|
[1]
|
Wang, L., Xu, X., Zhang, M., Hu, C., et al. (2023) Prevalence of Chronic Kidney Disease in China: Results from the Sixth China Chronic Disease and Risk Factor Surveillance. JAMA Internal Medicine, 183, 298-310. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Joles, J.A., Kunter, U., Janssen, U., Kriz, W., Rabelink, T.J., Koomans, H.A., et al. (2000) Early Mechanisms of Renal Injury in Hypercholesterolemic or Hypertriglyceridemic Rats. Journal of the American Society of Nephrology, 11, 669-683. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Bobulescu, I.A. (2010) Renal Lipid Metabolism and Lipotoxicity. Current Opinion in Nephrology and Hypertension, 19, 393-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Mitrofanova, A., Merscher, S. and Fornoni, A. (2023) Kidney Lipid Dysmetabolism and Lipid Droplet Accumulation in Chronic Kidney Disease. Nature Reviews Nephrology, 19, 629-645. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bulbul, M.C., Dagel, T., Afsar, B., Ulusu, N.N., Kuwabara, M., Covic, A., et al. (2018) Disorders of Lipid Metabolism in Chronic Kidney Disease. Blood Purification, 46, 144-152. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Jang, H.S., Noh, M.R., Kim, J. and Padanilam, B.J. (2020) Defective Mitochondrial Fatty Acid Oxidation and Lipotoxicity in Kidney Diseases. Frontiers in Medicine, 7, Article 65. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kang, H.M., Ahn, S.H., Choi, P., Ko, Y., Han, S.H., Chinga, F., et al. (2015) Defective Fatty Acid Oxidation in Renal Tubular Epithelial Cells Has a Key Role in Kidney Fibrosis Development. Nature Medicine, 21, 37-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kamijo-Ikemori, A., Sugaya, T., Matsui, K., Yokoyama, T. and Kimura, K. (2011) Roles of Human Liver Type Fatty Acid Binding Protein in Kidney Disease Clarified Using hL-FABP Chromosomal Transgenic Mice. Nephrology, 16, 539-544. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, L., Tao, S., Guo, F., Liu, J., Huang, R., Tan, Z., et al. (2021) Genetic and Pharmacological Inhibition of Fatty Acid-Binding Protein 4 Alleviated Inflammation and Early Fibrosis after Toxin Induced Kidney Injury. International Immunopharmacology, 96, Article 107760. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Okamura, D.M., Pennathur, S., Pasichnyk, K., et al. (2009) CD36 Regulates Oxidative Stress and Inflammation in Hypercholesterolemic CKD. Journal of the American Society of Nephrology, 20, 495-505. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Guo, Y., Xie, G. and Zhang, X. (2023) Role of FXR in Renal Physiology and Kidney Diseases. International Journal of Molecular Sciences, 24, Article 2408. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Pedigo, C.E., Ducasa, G.M., Leclercq, F., Sloan, A., Mitrofanova, A., Hashmi, T., et al. (2016) Local TNF Causes NFATc1-Dependent Cholesterol-Mediated Podocyte Injury. Journal of Clinical Investigation, 126, 3336-3350. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Jiang, T., Liebman, S.E., Scott Lucia, M., Li, J. and Levi, M. (2005) Role of Altered Renal Lipid Metabolism and the Sterol Regulatory Element Binding Proteins in the Pathogenesis of Age-Related Renal Disease. Kidney International, 68, 2608-2620. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Sethi, G., Shanmugam, M.K. and Kumar, A.P. (2017) SREBP-1c as a Molecular Bridge between Lipogenesis and Cell Cycle Progression of Clear Cell Renal Carcinoma. Bioscience Reports, 37, BSR20171270. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ucero, A.C., Gonçalves, S., Benito-Martin, A., Santamaría, B., et al. (2010) Obstructive Renal Injury: From Fluid Mechanics to Molecular Cell Biology. Open Access Journal of Urology, 2, 41-55.
|
|
[16]
|
Jiang, X., Yu, J., Wang, X., Ge, J. and Li, N. (2019) Quercetin Improves Lipid Metabolism via SCAP-SREBP2-LDLr Signaling Pathway in Early Stage Diabetic Nephropathy. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 827-839. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Herzig, S. and Shaw, R.J. (2018) AMPK: Guardian of Metabolism and Mitochondrial Homeostasis. Nature Reviews Molecular Cell Biology, 19, 121-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Grahame Hardie, D. (2016) Regulation of AMP-Activated Protein Kinase by Natural and Synthetic Activators. Acta Pharmaceutica Sinica B, 6, 1-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wu, L., Liu, C., Chang, D., Zhan, R., Zhao, M., Man Lam, S., et al. (2021) The Attenuation of Diabetic Nephropathy by Annexin A1 via Regulation of Lipid Metabolism through the AMPK/PPARα/CPT1b Pathway. Diabetes, 70, 2192-2203. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, Y., Xu, S., Mihaylova, M.M., Zheng, B., Hou, X., Jiang, B., et al. (2011) AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate Hepatic Steatosis and Atherosclerosis in Diet-Induced Insulin-Resistant Mice. Cell Metabolism, 13, 376-388. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kim, Y., Lim, J.H., Kim, M.Y., Kim, E.N., Yoon, H.E., Shin, S.J., et al. (2018) The Adiponectin Receptor Agonist Adiporon Ameliorates Diabetic Nephropathy in a Model of Type 2 Diabetes. Journal of the American Society of Nephrology, 29, 1108-1127. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Chung, K.W., Lee, E.K., Lee, M.K., Oh, G.T., Yu, B.P. and Chung, H.Y. (2018) Impairment of PPARα and the Fatty Acid Oxidation Pathway Aggravates Renal Fibrosis during Aging. Journal of the American Society of Nephrology, 29, 1223-1237. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
罗美, 翟效月, 马云胜. 膜转运体Megalin、Cubilin在C57小鼠肾发生发育中的时空表达研究[J]. 陆军军医大学学报, 2024, 46(5): 434-441.
|
|
[24]
|
Zhao, Y., Gao, P., Sun, F., Li, Q., Chen, J., Yu, H., et al. (2016) Sodium Intake Regulates Glucose Homeostasis through the PPARδ/Adiponectin-Mediated SGLT2 Pathway. Cell Metabolism, 23, 699-711. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Liu, J., Liu, X., Guo, L., Liu, X., Gao, Q., Wang, E., et al. (2024) PPARγ Agonist Alleviates Calcium Oxalate Nephrolithiasis by Regulating Mitochondrial Dynamics in Renal Tubular Epithelial Cell. PLOS ONE, 19, e0310947. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
唐雪晴, 陈伟英, 阳晓. 过氧化物酶体增殖物激活受体γ激动剂在终末期肾脏病中的研究进展[J]. 国际内科学杂志, 2008(5): 299-302+311.
|
|
[27]
|
Khan, S., Cabral, P.D., Schilling, W.P., Schmidt, Z.W., Uddin, A.N., Gingras, A., et al. (2017) Kidney Proximal Tubule Lipoapoptosis Is Regulated by Fatty Acid Transporter-2 (FATP2). Journal of the American Society of Nephrology, 29, 81-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chen, Y., Yan, Q., Lv, M., Song, K., Dai, Y., Huang, Y., et al. (2020) Involvement of FATP2-Mediated Tubular Lipid Metabolic Reprogramming in Renal Fibrogenesis. Cell Death & Disease, 11, Article No. 994. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Khan, S., Gaivin, R., Abramovich, C., Boylan, M., Calles, J. and Schelling, J.R. (2020) Fatty Acid Transport Protein-2 Regulates Glycemic Control and Diabetic Kidney Disease Progression. JCI Insight, 5, e136845. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Afshinnia, F., Rajendiran, T.M., Soni, T., Byun, J., Wernisch, S., Sas, K.M., et al. (2018) Impaired β-Oxidation and Altered Complex Lipid Fatty Acid Partitioning with Advancing CKD. Journal of the American Society of Nephrology, 29, 295-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Cicero, A.F.G., Kuwabara, M., Johnson, R., Bove, M., Fogacci, F., Rosticci, M., et al. (2018) LDL-Oxidation, Serum Uric Acid, Kidney Function and Pulse-Wave Velocity: Data from the Brisighella Heart Study Cohort. International Journal of Cardiology, 261, 204-208. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wei, Y. and Liang, H. (2025) The Relationship between Remnant Cholesterol and Future Renal Function Decline in Middle-Aged and Elderly Chinese Populations: The Mediating Role of Uric Acid and White Blood Cells. Renal Failure, 47, Article 2534017. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Bonventre, J.V. (2014) Primary Proximal Tubule Injury Leads to Epithelial Cell Cycle Arrest, Fibrosis, Vascular Rarefaction, and Glomerulosclerosis. Kidney International Supplements, 4, 39-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
刘霜. 游离脂肪酸激活大鼠肾小球系膜细胞NLRP3炎症小体信号及作用机制研究[D]: [硕士学位论文]. 泸州: 四川医科大学, 2015
|
|
[35]
|
Rampanelli, E., Orsó, E., Ochodnicky, P., Liebisch, G., Bakker, P.J., Claessen, N., et al. (2017) Metabolic Injury-Induced NLRP3 Inflammasome Activation Dampens Phospholipid Degradation. Scientific Reports, 7, Article No. 2861. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
朱艳, 梁子辉, 任韫卓, 等. NLRP3炎症小体介导的炎症反应参与糖尿病导致的肾损伤和脂代谢异常[J]. 中国病理生理杂志, 2020, 36(1): 53-58.
|
|
[37]
|
黄瑞欧, 王星, 金路. 基于TLR4-TBK1-IKKε信号通路探讨栀子苷对果糖代谢综合征大鼠肾保护作用机制[J]. 南京中医药大学学报, 2018, 34(6): 583-588.
|
|
[38]
|
李强, 靳书滨, 霍韶军. TLR4/NF-κB信号通路在肾缺血再灌注损伤中的作用机制[J]. 医学研究杂志, 2023, 52(6): 73-77+82.
|
|
[39]
|
贺枫, 刘远方, 杨睿斐, 等. 炎症在糖尿病肾病中的致病性及其治疗的研究进展[J]. 医学信息, 2023, 36(1): 176-180.
|
|
[40]
|
靳贝芳, 卢钦镇, 张妍, 等. 氧化应激和炎症反应在甲状腺功能亢进小鼠肾损伤中的作用[J]. 中国病理生理杂志, 2020, 36(9): 1625-1630.
|
|
[41]
|
王文姬, 张薇. 慢性肾脏病不同临床分期患者氧化应激水平的比较研究[J]. 上海交通大学学报(医学版), 2010, 30(12): 1521-1524.
|
|
[42]
|
Singhal, S.S., Singh, S.P., Singhal, P., Horne, D., Singhal, J. and Awasthi, S. (2015) Antioxidant Role of Glutathione S-Transferases: 4-Hydroxynonenal, a Key Molecule in Stress-Mediated Signaling. Toxicology and Applied Pharmacology, 289, 361-370. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Srivastava, A., Tomar, B., Sharma, D. and Rath, S.K. (2023) Mitochondrial Dysfunction and Oxidative Stress: Role in Chronic Kidney Disease. Life Sciences, 319, Article 121432. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ho, H.J. and Shirakawa, H. (2022) Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease. Cells, 12, Article 88. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Aranda-Rivera, A.K., Cruz-Gregorio, A., Aparicio-Trejo, O.E. and Pedraza-Chaverri, J. (2021) Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases. Biomolecules, 11, Article 1144. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Dai, Y., Palade, P., Wang, X., Mercanti, F., Ding, Z., Dai, D., et al. (2014) High Fat Diet Causes Renal Fibrosis in LDLR-Null Mice through MAPK-NF-κB Pathway Mediated by Ox-LDL. Journal of Cardiovascular Pharmacology, 63, 158-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Qu, H., Liu, X., Zhu, J., Xiong, X., Li, L., He, Q., et al. (2024) Dock5 Deficiency Promotes Proteinuric Kidney Diseases via Modulating Podocyte Lipid Metabolism. Advanced Science, 11, e2306365. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Verrecchia, F. and Mauviel, A. (2007) Transforming Growth Factor-Β and Fibrosis. World Journal of Gastroenterology, 13, 3056-3062. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
温文斌. TIMP-1抑制大鼠肾小球系膜细胞凋亡及与JAKs/STATs信号传导通路的关系[D]: [硕士学位论文]. 大连: 大连医科大学, 2007
|
|
[50]
|
Su, K., Yi, B., Yao, B., Xia, T., Yang, Y., Zhang, Z., et al. (2020) Liraglutide Attenuates Renal Tubular Ectopic Lipid Deposition in Rats with Diabetic Nephropathy by Inhibiting Lipid Synthesis and Promoting Lipolysis. Pharmacological Research, 156, Article 104778. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
徐娟萍, 张晓峰. 氧化低密度脂蛋白致血管内皮损伤机制及中药复方防治的研究进展[J]. 现代药物与临床, 2011, 26(3): 195-198.
|
|
[52]
|
Lerman, L.O., Textor, S.C. and Grande, J.P. (2009) Mechanisms of Tissue Injury in Renal Artery Stenosis: Ischemia and Beyond. Progress in Cardiovascular Diseases, 52, 196-203. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Lim, Y.J., Sidor, N.A., Tonial, N.C., Che, A. and Urquhart, B.L. (2021) Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins, 13, Article 142. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Anumas, S. and Inagi, R. (2025) Mitigating Lipotoxicity: A Potential Mechanism to Delay Chronic Kidney Disease Progression Using Current Pharmacological Therapies. Nephrology, 30, e70098. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Baigent, C., Landray, M.J., Reith, C., Emberson, J., Wheeler, D.C., Tomson, C., et al. (2011) The Effects of Lowering LDL Cholesterol with Simvastatin Plus Ezetimibe in Patients with Chronic Kidney Disease (Study of Heart and Renal Protection): A Randomised Placebo-Controlled Trial. The Lancet, 377, 2181-2192. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Wanner, C., Krane, V., März, W., Olschewski, M., Mann, J.F.E., Ruf, G., et al. (2005) Atorvastatin in Patients with Type 2 Diabetes Mellitus Undergoing Hemodialysis. New England Journal of Medicine, 353, 238-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Viberti, G. and Wheeldon, N.M. (2007) Microalbuminuria Reduction with Fenofibrate in Type 2 Diabetes: The FIELD Study. Diabetes Care, 30, 1514-1519.
|