|
[1]
|
Zhang, J., Liu, Y., Zhang, Y., Li, Y., et al. (2023) The Role of Immune Cells and Associated Immunological Factors in Spinal Cord Injury. Frontiers in Immunology, 14, Article 642839.
|
|
[2]
|
Tang, H., Gu, Y., Jiang, L., Zheng, G., Pan, Z. and Jiang, X. (2022) The Role of Immune Cells and Associated Immunological Factors in the Immune Response to Spinal Cord Injury. Frontiers in Immunology, 13, Article 1070540. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Andriot, T., Ghosh, M. and Pearse, D.D. (2025) Engineered Healing: Synergistic Use of Schwann Cells and Biomaterials for Spinal Cord Regeneration. International Journal of Molecular Sciences, 26, Article 7922. [Google Scholar] [CrossRef]
|
|
[4]
|
Chung, H.J., Chung, W.H., Lee, J.H., Chung, D.J., et al. (2016) Expression of Neurotrophic Factors in Injured Spinal Cord after Transplantation of Human-Umbilical Cord Blood Stem Cells in Rats. Journal of Veterinary Science, 17, 97-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ma, D., Fu, C., Li, F., Ruan, R., Lin, Y., Li, X., et al. (2024) Functional Biomaterials for Modulating the Dysfunctional Pathological Microenvironment of Spinal Cord Injury. Bioactive Materials, 39, 521-543. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, H., Yi, R., Fan, Y., Zhan, G. and Xiao, T. (2025) Overexpression of miRNA-216 in Exosomes Derived from Umbilical Cord Mesenchymal Stem Cells Promotes Angiogenesis and Improves Functional Recovery after Spinal cord Injury. Iranian Journal of Basic Medical Sciences, 28, 1344-1353.
|
|
[7]
|
Zipser, C.M., Cragg, J.J., Guest, J.D., Fehlings, M.G., Jutzeler, C.R., Anderson, A.J., et al. (2022) Cell-Based and Stem-Cell-Based Treatments for Spinal Cord Injury: Evidence from Clinical Trials. The Lancet Neurology, 21, 659-670. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Martin, J.R., Cleary, D., Abraham, M.E., Mendoza, M., Cabrera, B., Jamieson, C., et al. (2024) Long-Term Clinical and Safety Outcomes from a Single-Site Phase 1 Study of Neural Stem Cell Transplantation for Chronic Thoracic Spinal Cord Injury. Cell Reports Medicine, 5, Article 101841. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hosseini, S.M., Borys, B. and Karimi-Abdolrezaee, S. (2024) Neural Stem Cell Therapies for Spinal Cord Injury Repair: An Update on Recent Preclinical and Clinical Advances. Brain, 147, 766-793. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ribeiro, B.F., da Cruz, B.C., de Sousa, B.M., Correia, P.D., David, N., Rocha, C., et al. (2023) Cell Therapies for Spinal Cord Injury: A Review of the Clinical Trials and Cell-Type Therapeutic Potential. Brain, 146, 2672-2693. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Li, Y., Kumamaru, H., Vokes, T.J., Tran, A.N., Shevinsky, C.A., Graham, L., et al. (2024) An Improved Method for Generating Human Spinal Cord Neural Stem Cells. Experimental Neurology, 376, Article 114779. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ralph, P.C., Choi, S., Baek, M.J. and Lee, S.J. (2024) Regenerative Medicine Approaches for the Treatment of Spinal Cord Injuries: Progress and Challenges. Acta Biomaterialia, 189, 57-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zou, Y., Ma, D., Shen, H., Zhao, Y., Xu, B., Fan, Y., et al. (2020) Aligned Collagen Scaffold Combination with Human Spinal Cord-Derived Neural Stem Cells to Improve Spinal Cord Injury Repair. Biomaterials Science, 8, 5145-5156. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yu, T., Yang, L., Zhou, Y., Wu, M. and Jiao, J. (2024) Exosome-Mediated Repair of Spinal Cord Injury: A Promising Therapeutic Strategy. Stem Cell Research & Therapy, 15, Article No. 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cao, Y., Zhu, S., Yu, B. and Yao, C. (2022) Single-Cell RNA Sequencing for Traumatic Spinal Cord Injury. The FASEB Journal, 36, e22656. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Malvandi, A.M., Rastegar-Moghaddam, S.H., Ebrahimzadeh-Bideskan, S., Lombardi, G., Ebrahimzadeh-Bideskan, A. and Mohammadipour, A. (2022) Targeting miR-21 in Spinal Cord Injuries: A Game-Changer? Molecular Medicine, 28, Article No. 118. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Marangon, D., Castro e Silva, J.H., Cerrato, V., Boda, E. and Lecca, D. (2024) Oligodendrocyte Progenitors in Glial Scar: A Bet on Remyelination. Cells, 13, Article 1024. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ray, S., Al-Sammarraie, N. and Mahmood, M. (2023) Neuroprotective Role of Noggin in Spinal Cord Injury. Neural Regeneration Research, 18, 492-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Xiong, T., Xiao, X., Zhao, H., Yang, W., Gao, X., Yang, K., et al. (2025) The Key to Spinal Cord Recovery: Harnessing P21 Inhibition to Boost Neural Stem/Progenitor Cell Proliferation. ACS Nano, 19, 27406-27423. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Shao, A., Tu, S., Lu, J. and Zhang, J. (2019) Crosstalk between Stem Cell and Spinal Cord Injury: Pathophysiology and Treatment Strategies. Stem Cell Research & Therapy, 10, Article No. 238. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, C., Luo, Y. and Li, S. (2024) The Roles of Neural Stem Cells in Myelin Regeneration and Repair Therapy after Spinal Cord Injury. Stem Cell Research & Therapy, 15, Article No. 204. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Marei, H.E. (2025) Stem Cell Therapy: A Revolutionary Cure or a Pandora’s Box. Stem Cell Research & Therapy, 16, Article No. 255. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Mohammad, S., Roy, A., Karatzas, A., Sarver, S.L., Anagnostopoulos, I. and Chowdhury, F. (2024) Deep Learning Powered Identification of Differentiated Early Mesoderm Cells from Pluripotent Stem Cells. Cells, 13, Article 534. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ferrini, F., Salio, C., Boggio, E.M. and Merighi, A. (2021) Interplay of BDNF and GDNF in the Mature Spinal Somatosensory System and Its Potential Therapeutic Relevance. Current Neuropharmacology, 19, 1225-1245. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Cheng, C., Li, Q., Lin, G., Opara, E.C. and Zhang, Y. (2023) Neurobiological Insights into Lower Urinary Tract Dysfunction: Evaluating the Role of Brain-Derived Neurotrophic Factor. American Journal of Clinical and Experimental Urology, 11, 559-577.
|
|
[26]
|
Albu, S., Kumru, H., Coll, R., Vives, J., Vallés, M., Benito-Penalva, J., et al. (2021) Clinical Effects of Intrathecal Administration of Expanded Wharton Jelly Mesenchymal Stromal Cells in Patients with Chronic Complete Spinal Cord Injury: A Randomized Controlled Study. Cytotherapy, 23, 146-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, Y., Zhang, C., Gao, K., Li, K., Fu, M. and Lv, C. (2025) The Application Prospects and Challenges of Mesenchymal Stem Cell-Derived Exosomes in Spinal Cord Injury Repair. Current Stem Cell Research & Therapy, 20, 1-13. [Google Scholar] [CrossRef]
|
|
[28]
|
Xia, Y., Yang, R., Wang, H., Hou, Y., Li, Y., Zhu, J., et al. (2022) Biomaterials Delivery Strategies to Repair Spinal Cord Injury by Modulating Macrophage Phenotypes. Journal of Tissue Engineering, 13, 1-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Jiang, D., Ding, Y., Hu, S., Wei, G., Trujillo, C., Yang, Z., et al. (2025) Broad-Spectrum Downregulation of Inflammatory Cytokines by Polydopamine Nanoparticles to Protect the Injured Spinal Cord. Acta Biomaterialia, 193, 559-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Szymoniuk, M., Litak, J., Sakwa, L., Dryla, A., Zezuliński, W., Czyżewski, W., et al. (2022) Molecular Mechanisms and Clinical Application of Multipotent Stem Cells for Spinal Cord Injury. Cells, 12, Article 120. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ghosh, M. and Pearse, D.D. (2023) Schwann Cell-Derived Exosomal Vesicles: A Promising Therapy for the Injured Spinal Cord. International Journal of Molecular Sciences, 24, Article 17317. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Balçıkanlı, Z., Culha, I., Dilsiz, P., Aydin, M.S., Ates, N., Beker, M.C., et al. (2022) Lithium Promotes Long-Term Neurological Recovery after Spinal Cord Injury in Mice by Enhancing Neuronal Survival, Gray and White Matter Remodeling, and Long-Distance Axonal Regeneration. Frontiers in Cellular Neuroscience, 16, Article 1012523. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Tashiro, S., Shibata, S., Nagoshi, N., Zhang, L., Yamada, S., Tsuji, T., et al. (2024) Do Pharmacological Treatments Act in Collaboration with Rehabilitation in Spinal Cord Injury Treatment? A Review of Preclinical Studies. Cells, 13, Article 412. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Rahbaran, M., Zekiy, A.O., Bahramali, M., Jahangir, M., Mardasi, M., Sakhaei, D., et al. (2022) Therapeutic Utility of Mesenchymal Stromal Cell (MSC)-Based Approaches in Chronic Neurodegeneration: A Glimpse into Underlying Mechanisms, Current Status, and Prospects. Cellular & Molecular Biology Letters, 27, Article No. 56. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zheng, B. and Tuszynski, M.H. (2023) Regulation of Axonal Regeneration after Mammalian Spinal Cord Injury. Nature Reviews Molecular Cell Biology, 24, 396-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lee, S., Nam, H., Joo, K.M. and Lee, S.H. (2022) Advances in Neural Stem Cell Therapy for Spinal Cord Injury: Safety, Efficacy, and Future Perspectives. Neurospine, 19, 946-960. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Hu, X., Xu, W., Ren, Y., Wang, Z., He, X., Huang, R., et al. (2023) Spinal Cord Injury: Molecular Mechanisms and Therapeutic Interventions. Signal Transduction and Targeted Therapy, 8, Article No. 245. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Gilbert, E.A.B., Lakshman, N., Lau, K.S.K. and Morshead, C.M. (2022) Regulating Endogenous Neural Stem Cell Activation to Promote Spinal Cord Injury Repair. Cells, 11, Article 846. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Saijo, Y., Nagoshi, N., Kawai, M., Kitagawa, T., Suematsu, Y., Ozaki, M., et al. (2024) Human-Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Ex Vivo Gene Therapy with Synaptic Organizer CPTX for Spinal Cord Injury. Stem Cell Reports, 19, 383-398. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Aderinto, N., Abdulbasit, M.O. and Olatunji, D. (2023) Stem Cell-Based Combinatorial Therapies for Spinal Cord Injury: A Narrative Review of Current Research and Future Directions. Annals of Medicine & Surgery, 85, 3943-3954. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yu, L., Zhang, W., Li, F., et al. (2024) Exosome-Based Delivery of Neurotrophic Factors for Spinal Cord Injury Repair: A Review. Stem Cell Research & Therapy, 15, Article 58.
|
|
[42]
|
Zhang, N., Hu, J., Liu, W., Cai, W., Xu, Y., Wang, X., et al. (2024) Advances in Novel Biomaterial-Based Strategies for Spinal Cord Injury Treatment. Molecular Pharmaceutics, 21, 4764-4785. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Baek, I. and Song, Y. (2024) Development of Combinatorial Therapeutics for Spinal Cord Injury Using Stem Cell Delivery. Journal of Visualized Experiments, 208, e66872. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Sterner, R.C. and Sterner, R.M. (2023) Immune Response Following Traumatic Spinal Cord Injury: Pathophysiology and Therapies. Frontiers in Immunology, 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Dorrian, D., Lawrence, J., Wang, J., et al. (2023) The Role of Electrical Stimulation in Spinal Cord Injury Rehabilitation: A Systematic Review and Meta-Analysis. Frontiers in Cellular Neuroscience, 17, Article 823029.
|
|
[46]
|
Anjum, A., Yazid, M.D., Fauzi Daud, M., Idris, J., Ng, A.M.H., Selvi Naicker, A., et al. (2020) Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. International Journal of Molecular Sciences, 21, Article 7533. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Katari, V., Pasupuleti, S.K., Mullick, M., Lekkala, V.K.R. and Sen, D. (2024) Editorial: Advanced Neural Stem Cell Therapies for Spinal Cord Injury. Frontiers in Pharmacology, 15, Article 1469553. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Abolghasemi, R. and Davoudi-Monfared, E. (2025) Guide for Cell Therapy in Human Chronic Spinal Cord Injury. Tissue Engineering Part C: Methods, 31, 174-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Liu, Y., Liu, J., Wang, Y., Zhang, Y., Peng, Z., Li, P., et al. (2025) Regulation of Neuroimmune Microenvironment by PLA/GO/Anti-TNF-α Composite to Enhance Neurological Repair after Spinal Cord Injury. International Journal of Nanomedicine, 20, 4919-4942. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Fan, C., Yang, W., Zhang, L., Cai, H., Zhuang, Y., Chen, Y., et al. (2022) Restoration of Spinal Cord Biophysical Microenvironment for Enhancing Tissue Repair by Injury-Responsive Smart Hydrogel. Biomaterials, 288, Article 121689. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Chen, H., Wang, W., Yang, Y., Zhang, B., Li, Z., Chen, L., et al. (2024) A Sequential Stimuli-Responsive Hydrogel Promotes Structural and Functional Recovery of Severe Spinal Cord Injury. Biomaterials, 316, Article 122995. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zhou, Z., Liu, Y., Chen, L., et al. (2024) Sustained Delivery of NT-3 and Curcumin Augments Microenvironment Remodeling for Spinal Cord Injury Repair. Regenerative Biomaterials, 11, rbae039.
|
|
[53]
|
Liu, J., Yan, R., Wang, B., Chen, S., Hong, H., Liu, C., et al. (2024) Decellularized Extracellular Matrix Enriched with GDNF Enhances Neurogenesis and Remyelination for Improved Motor Recovery after Spinal Cord Injury. Acta Biomaterialia, 180, 308-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Kirkeby, A., Main, H. and Carpenter, M. (2025) Pluripotent Stem-Cell-Derived Therapies in Clinical Trial: A 2025 Update. Cell Stem Cell, 32, 10-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Montoto-Meijide, R., Meijide-Faílde, R., Díaz-Prado, S.M. and Montoto-Marqués, A. (2023) Mesenchymal Stem Cell Therapy in Traumatic Spinal Cord Injury: A Systematic Review. International Journal of Molecular Sciences, 24, Article 1719. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Li, S., Chen, G., Tong, K., Che, Y., Xie, Y., Shi, W., et al. (2025) Inhibition of Neuronal Necroptosis via Disruption of RIPK1-RIPK3 Interactions: The Role of Neural Stem Cell-Derived Exosomes in Spinal Cord Injury Recovery. Bioactive Materials, 51, 889-908. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Kwon, Y.D., Won, J.S., Ma, X., Choi, Y.J., et al. (2025) Preclinical Efficacy and Safety Assessments of Adult Human Neural Stem Cells (AhNSCs) for Spinal Cord Injury. Toxicology Reports, 14, Article 102048. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
He, W., Li, Z.Q., Gu, H.Y., et al. (2024) Targeted Therapy of Spinal Cord Injury: Inhibition of Apoptosis Is a Promising Therapeutic Strategy. Molecular Neurobiology, 61, 4222-4239. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Feng, Y., Li, Y., Shen, P. and Wang, B. (2022) Gene-Modified Stem Cells for Spinal Cord Injury: A Promising Better Alternative Therapy. Stem Cell Reviews and Reports, 18, 2662-2682. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Tashiro, S., Tsuji, O., Shinozaki, M., Shibata, T., Yoshida, T., Tomioka, Y., et al. (2021) Current Progress of Rehabilitative Strategies in Stem Cell Therapy for Spinal Cord Injury: A Review. npj Regenerative Medicine, 6, Article No. 81. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Bydon, M., Qu, W., Moinuddin, F.M., Hunt, C.L., Garlanger, K.L., Reeves, R.K., et al. (2024) Intrathecal Delivery of Adipose-Derived Mesenchymal Stem Cells in Traumatic Spinal Cord Injury: Phase I Trial. Nature Communications, 15, Article No. 2201. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Brumbaugh, A.D., Podolsky, A., Kulzer, M.H., Spearman, M.P., Goldberg, M.F., Chang, W.M., et al. (2022) Stem Cell Induced Inflammatory Hypertrophy of the Cauda Equina. Radiology Case Reports, 17, 1601-1604. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Grace, P.M., Rolan, P.E. and Hutchinson, M.R. (2021) Mediators of Neuropathic Pain; Focus on Spinal Microglia, CSF-1, BDNF and Wnt Signaling. Frontiers in Pain Research, 2, Article 698157.
|
|
[64]
|
Alles, S.R.A., Odem, M.A., Lu, V.B., Cassidy, R.M. and Smith, P.A. (2021) Chronic BDNF Simultaneously Inhibits and Unmasks Superficial Dorsal Horn Neuronal Activity. Scientific Reports, 11, Article No. 2249. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Zipser, C.M., Cragg, J.J., Guest, J.D., Fehlings, M.G., Jutzeler, C.R., Anderson, A.J., et al. (2022) Cell-Based and Stem-Cell-Based Treatments for Spinal Cord Injury: Evidence from Clinical Trials. The Lancet Neurology, 21, 659-670. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
U.S. FDA (2022) Principles of Premarket Pathways for Combination Products: Guidance for Industry and FDA Staff.
|