wang, Y., Zhou, B., Li, H., Yan, Q., et al. (2024) Mechanisms of Microbiota-Gut-Brain Axis Communication in Anxiety Disorders. Frontiers in Neuroscience, 18, Article ID: 1501134. [Google Scholar] [CrossRef] [PubMed]
[3] Ho, T., Elma, Ö., Kocanda, L., Brain, K., Lam, T., Kanhere, T., et al. (2025) The Brain-Gut Axis and Chronic Pain: Mechanisms and Therapeutic Opportunities. Frontiers in Neuroscience, 19, Article ID: 1545997. [Google Scholar] [CrossRef] [PubMed]
[4] Pichler, G. and Fazekas, F. (2016) Cardiopulmonary Arrest Is the Most Frequent Cause of the Unresponsive Wakefulness Syndrome: A Prospective Population-Based Cohort Study in Austria. Resuscitation, 103, 94-98. [Google Scholar] [CrossRef] [PubMed]
[5] Shimamura, N., Munakata, A., Naraoka, M., et al. (2015) Epidemiological Investigation of Patients in Persistent Vegetative States in Aomori, Japan. No Shinkei Geka, 43, 705-708.
[6] Li, X., Chen, L., Kumar, G., Zhang, S., Zhong, Q., Zhang, H., et al. (2022) Therapeutic Interventions of Gut-Brain Axis as Novel Strategies for Treatment of Alcohol Use Disorder Associated Cognitive and Mood Dysfunction. Frontiers in Neuroscience, 16, Article ID: 820106. [Google Scholar] [CrossRef] [PubMed]
[7] Zhang, Y., Xu, S., Fan, M., Yao, H., Jiang, C., He, Q., et al. (2024) Circadian Rhythm Disruption Modulates Enteric Neural Precursor Cells Differentiation Leading to Gastrointestinal Motility Dysfunction via the NR1D1/NF-κB Axis. Journal of Translational Medicine, 22, Article No. 975. [Google Scholar] [CrossRef] [PubMed]
[8] Xu, Q., Jiang, M., Gu, S., Zhang, X., Feng, G., Ma, X., et al. (2022) Metabolomics Changes in Brain-Gut Axis after Unpredictable Chronic Mild Stress. Psychopharmacology, 239, 729-743. [Google Scholar] [CrossRef] [PubMed]
[9] Licastro, F., Hrelia, S., Porcellini, E., Malaguti, M., Di Stefano, C., Angeloni, C., et al. (2016) Peripheral Inflammatory Markers and Antioxidant Response during the Post-Acute and Chronic Phase after Severe Traumatic Brain Injury. Frontiers in Neurology, 7, Article ID: 185. [Google Scholar] [CrossRef] [PubMed]
[10] Harrison, N.A. (2017) Brain Structures Implicated in Inflammation-Associated Depression. Current Topics in Behavioral Neurosciences, 31, 221-248. [Google Scholar] [CrossRef] [PubMed]
[11] Chen, L., An, S., Liu, Y., Jiang, Q., Ge, Y. and Yu, G. (2025) Lead Exposure Disrupts Cytoskeletal Arrangement and Perturbs Glucose Metabolism in Nerve Cells through Activation of the Rhoa/Rock Signaling Pathway. Journal of Trace Elements in Medicine and Biology, 89, Article 127663. [Google Scholar] [CrossRef] [PubMed]
[12] Ohbe, H., Kudo, D., Yamanouchi, S. and Kushimoto, S. (2017) Decreased a Disintegrin-Like and Metalloprotease with Thrombospondin Type 1 Motif 13 Activity and Neurologic Outcome in Patients with Successful Resuscitation of Out-of-Hospital Cardiac Arrest: A Prospective Observational Study. Journal of Critical Care, 37, 13-18. [Google Scholar] [CrossRef] [PubMed]
[13] Li, Y., Pan, L., Zeng, X., Zhang, R., Li, X., Li, J., et al. (2021) Ammonia Exposure Causes the Imbalance of the Gut-Brain Axis by Altering Gene Networks Associated with Oxidative Metabolism, Inflammation and Apoptosis. Ecotoxicology and Environmental Safety, 224, Article 112668. [Google Scholar] [CrossRef] [PubMed]
[14] Mao, M., Zhou, Z., Sun, M., Wang, C. and Sun, J. (2021) The Dysfunction of Parvalbumin Interneurons Mediated by Microglia Contributes to Cognitive Impairment Induced by Lipopolysaccharide Challenge. Neuroscience Letters, 762, Article 136133. [Google Scholar] [CrossRef] [PubMed]
[15] Ji, M., Zhang, L., Mao, M., Zhang, H., Yang, J. and Qiu, L. (2020) Overinhibition Mediated by Parvalbumin Interneurons Might Contribute to Depression-Like Behavior and Working Memory Impairment Induced by Lipopolysaccharide Challenge. Behavioural Brain Research, 383, Article 112509. [Google Scholar] [CrossRef] [PubMed]
[16] Abuljadayel, D., Alotibi, A., Alqothmi, K., Basingab, F., Alhazmi, S., Almuhammadi, A., et al. (2024) Gut Microbiota of Children with Autism Spectrum Disorder and Healthy Siblings: A Comparative Study. Experimental and Therapeutic Medicine, 28, Article No. 430. [Google Scholar] [CrossRef] [PubMed]
[17] Bertollo, A.G., Santos, C.F., Bagatini, M.D. and Ignácio, Z.M. (2025) Hypothalamus-Pituitary-Adrenal and Gut-Brain Axes in Biological Interaction Pathway of the Depression. Frontiers in Neuroscience, 19, Article ID: 1541075. [Google Scholar] [CrossRef] [PubMed]
[18] Guan, H., Wang, C. and Zhang, X. (2020) Increased Serum Expression of Inflammatory Cytokines May Serve as Potential Diagnostic Biomarker for Bilirubin Encephalopathy. Clinics, 75, e1868. [Google Scholar] [CrossRef] [PubMed]
[19] Silva, P.L., Chiumello, D., Pozzi, T. and Rocco, P.R.M. (2025) Beyond the Lungs: Extrapulmonary Effects of Non-Invasive and Invasive Ventilation Strategies. Journal of Clinical Medicine, 14, Article 1242. [Google Scholar] [CrossRef] [PubMed]
[20] Li, Q. and Wang, J. (2025) The Application and Mechanism Analysis of Enteral Nutrition in Clinical Management of Chronic Diseases. Nutrients, 17, Article 450. [Google Scholar] [CrossRef] [PubMed]
[21] Gupta, N., Haley, R., Gupta, A. and Sethi, S. (2020) Chronic Obstructive Pulmonary Disease in the Intensive Care Unit: Antibiotic Treatment of Severe Chronic Obstructive Pulmonary Disease Exacerbations. Seminars in Respiratory and Critical Care Medicine, 41, 830-841. [Google Scholar] [CrossRef] [PubMed]
[22] Ramirez, J., Guarner, F., Bustos Fernandez, L., Maruy, A., Sdepanian, V.L. and Cohen, H. (2020) Antibiotics as Major Disruptors of Gut Microbiota. Frontiers in Cellular and Infection Microbiology, 10, Article ID: 572912. [Google Scholar] [CrossRef] [PubMed]
[23] Tiwari, S. and Paramanik, V. (2025) Role of Probiotics in Depression: Connecting Dots of Gut-Brain-Axis through Hypothalamic-Pituitary Adrenal Axis and Tryptophan/Kynurenic Pathway Involving Indoleamine-2,3-Dioxygenase. Molecular Neurobiology, 62, 7230-7241. [Google Scholar] [CrossRef] [PubMed]
[24] Wang, Q.H. (2017) Effect of Ecological Immune-Enhanced Enteral Nutrition on Patients with Gastrointestinal Fistulas. European Review for Medical and Pharmacological Sciences, 21, 2261-2267.
[25] Yue, T., Lu, Y., Ding, W., Xu, B., Zhang, C., Li, L., et al. (2025) The Role of Probiotics, Prebiotics, Synbiotics, and Postbiotics in Livestock and Poultry Gut Health: A Review. Metabolites, 15, Article 478. [Google Scholar] [CrossRef] [PubMed]
[26] Roy Sarkar, S., Mitra Mazumder, P. and Banerjee, S. (2020) Probiotics Protect against Gut Dysbiosis Associated Decline in Learning and Memory. Journal of Neuroimmunology, 348, Article 577390. [Google Scholar] [CrossRef] [PubMed]
[27] Arslanova, A., Tarasova, A., Alexandrova, A., Novoselova, V., Shaidullov, I., Khusnutdinova, D., et al. (2021) Protective Effects of Probiotics on Cognitive and Motor Functions, Anxiety Level, Visceral Sensitivity, Oxidative Stress and Microbiota in Mice with Antibiotic-Induced Dysbiosis. Life, 11, Article 764. [Google Scholar] [CrossRef] [PubMed]
[28] Qu, L., Li, Y., Liu, F., et al. (2024) Microbiota-Gut-Brain Axis Dysregulation in Alzheimer’s Disease: Multi-Pathway Effects and Therapeutic Potential. Aging and Disease, 15, 1108-1131.
[29] Feng, P., Zhao, S., Zhang, Y. and Li, E. (2023) A Review of Probiotics in the Treatment of Autism Spectrum Disorders: Perspectives from the Gut-Brain Axis. Frontiers in Microbiology, 14, Article ID: 1123462. [Google Scholar] [CrossRef] [PubMed]
[30] Yan, C., Tian, Z., Ruan, W., Wu, M., Wang, W. and Liu, Z. (2025) Erianin Isolated from Dendrobium Huoshanense Alleviated Neuroinflammation in MPTP-Induced Parkinson’s Disease Model via NF-κB/nlrp3 Pathway. Journal of Ethnopharmacology, 345, Article 119620. [Google Scholar] [CrossRef] [PubMed]
[31] Otsuka, S., Setoyama, K., Takada, S., Nakanishi, K., Terashi, T., Norimatsu, K., et al. (2021) Preconditioning Exercise in Rats Attenuates Early Brain Injury Resulting from Subarachnoid Hemorrhage by Reducing Oxidative Stress, Inflammation, and Neuronal Apoptosis. Molecular Neurobiology, 58, 5602-5617. [Google Scholar] [CrossRef] [PubMed]
[32] Khan, H., Naseem, T., Kaushik, P., Narang, J., Khan, R., Panwar, S., et al. (2024) Decoding Paradoxical Links of Cytokine Markers in Cognition: Cross Talk between Physiology, Inflammaging, and Alzheimer’s Disease-Related Cognitive Decline. Ageing Research Reviews, 101, Article 102535. [Google Scholar] [CrossRef] [PubMed]