儿童孤独症谱系障碍共病情绪症状的临床特征及神经环路机制的研究进展
Emotional Comorbidity in Pediatric Autism Spectrum Disorder: A Review of Clinical Features and Neural Circuit Mechanisms
DOI: 10.12677/ijpn.2025.144011, PDF, HTML, XML,    国家自然科学基金支持
作者: 刘彩燕, 张文彬:暨南大学附属第一医院精神医学科,广东 广州;师玲玲*:暨南大学附属第一医院精神医学科,广东 广州;暨南大学粤港澳中枢神经再生研究院,中枢神经再生教育部重点实验室,广州 广东
关键词: 孤独症谱系障碍焦虑症状抑郁症状临床特征神经环路Autism Spectrum Disorder Anxiety Symptoms Depressive Symptoms Clinical Characteristics Neural Circuits
摘要: 孤独症谱系障碍是一种高共病率的神经发育障碍,以社交沟通障碍和重复刻板行为为核心症状。据统计,超过50%的ASD患者伴有焦虑、抑郁等情绪问题,导致临床表现复杂化、诊断困难及干预延迟,影响患者的社会功能与生活质量。目前,ASD共病情绪症状的机制尚未完全明确,治疗方案的疗效个体差异性大。因此,本文旨在梳理ASD共病焦虑与抑郁的临床表现特征,重点探讨其背后的神经环路机制,并综述现有及新兴的干预策略。旨在提倡早期甄别共病情绪障碍的ASD患者,并基于神经环路开发针对性的治疗策略,以期改善患者的整体生活质量。
Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by a high rate of comorbidity, with core symptoms including deficits in social communication and the presence of restricted, repetitive patterns of behavior. According to statistics, over 50% of individuals with ASD experience emotional problems including anxiety and depression, which leads to increased complexity in clinical presentation, diagnostic challenges, and delays in intervention, ultimately affecting patients’ social functioning and quality of life. Currently, the underlying mechanisms of the comorbidity between ASD and emotional disorders remain incompletely understood, and treatment efficacy shows significant individual variability. Therefore, this review aims to systematically outline the clinical manifestations of ASD comorbid with anxiety and depression, with a focus on the underlying neural circuitry mechanisms, and to summarize existing and emerging intervention strategies. The goal is to advocate for the early identification of emotional comorbidities in ASD patients and to promote the development of targeted therapeutic strategies based on abnormalities in neural circuits, with the aim of improving their overall quality of life.
文章引用:刘彩燕, 张文彬, 师玲玲. 儿童孤独症谱系障碍共病情绪症状的临床特征及神经环路机制的研究进展[J]. 国际神经精神科学杂志, 2025, 14(4): 83-92. https://doi.org/10.12677/ijpn.2025.144011

1. 引言

孤独症谱系障碍(autism spectrum disorder, ASD)是一类通常起病于发育早期,以不同程度的社会交往与交流障碍、刻板行为和兴趣狭隘为主要特征的神经发育障碍。ASD全球患病率高达1%,我国为0.7% [1] [2]。ASD的共病率极高,70% 的ASD患者同时患有另一种精神疾病,50%有两种及以上,其中以注意力缺陷多动障碍、焦虑障碍、智力障碍常见[3] [4]。近年来,ASD患者情绪失调症状逐渐受到重视,据统计,56.8%~85%的ASD患者存在情绪失调症状,其中67%~79%的ASD患者表现为焦虑症状,42%~54%出现抑郁症状[5]。由于ASD个体存在表达性沟通困难,其情绪困扰常表现为外化行为问题(如易激惹、攻击、自伤)或内化问题(如社交退缩、刻板行为加剧)等非典型症状,加剧疾病严重程度。ASD共病情绪症状加剧疾病治疗诊疗难度,甚至可能导致自伤、自杀等严重后果[6]

ASD共病情绪症状的干预主要遵循心理治疗为主、严重病例辅以药物治疗的原则[7]。然而,心理干预起效相对缓慢、对家庭时间和经济投入要求较高[8]。药物治疗则因个体差异性大以及体重增加、代谢异常等潜在不良反应,导致治疗依从性不佳,限制了其广泛应用[9]。这一困境揭示基于典型行为表型的治疗模式的局限性,凸显了深入探索其背后神经生物学机制的紧迫性。

综上所述,本文旨在系统梳理ASD共病焦虑与抑郁症状的临床表现特征,深入探讨其背后的神经环路机制,并综述神经调控等新兴干预策略的应用进展。期望通过整合临床表型与神经科学证据,为早期识别ASD患者的情绪问题、推动个体化精准治疗方案的制定提供理论依据。

2. ASD共病焦虑症状的临床特征及神经环路机制

2.1. ASD共病焦虑症状的临床特征及影响因素

据统计,42%的ASD儿童青少年至少患有一种焦虑障碍[10]。其临床表现常具有非典型特征,主要与社交焦虑和特殊恐惧相关。社交焦虑多源于认知功能水平导致的社交沟通障碍,特殊恐惧则与感觉过敏相关[11]。社交沟通障碍易使ASD患者在人际互动中体验到挫败或误解,从而诱发社交焦虑,而焦虑情绪又会进一步强化其社交回避倾向,形成恶性循环[12]。社交沟通障碍程度与认知功能水平相关,高智力水平的ASD对自身社交困难有更高的意识,但缺乏有效应对策略[13]。因此,大龄ASD儿童总体焦虑水平和广泛性焦虑障碍发生率更高,而低龄ASD儿童则更多表现为分离焦虑和强迫症状[14]。ASD儿童常存在感觉处理异常,难以过滤环境中的噪音、强光等刺激,易引发急性焦虑,表现为尖叫、冲动自伤等失控表现[15]。生理层面,ASD患者的焦虑情绪不仅体现为紧张、担忧和烦躁,还常伴有自主神经系统功能紊乱,表现为心慌、胸闷、肌肉紧张及胃肠不适等躯体化症状。这些身体不适感会进一步降低患者的情绪耐受阈值,增加自我伤害或攻击性行为的发生风险[16]。此外,刻板重复行为(如摇晃身体、排列物品)的加剧,可被视为ASD患者应对焦虑的一种自我调节方式。通过这些行为,患者可能试图在感官超载或情绪压力下恢复控制感、缓解内在紧张[17]。因此,观察刻板行为的频率和强度变化,可作为评估其焦虑程度的重要行为指标[18]

ASD患者共病焦虑症状的临床表现与严重程度,受到性别、认知水平及核心症状严重程度等异质性因素的显著影响,塑造其情绪问题的独特性。在性别差异方面,与普通儿童群体相似,ASD女性患儿也表现出更高的焦虑易感性[19]。动物模型研究进一步提示其潜在的神经机制,在携带16p11.2缺失的ASD模型雌鼠中,可观察到中央杏仁核神经元兴奋性增高,这为理解女性ASD个体焦虑风险增加的神经基础提供了线索[20]。另外,认知水平是影响焦虑症状表现特异性的重要影响因素。高功能ASD患儿通常具备一定的认知内省能力,其焦虑更多源于对自身社交困难的理解和对外界社会期待的觉察,表现为对社交失败的过度担忧和广泛性焦虑。其神经基础与前额叶–边缘系统环路的调控功能失代偿有关[21]。低功能ASD患儿由于语言和认知表达受限,其焦虑情绪往往通过行为外化表现出来,如冲动、攻击或刻板行为的加剧。其机制更侧重于杏仁核等情绪中枢的反应亢进及感觉整合异常[22]。因此,在临床评估与干预中,应充分考虑ASD的异质性特征,推动分层、分型的精准支持策略。

2.2. ASD共病焦虑症状的神经环路机制

2.2.1. 杏仁核异常激活

杏仁核(Amygdala, AMY)作为情绪处理的关键脑区,其功能失调被普遍认为是焦虑症状发生的重要神经机制。研究显示,ASD患者基底外侧杏仁核(Basolateral Amygdala, BLA)的激活程度与焦虑水平呈正相关,提示杏仁核过度活跃可能是构成焦虑症状的神经基础,进而干扰情绪调控与社交行为[23]。动物模型发现,Dip2a基因敲除的ASD小鼠的BLA中5-羟色胺水平降低,削弱了对小清蛋白(PV)阳性抑制性中间神经元的调节,进而降低对BLA锥体神经元的抑制性控制,最终表现为焦虑样行为[24]

2.2.2. 前额叶–杏仁核的调控缺陷

磁共振功能成像(Functional magnetic resonance imaging, fMRI)研究显示,与不伴焦虑的ASD患者或健康对照组相比,共患焦虑的ASD患者其内侧前额叶皮质(Medial Prefrontal Fortex, mPFC)与杏仁核之间的功能连接显著降低,其中以皮层对边缘情绪的调控通路为主[25]。在Shank3突变小鼠中也证明,mPFC向BLA的前馈抑制显著减弱,通过光遗传技术特异性激活该通路可有效改善焦虑样行为[26]。进一步研究发现,该环路中兴奋性和抑制性平衡失调,最终GABA能抑制功能下降,导致pfc对杏仁核的抑制调控作用减弱,杏仁核持续性过度激活,表现为焦虑情绪与过度警觉[27]。另外,有研究发现前边缘皮层(Prelimbic Cortex, PL)-背侧纹状体(Dorsal Striatum, dSTR)的投射主要参与调控重复刻板行为,而PL-杏仁核环路则参与焦虑样行为的产生[28]。前额叶不同投射分别调控ASD的不同行为维度,提示ASD共病焦虑症状具有明显的环路异质性。这一发现不仅深化了对ASD伴焦虑样表现的神经机制的理解,也为开发精准神经调控干预策略提供了理论依据。

2.2.3. 右侧角回的功能异常

右侧角回(Right Angular Gyrus (RAG))是视、听等多种感觉信息整合和时间知觉处理的关键枢纽,其在ASD共病焦虑症状的神经机制中的作用日益受到关注[29]。日本金泽大学团队发现,焦虑情绪可能在右侧角回激活与感官过敏(Sensory Hyper-reactivity, SOR)之间扮演中介角色,形成“焦虑–时间知觉–感官过敏”的神经通路[30]。ASD患者可能因时间知觉障碍,难以准确判断外界刺激的持续时间、节奏或顺序,这种“不可预测感”导致焦虑水平提升,焦虑状态进一步降低感觉刺激的处理阈值,形成恶性循环[31]。SOR常见于ASD和焦虑障碍患者中,但其背后的神经关联模式可能存在差异[32]。在典型焦虑障碍中,SOR可能与威胁相关脑网络(如杏仁核)的过度激活关联更紧密;而在ASD共病焦虑的个体中,SOR则可能与包括右侧角回在内的感觉信息整合效率低下和时间处理网络的异常活动联系更为特异,说明右侧角回在ASD伴焦虑症状中的特有作用。

3. ASD共病抑郁症状的临床特征及神经环路机制

3.1. ASD共病抑郁症状的临床特征及影响因素

Meta分析显示,ASD患者终身抑郁障碍的患病率约为14.4% [33],显著高于一般人群。受ASD社交沟通障碍、刻板行为及感觉处理异常等特征的影响,其抑郁症状表现常不典型。在情绪行为层面,ASD共病抑郁患儿常表现为持续性易怒、无明显诱因的情绪爆发(如哭闹、喊叫)以及极端社交退缩[34]。他们对微小挫折的耐受性降低,可因细微不如意而诱发强烈的情绪反应,这反映其情绪调节功能的严重受损[35]。ASD患者的兴趣动力的减退表现为对原有特殊兴趣的彻底放弃,例如长时间独处,拒绝参与任何社交互动,甚至拒绝进食等基本生理需求[36]。此外,自伤行为(如撞头、咬手)及某些刻板行为显著加重,也是抑郁共病的重要行为标志。研究显示,自伤行为的严重程度与抑郁症状的严重程度可能存在正相关关系[37]。ASD常存在由情绪引发的躯体不适,但ASD情感词汇量表达受限,难以准确描述头痛、胃痛等,常表现为捶打、抓挠自己。另有研究发现,睡眠障碍的恶化(如入睡困难、早醒或节律紊乱)也是ASD儿童抑郁发作的一个突出信号[38]

研究显示,ASD患者抑郁发生风险升高可能涉及多因素共同作用,包括性别、认知水平、临床亚型及社会心理因素等。研究发现女性ASD患者表现出更高的抑郁共病风险。性别差异源于神经内分泌系统与表观遗传调控的交互作用,其在情绪相关神经环路发育中扮演关键角色[39]。认知功能水平同样影响抑郁表现,高功能ASD患者对同伴排斥和社交失败具有更强的认知体验,其抑郁症状多表现为对社交挫折的过度反思和自我价值感低下[40]。低功能患者的抑郁与基本社交互动的缺失和日常活动受限相关,以攻击性、自我伤害等表达情绪困扰[41]。另外,临床亚型也与抑郁风险相关,如广泛性发育障碍未特指型(PDD-NOS)患者的抑郁发生率显著高于典型自闭症患者,提示不同症状谱系可能对应着差异化的神经发育轨迹[42]

3.2. ASD共病抑郁症状的神经环路机制

3.2.1. 前额叶–杏仁核调控缺陷

目前,关于ASD伴抑郁症状的神经机制研究相对有限,现有证据主要集中在前额叶皮质、伏隔核和海马等脑区。李影等对比ASD患儿的fMRI,发现共病抑郁症状患者的感觉运动相关额叶区域及注意网络功能活动显著下降。该研究进一步发现,其右侧额中回(眶部)的局部一致性值与抑郁症状评分呈正相关,提示这些脑区的功能异常可能是ASD伴发抑郁情绪的特征性神经标志[43]。Ohtani等采用功能性近红外光谱(Functional near-infrared spectroscopy, fNIRS)发现,伴抑郁症状的ASD患者右侧腹外侧前额叶皮层(Ventrolateral Prefrontal Cortex, VLPFC)的血流动力学反应弱于ASD无抑郁组[44]。神经环路连接方面,ASD共患抑郁症状患者的VLPFC与杏仁核之间的功能连接显著降低,且连接强度与抑郁症状的严重程度呈负相关[45]。这一环路的连接性减弱,可能削弱前额叶对杏仁核等边缘系统情绪的自上而下调控能力,导致患者社交信息的处理能力受损及负性情绪调节困难。动物实验发现,该环路的正常功能依赖于多巴胺、5-羟色胺和GABA等多种神经递质系统的平衡。青少年期社会挫败应激导致成年动物内侧前额叶中GABA能抑制性突触传递持续减弱,表现为自发的抑制性突触后电流频率下降及GABA合成酶GAD65的mRNA表达降低[46]。进一步说明前额叶对杏仁核的抑制调控作用减弱,促使负性情绪过度表达,最终诱发抑郁样行为[47]

3.2.2. 伏隔核功能障碍

伏隔核(Nucleus Accumbens, NAc)作为奖赏系统的核心枢纽,在动机形成和情感加工中扮演着关键角色,其多巴胺能信号传导的紊乱是ASD共病抑郁症状的病理生理机制。跨诊断研究发现,ASD共病抑郁症状患者NAc的激活程度与个体的情感功能水平密切相关。该区域多巴胺释放不足,导致患者对社交奖赏的敏感性下降,表现为社交动机减退和快感缺失[48]

3.2.3. 海马发育障碍

海马作为边缘系统的关键组成部分,在情绪调节、记忆整合和认知功能中发挥核心作用。研究表明,海马体的结构与功能异常可能是ASD与抑郁共病的重要神经病理基础之一[49]。ASD患者海马区中突触后密度蛋白95和突触蛋白I等突触标志物的表达显著降低,细胞外基质蛋白酶MMP9的表达上调,提示突触可塑性受损[50]。类似的分子改变在抑郁症患者中也有报道,表明海马突触可塑性损伤可能是ASD与抑郁症状的共享机制[51]。结构神经影像学研究显示,ASD患者与抑郁障碍患者均存在海马体积缩小和形态异常,导致社交记忆整合功能受损及负性情绪记忆消退障碍。进一步研究发现,学龄前ASD儿童的海马与前扣带皮层等脑区的功能连接降低,损伤社交信息加工和情绪调节能力,促进抑郁倾向的形成[52]。在ASD动物模型中,如BTBR小鼠、Shank3突变小鼠和Cntnap2缺陷小鼠,均观察到海马神经元数量减少及神经炎症反应增强。此外,孕期母体免疫激活(MIA)模型显示,其子代海马出现炎症反应,并同时表现出自闭样和抑郁样行为。以上证据均提示海马神经炎症可能是连接ASD和抑郁共病的关键机制之一[53]

4. 治疗策略

4.1. 行为干预及药物治疗

国内外权威指南均明确指出,ASD共患情绪症状的干预,心理治疗是首选的一线治疗方案[54] [55]。改良版的认知行为疗法(Cognitive Behavioural Therapy, CBT)、虚拟现实暴露疗法(Virtual Reality Exposure Therapy, VRET)及社交技能训练(Social Skills Training, SST)均被证实可有效缓解ASD患者的焦虑症状[56]-[58]。通过帮助患者暴露刺激、识别并重构非理性认知与负面思维模式,学习更具适应性的情绪调节与行为应对策略。但心理治疗对患儿的认知水平有一定的要求,导致疗效的个体差异性大。另外,心理治疗周期长、开销大,也对养育者提出较高要求,一定程度上限制了该疗法在ASD群体中的可及性与长期依从性。目前,尚无任何药物经临床研究证实能直接改善ASD核心症状。英国精神药理学会(BAP)指南建议,针对ASD共病的情绪、多动、睡眠紊乱等症状,可在充分评估风险效益比的基础上,审慎采用超说明书用药策略[59]。我国指南建议,对于ASD共病情绪症状的患者,应在规范诊疗流程下优先选用选择性5-羟色胺再摄取抑制剂[60]。美国最新指南更细化:针对急性焦虑症状,推荐短期使用羟嗪、劳拉西泮或低剂量喹硫平;对于慢性焦虑,则首选米氮平、丁螺环酮等具有长期安全性的药物;共病抑郁症状时,度洛西汀与米氮平被视为一线选择[61]。另外,研究焦点正转向能直接调节E/I平衡的新型药物。例如,阿巴氯、N-乙酰半胱氨酸等通过调节E/I平衡,已在临床研究证实,能显著减轻ASD患者的情绪不稳症状[62] [63]。需要强调的是,上述药物的疗效存在显著的个体差异,且部分患者可能出现体重增加、代谢异常及镇静作用等不良反应,导致服药依从性差,影响预后。

4.2. 神经调控技术

神经调控技术作为一类非侵入性干预手段,具有作用路径直接、经济性良好及操作相对简便的特点。研究表明,在ASD共病情绪症状的神经机制中,以左侧背外侧前额叶皮层(Dorsolateral Prefrontal Cortex, DLPFC)与双侧杏仁核之间的功能连接异常为关键特征[64]。因此,DLPFC成为神经调控技术干预的核心靶点,旨在通过调节前额叶–边缘环路的相互作用,改善情绪加工功能。重复经颅磁刺激(Repetitive Transcranial Magnetic Stimulation, rTMS)通过时变磁场在皮层诱导感应电流,调节神经元兴奋性。低频rTMS (如1 Hz)作用于DLPFC,可增强GABA能中间神经元的抑制性功能,有助于改善ASD患者的情绪不稳症状[65]。初步临床研究显示,rTMS干预后部分患者不仅行为症状减轻,杏仁核灰质体积与功能连接也有积极变化,提示可能诱发神经可塑性适应[66]。经颅直流电刺激(Transcranial Direct Current Stimulation, tDCS)利用恒定、低强度的直流电(通常为1~2 mA),以极性依赖的方式调节皮层兴奋性。一项针对右侧DLPFC的tDCS干预后,ASD患者紧张症状减轻约30% [67]。2025年一项多中心随机双盲对照试验中,靶向DLPFC及前运动区的高精度tDCS也可改善ASD儿童的核心与情绪症状[68]。神经反馈训练通过让患者学习自我调节脑电活动,增强前额叶参与的情绪调控网络功能。有研究发现训练可优化P300等事件相关电位特征,提示提升情绪信息处理效率[69]。总体而言,非侵入性神经调控技术展现出良好的安全性和耐受性[70]。然而,目前证据等级仍较低,多数研究存在样本量小、对照设计不完善、缺乏长期疗效与个体化反应预测指标等问题。未来需开展更多方法学严谨的大样本研究,明确其临床应用价值与适用范围。

5. 讨论与展望

ASD共病情绪症状加剧其临床表现的复杂性及严重程度,容易导致症状的重叠与识别困难,延误早期干预的关键时机。全球多国数据显示,从父母首次发现发育异常到最终获得ASD诊断之间存在3至5年的延迟[71]。另有研究发现,在3岁这一神经可塑性的关键窗口期前接受科学干预的ASD患儿,ASD核心症状评估中表现更优,其未来融入主流教育环境的可能性也显著提高[72]。因此,早期识别ASD共病情绪症状的非典型临床表现,并实施针对性干预,对于阻断负面情绪对核心症状的叠加效应、改善长期预后具有决定性意义。

从神经机制层面剖析,ASD共病情绪障碍有其独特的神经环路机制,主要包括负责威胁评估与情绪反应的杏仁核–前额叶环路功能连接减弱;介导动机与奖赏加工的纹状体系统反应低下;以及与情景记忆和语境理解相关的海马结构与功能异常。基于脑区病理生理异常开发的神经调控技术,具有特异性强、安全性高及疗效性好的特点,对ASD共病轻–中度情绪症状的治疗具有显著有效性及可行性。

当前,针对ASD共病情绪症状的治疗方案的疗效存在显著的个体差异,反映对共病背后的复杂神经生物学机制的研究尚不全面。未来研究应致力于利用多模态神经影像、遗传学及数字表型等技术,构建从“行为症状”到“神经环路”再到“分子靶点”的精确映射关系,最终推动个体化精准治疗策略的发展。另外,鉴于ASD及其共病的高度异质性,多学科协作诊疗模式已成为临床实践的核心准则。通过整合发育行为儿科、儿童精神科、康复治疗及心理科学等多学科资源,创立“孤独症诊疗中心”模式为患儿提供一站式、个体化的精准服务,从而打破学科壁垒,优化诊疗路径。

基金项目

国家自然科学基金面上项目(编号:82471562);广东省自然科学基金–面上项目(编号:2024A1515010690,2025A1515012444);高等学校学科创新引智基地中枢神经损伤与修复创新引智基地(编号:B14036)。

NOTES

*通讯作者。

参考文献

[1] Zeidan, J., Fombonne, E., Scorah, J., Ibrahim, A., Durkin, M.S., Saxena, S., et al. (2022) Global Prevalence of Autism: A Systematic Review Update. Autism Research, 15, 778-790. [Google Scholar] [CrossRef] [PubMed]
[2] Zhou, H., Xu, X., Yan, W., Zou, X., Wu, L., Luo, X., et al. (2020) Prevalence of Autism Spectrum Disorder in China: A Nationwide Multi-Center Population-Based Study among Children Aged 6 to 12 Years. Neuroscience Bulletin, 36, 961-971. [Google Scholar] [CrossRef] [PubMed]
[3] Lai, M., Kassee, C., Besney, R., Bonato, S., Hull, L., Mandy, W., et al. (2019) Prevalence of Co-Occurring Mental Health Diagnoses in the Autism Population: A Systematic Review and Meta-Analysis. The Lancet Psychiatry, 6, 819-829. [Google Scholar] [CrossRef] [PubMed]
[4] Khachadourian, V., Mahjani, B., Sandin, S., Kolevzon, A., Buxbaum, J.D., Reichenberg, A., et al. (2023) Comorbidities in Autism Spectrum Disorder and Their Etiologies. Translational Psychiatry, 13, Article No. 71. [Google Scholar] [CrossRef] [PubMed]
[5] Mazefsky, C.A., Yu, L., White, S.W., Siegel, M. and Pilkonis, P.A. (2018) The Emotion Dysregulation Inventory: Psychometric Properties and Item Response Theory Calibration in an Autism Spectrum Disorder Sample. Autism Research, 11, 928-941. [Google Scholar] [CrossRef] [PubMed]
[6] Lin, P. (2025) Editorial: Clinical Implications of Emotional Dysregulation Trajectories in Autism. Journal of the American Academy of Child & Adolescent Psychiatry, 64, 665-667. [Google Scholar] [CrossRef] [PubMed]
[7] Hyman, S.L., Levy, S.E. and Myers, S.M. (2020) Identification, Evaluation, and Management of Children with Autism Spectrum Disorder. Pediatrics, 145, e20193447.
[8] Anderberg, E., Cox, J.C., Neeley Tass, E.S., Erekson, D.M., Gabrielsen, T.P., Warren, J.S., et al. (2017) Sticking with It: Psychotherapy Outcomes for Adults with Autism Spectrum Disorder in a University Counseling Center Setting. Autism Research, 10, 2048-2055. [Google Scholar] [CrossRef] [PubMed]
[9] Coleman, D.M., Adams, J.B., Anderson, A.L. and Frye, R.E. (2019) Rating of the Effectiveness of 26 Psychiatric and Seizure Medications for Autism Spectrum Disorder: Results of a National Survey. Journal of Child and Adolescent Psychopharmacology, 29, 107-123. [Google Scholar] [CrossRef] [PubMed]
[10] Llanes, E., Blacher, J., Stavropoulos, K. and Eisenhower, A. (2020) Parent and Teacher Reports of Comorbid Anxiety and ADHD Symptoms in Children with ASD. Journal of Autism and Developmental Disorders, 50, 1520-1531. [Google Scholar] [CrossRef] [PubMed]
[11] Wiggins, L.D., Tian, L.H., Rubenstein, E., Schieve, L., Daniels, J., Pazol, K., et al. (2022) Features That Best Define the Heterogeneity and Homogeneity of Autism in Preschool-Age Children: A Multisite Case-Control Analysis Replicated across Two Independent Samples. Autism Research, 15, 539-550. [Google Scholar] [CrossRef] [PubMed]
[12] Briot, K., Jean, F., Jouni, A., Geoffray, M., Ly-Le Moal, M., Umbricht, D., et al. (2020) Social Anxiety in Children and Adolescents with Autism Spectrum Disorders Contribute to Impairments in Social Communication and Social Motivation. Frontiers in Psychiatry, 11, Article No. 710. [Google Scholar] [CrossRef] [PubMed]
[13] Ung, D., Wood, J.J., Ehrenreich-May, J., Arnold, E.B., Fujii, C., Renno, P., et al. (2013) Clinical Characteristics of High-Functioning Youth with Autism Spectrum Disorder and Anxiety. Neuropsychiatry, 3, 147-157. [Google Scholar] [CrossRef] [PubMed]
[14] 李艳, 徐胜. 自闭症谱系障碍儿童焦虑研究综述[J]. 中国特殊教育, 2019(1): 33-40.
[15] Leachman, C., Nichols, E.S., Al-Saoud, S. and Duerden, E.G. (2024) Anxiety in Children and Adolescents with Autism Spectrum Disorder: Behavioural Phenotypes and Environmental Factors. BMC Psychology, 12, Article No. 534. [Google Scholar] [CrossRef] [PubMed]
[16] Panju, S., Brian, J., Dupuis, A., Anagnostou, E. and Kushki, A. (2015) Atypical Sympathetic Arousal in Children with Autism Spectrum Disorder and Its Association with Anxiety Symptomatology. Molecular Autism, 6, Article No. 64. [Google Scholar] [CrossRef] [PubMed]
[17] Baribeau, D.A., Vigod, S., Pullenayegum, E., Kerns, C.M., Mirenda, P., Smith, I.M., et al. (2020) Repetitive Behavior Severity as an Early Indicator of Risk for Elevated Anxiety Symptoms in Autism Spectrum Disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 59, 890-899.e3. [Google Scholar] [CrossRef] [PubMed]
[18] Rodgers, J., Glod, M., Connolly, B. and McConachie, H. (2012) The Relationship between Anxiety and Repetitive Behaviours in Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 42, 2404-2409. [Google Scholar] [CrossRef] [PubMed]
[19] Hull, L., Mandy, W. and Petrides, K. (2016) Behavioural and Cognitive Sex/Gender Differences in Autism Spectrum Condition and Typically Developing Males and Females. Autism, 21, 706-727. [Google Scholar] [CrossRef] [PubMed]
[20] Giovanniello, J., Ahrens, S., Yu, K. and Li, B. (2021) Sex-Specific Stress-Related Behavioral Phenotypes and Central Amygdala Dysfunction in a Mouse Model of 16p11.2 Microdeletion. Biological Psychiatry Global Open Science, 1, 59-69. [Google Scholar] [CrossRef] [PubMed]
[21] Huang, A.X., Hughes, T.L., Sutton, L.R., Lawrence, M., Chen, X., Ji, Z., et al. (2017) Understanding the Self in Individuals with Autism Spectrum Disorders (ASD): A Review of Literature. Frontiers in Psychology, 8, Article No. 1422. [Google Scholar] [CrossRef] [PubMed]
[22] Kanne, S.M. and Mazurek, M.O. (2011) Aggression in Children and Adolescents with ASD: Prevalence and Risk Factors. Journal of Autism and Developmental Disorders, 41, 926-937. [Google Scholar] [CrossRef] [PubMed]
[23] Andrews, D.S., Aksman, L., Kerns, C.M., Lee, J.K., Winder-Patel, B.M., Harvey, D.J., et al. (2022) Association of Amygdala Development with Different Forms of Anxiety in Autism Spectrum Disorder. Biological Psychiatry, 91, 977-987. [Google Scholar] [CrossRef] [PubMed]
[24] Li, J., He, Z., Chai, W., Tian, M., Yu, H., He, X., et al. (2025) Dip2a Regulates Stress Susceptibility in the Basolateral Amygdala. Neural Regeneration Research, 20, 1735-1748. [Google Scholar] [CrossRef] [PubMed]
[25] Bartolotti, J., Sweeney, J.A. and Mosconi, M.W. (2020) Functional Brain Abnormalities Associated with Comorbid Anxiety in Autism Spectrum Disorder. Development and Psychopathology, 32, 1273-1286. [Google Scholar] [CrossRef] [PubMed]
[26] Feng, J., Wang, X., Pan, M., Li, C., Zhang, Z., Sun, M., et al. (2025) The Medial Prefrontal Cortex-Basolateral Amygdala Circuit Mediates Anxiety in Shank3 InsG3680 Knock-In Mice. Neuroscience Bulletin, 41, 77-92. [Google Scholar] [CrossRef] [PubMed]
[27] Liu, W., Wang, C., Wang, Y., Cai, M., Zhong, W., Liu, T., et al. (2023) Circuit-and Laminar-Specific Regulation of Medial Prefrontal Neurons by Chronic Stress. Cell & Bioscience, 13, Article No. 90. [Google Scholar] [CrossRef] [PubMed]
[28] Luo, Y., Lu, L., Song, H., Xu, H., Zheng, Z., Wu, Z., et al. (2023) Divergent Projections of the Prelimbic Cortex Mediate Autism-and Anxiety-Like Behaviors. Molecular Psychiatry, 28, 2343-2354. [Google Scholar] [CrossRef] [PubMed]
[29] Hirst, R.J., Whelan, R., Boyle, R., Setti, A., Knight, S., O’Connor, J., et al. (2021) Gray Matter Volume in the Right Angular Gyrus Is Associated with Differential Patterns of Multisensory Integration with Aging. Neurobiology of Aging, 100, 83-90. [Google Scholar] [CrossRef] [PubMed]
[30] Atsumi, T., Ide, M., Chakrabarty, M. and Terao, Y. (2025) The Role of Anxiety in Modulating Temporal Processing and Sensory Hyperresponsiveness in Autism Spectrum Disorder: An fMRI Study. Scientific Reports, 15, Article No. 17674. [Google Scholar] [CrossRef] [PubMed]
[31] Jurek, L., Longuet, Y., Baltazar, M., Amestoy, A., Schmitt, V., Desmurget, M., et al. (2019) How Did I Get So Late So Soon? A Review of Time Processing and Management in Autism. Behavioural Brain Research, 374, Article 112121. [Google Scholar] [CrossRef] [PubMed]
[32] Cummings, K.K., Jung, J., Zbozinek, T.D., Wilhelm, F.H., Dapretto, M., Craske, M.G., et al. (2024) Shared and Distinct Biological Mechanisms for Anxiety and Sensory Over-Responsivity in Youth with Autism versus Anxiety Disorders. Journal of Neuroscience Research, 102, e25250. [Google Scholar] [CrossRef] [PubMed]
[33] Hudson, C.C., Hall, L. and Harkness, K.L. (2019) Prevalence of Depressive Disorders in Individuals with Autism Spectrum Disorder: A Meta-Analysis. Journal of Abnormal Child Psychology, 47, 165-175. [Google Scholar] [CrossRef] [PubMed]
[34] Pezzimenti, F., Han, G.T., Vasa, R.A. and Gotham, K. (2019) Depression in Youth with Autism Spectrum Disorder. Child and Adolescent Psychiatric Clinics of North America, 28, 397-409. [Google Scholar] [CrossRef] [PubMed]
[35] Reyes, N.M., Pickard, K. and Reaven, J. (2019) Emotion Regulation: A Treatment Target for Autism Spectrum Disorder. Bulletin of the Menninger Clinic, 83, 205-234. [Google Scholar] [CrossRef] [PubMed]
[36] Matson, J.L. and Williams, L.W. (2014) Depression and Mood Disorders among Persons with Autism Spectrum Disorders. Research in Developmental Disabilities, 35, 2003-2007. [Google Scholar] [CrossRef] [PubMed]
[37] Hedley, D., Uljarević, M., Foley, K., Richdale, A. and Trollor, J. (2018) Risk and Protective Factors Underlying Depression and Suicidal Ideation in Autism Spectrum Disorder. Depression and Anxiety, 35, 648-657. [Google Scholar] [CrossRef] [PubMed]
[38] van der Heijden, K.B., Stoffelsen, R.J., Popma, A. and Swaab, H. (2018) Sleep, Chronotype, and Sleep Hygiene in Children with Attention-Deficit/Hyperactivity Disorder, Autism Spectrum Disorder, and Controls. European Child & Adolescent Psychiatry, 27, 99-111. [Google Scholar] [CrossRef] [PubMed]
[39] Lai, M., Lombardo, M.V., Auyeung, B., Chakrabarti, B. and Baron-Cohen, S. (2015) Sex/Gender Differences and Autism: Setting the Scene for Future Research. Journal of the American Academy of Child & Adolescent Psychiatry, 54, 11-24. [Google Scholar] [CrossRef] [PubMed]
[40] Day, T.C., McNaughton, K.A., Naples, A.J. and McPartland, J.C. (2020) Self-Reported Social Impairments Predict Depressive Disorder in Adults with Autism Spectrum Disorder. Autism, 24, 297-306. [Google Scholar] [CrossRef] [PubMed]
[41] Richards, C., Oliver, C., Nelson, L. and Moss, J. (2012) Self-Injurious Behaviour in Individuals with Autism Spectrum Disorder and Intellectual Disability. Journal of Intellectual Disability Research, 56, 476-489. [Google Scholar] [CrossRef] [PubMed]
[42] Yeh, T., Chen, M., Bai, Y., Tsai, S., Hsu, J., Huang, K., et al. (2023) Longitudinal Follow-Up of Subsequent Psychiatric Comorbidities among Children and Adolescents with Autism Spectrum Disorder. Journal of Affective Disorders, 331, 245-250. [Google Scholar] [CrossRef] [PubMed]
[43] 李影, 张玲, 徐红, 等. 伴与不伴抑郁情绪孤独症谱系障碍静息态脑功能磁共振成像差异研究[J]. 中国神经精神疾病杂志, 2022, 48(2): 84-89.
[44] Ohtani, T., Wakabayashi, A., Sutoh, C., Oshima, F., Hirano, Y. and Shimizu, E. (2021) Ventrolateral Prefrontal Hemodynamic Responses in Autism Spectrum Disorder with and without Depression. PLOS ONE, 16, e0256780. [Google Scholar] [CrossRef] [PubMed]
[45] Ibrahim, K., Eilbott, J.A., Ventola, P., He, G., Pelphrey, K.A., McCarthy, G., et al. (2019) Reduced Amygdala-Prefrontal Functional Connectivity in Children with Autism Spectrum Disorder and Co-Occurring Disruptive Behavior. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4, 1031-1041. [Google Scholar] [CrossRef] [PubMed]
[46] Xu, H., Wang, J., Jing, H., Ellenbroek, B., Shao, F. and Wang, W. (2021) mPFC Gabaergic Transmission Mediated the Role of BDNF Signaling in Cognitive Impairment but Not Anxiety Induced by Adolescent Social Stress. Neuropharmacology, 184, Article 108412. [Google Scholar] [CrossRef] [PubMed]
[47] Kung, P., Davey, C.G., Harrison, B.J., Jamieson, A.J., Felmingham, K.L. and Steward, T. (2023) Frontoamygdalar Effective Connectivity in Youth Depression and Treatment Response. Biological Psychiatry, 94, 959-968. [Google Scholar] [CrossRef] [PubMed]
[48] Yardimci, A., Ertugrul, N.U., Ozgen, A., Ozbeg, G., Ozdede, M.R., Ercan, E.C., et al. (2023) Effects of Chronic Irisin Treatment on Brain Monoamine Levels in the Hypothalamic and Subcortical Nuclei of Adult Male and Female Rats: An HPLC-ECD Study. Neuroscience Letters, 806, Article 137245. [Google Scholar] [CrossRef] [PubMed]
[49] Miozzo, F., Murru, L., Maiellano, G., di Iasio, I., Zippo, A.G., Zambrano Avendano, A., et al. (2024) Disruption of the Autism-Associated Pcdh9 Gene Leads to Transcriptional Alterations, Synapse Overgrowth, and Defective Network Activity in the CA1. The Journal of Neuroscience, 44, e0491242024. [Google Scholar] [CrossRef] [PubMed]
[50] Rexrode, L.E., Hartley, J., Showmaker, K.C., Challagundla, L., Vandewege, M.W., Martin, B.E., et al. (2024) Molecular Profiling of the Hippocampus of Children with Autism Spectrum Disorder. Molecular Psychiatry, 29, 1968-1979. [Google Scholar] [CrossRef] [PubMed]
[51] Wang, W., Li, Y., Wang, L., Chen, X., Lan, T., Wang, C., et al. (2024) FBXL20 Promotes Synaptic Impairment in Depression Disorder via Degrading Vesicle-Associated Proteins. Journal of Affective Disorders, 349, 132-144. [Google Scholar] [CrossRef] [PubMed]
[52] Shivakumar, A.B., Mehak, S.F., Jijimon, F. and Gangadharan, G. (2024) Extrahippocampal Contributions to Social Memory: The Role of Septal Nuclei. Biological Psychiatry, 96, 835-847. [Google Scholar] [CrossRef] [PubMed]
[53] Savareh, E., Davoodian, N., Mousaviyan, R., Ghasemi-Kasman, M., Atashabparvar, A. and Eftekhar, E. (2022) Prenatal Zinc Supplementation Ameliorates Hippocampal Astrocytes Activation and Inflammatory Cytokines Expression Induced by Lipopolysaccharide in a Rat Model of Maternal Immune Activation. Basic and Clinical Neuroscience Journal, 13, 335-348. [Google Scholar] [CrossRef] [PubMed]
[54] 中华医学会儿科学分会发育行为学组, 中国医师协会儿科分会儿童保健专业委员会, 儿童孤独症诊断与防治技术和标准研究项目专家组. 孤独症谱系障碍患儿常见共患问题的识别与处理原则[J]. 中华儿科杂志, 2018, 56(3): 174-178.
[55] Hyman, S.L., Levy, S.E. and Myers, S.M. (2020) Identification, Evaluation, and Management of Children with Autism Spectrum Disorder. Pediatrics, 145, e20193447.
[56] Weiss, J.A., Thomson, K., Burnham Riosa, P., Albaum, C., Chan, V., Maughan, A., et al. (2018) A Randomized Waitlist‐controlled Trial of Cognitive Behavior Therapy to Improve Emotion Regulation in Children with Autism. Journal of Child Psychology and Psychiatry, 59, 1180-1191. [Google Scholar] [CrossRef] [PubMed]
[57] Maskey, M., Lowry, J., Rodgers, J., McConachie, H. and Parr, J.R. (2014) Reducing Specific Phobia/Fear in Young People with Autism Spectrum Disorders (ASDs) through a Virtual Reality Environment Intervention. PLOS ONE, 9, e100374. [Google Scholar] [CrossRef] [PubMed]
[58] Han, G., Kat, S., Wang, H., Yang, Y., Ma, Z., Yin, T., et al. (2025) Alterations in Whole-Brain White Matter Fiber Networks in Individuals with Autism Spectrum Disorder after Social Skills Training. Brain Research Bulletin, 229, Article 111466. [Google Scholar] [CrossRef] [PubMed]
[59] Howes, O.D., Rogdaki, M., Findon, J.L., Wichers, R.H., Charman, T., King, B.H., et al. (2018) Autism Spectrum Disorder: Consensus Guidelines on Assessment, Treatment and Research from the British Association for Psychopharmacology. Journal of Psychopharmacology, 32, 3-29. [Google Scholar] [CrossRef] [PubMed]
[60] 张红梅, 薛曼, 王斌, 等. 孤独症谱系障碍早期遗传诊断和治疗研究进展[J]. 中华精神科杂志, 2022, 55(3): 232-237.
[61] Manter, M.A., Birtwell, K.B., Bath, J., Friedman, N.D.B., Keary, C.J., Neumeyer, A.M., et al. (2025) Pharmacological Treatment in Autism: A Proposal for Guidelines on Common Co-Occurring Psychiatric Symptoms. BMC Medicine, 23, Article No. 11. [Google Scholar] [CrossRef] [PubMed]
[62] Aishworiya, R., Valica, T., Hagerman, R. and Restrepo, B. (2024) An Update on Psychopharmacological Treatment of Autism Spectrum Disorder. Focus, 22, 198-211. [Google Scholar] [CrossRef] [PubMed]
[63] Frye, R. (2014) Clinical Potential, Safety, and Tolerability of Arbaclofen in the Treatment of Autism Spectrum Disorder. Drug, Healthcare and Patient Safety, 6, 69-76. [Google Scholar] [CrossRef] [PubMed]
[64] 蔡水灵, 陈丽, 戴燕琼, 等. 神经调控技术在孤独症谱系障碍患儿康复中的应用研究进展[J]. 山东医药, 2024, 64(29): 91-94.
[65] 王红梅, 吴晓静, 李彩云, 等. 重复经颅磁刺激在治疗孤独症谱系障碍儿童康复中的应用[J]. 实用中西医结合临床, 2023, 23(13): 76-79.
[66] Yuan, L., Wang, X., Yang, C., Zhang, Q., Ma, S., Zang, Y., et al. (2024) A Systematic Review of Transcranial Magnetic Stimulation Treatment for Autism Spectrum Disorder. Heliyon, 10, e32251. [Google Scholar] [CrossRef] [PubMed]
[67] D’Urso, G., Toscano, E., Sanges, V., Sauvaget, A., Sheffer, C.E., Riccio, M.P., et al. (2021) Cerebellar Transcranial Direct Current Stimulation in Children with Autism Spectrum Disorder: A Pilot Study on Efficacy, Feasibility, Safety, and Unexpected Outcomes in Tic Disorder and Epilepsy. Journal of Clinical Medicine, 11, Article 143. [Google Scholar] [CrossRef] [PubMed]
[68] Lazzaro, G., Passarini, S., Battisti, A., Costanzo, F., Garone, G., Mercier, M., et al. (2025) Understanding and Targeting Repetitive Behaviors and Restricted Interests in Autism Spectrum Disorder via High-Definition Transcranial Direct Current Stimulation: A Study-Protocol. BMC Psychiatry, 25, Article No. 170. [Google Scholar] [CrossRef] [PubMed]
[69] Fietz, J., Auer, G., Plener, P., Poustka, L. and Konicar, L. (2025) Empathy and Event Related Potentials before and after EEG Based Neurofeedback Training in Autistic Adolescents. Scientific Reports, 15, Article No. 30824. [Google Scholar] [CrossRef] [PubMed]
[70] 牛茂源, 刘建军. 经颅磁刺激在孤独症谱系障碍中的应用及展望[J]. 中国康复医学杂志, 2025, 40(4): 635-639.
[71] May, T., Brignell, A. and Williams, K. (2021) Parent-Reported Autism Diagnostic Stability and Trajectories in the Longitudinal Study of Australian Children. Autism Research, 14, 773-786. [Google Scholar] [CrossRef] [PubMed]
[72] Lidstone, D.E. (2025) Missed Early Intervention Opportunities for Children with Autism Spectrum Disorder. Autism Research, 18, 1097-1103. [Google Scholar] [CrossRef] [PubMed]