|
[1]
|
Zak, D.E., Penn-Nicholson, A., Scriba, T.J., Thompson, E., Suliman, S., Amon, L.M., et al. (2016) A Blood RNA Signature for Tuberculosis Disease Risk: A Prospective Cohort Study. The Lancet, 387, 2312-2322. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Horsburgh, C.R., O’Donnell, M., Chamblee, S., Moreland, J.L., Johnson, J., Marsh, B.J., et al. (2010) Revisiting Rates of Reactivation Tuberculosis: A Population-Based Approach. American Journal of Respiratory and Critical Care Medicine, 182, 420-425. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Horsburgh, C.R. (2004) Priorities for the Treatment of Latent Tuberculosis Infection in the United States. New England Journal of Medicine, 350, 2060-2067. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Comstock, G.W., Livesay, V.T. and Woolpert, S.F. (1974) The Prognosis of a Positive Tuberculin Reaction in Childhood and Adolescence. American Journal of Epidemiology, 99, 131-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Vynnycky, E. (2000) Lifetime Risks, Incubation Period, and Serial Interval of Tuberculosis. American Journal of Epidemiology, 152, 247-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Shea, K.M., Kammerer, J.S., Winston, C.A., Navin, T.R. and Horsburgh, C.R. (2014) Estimated Rate of Reactivation of Latent Tuberculosis Infection in the United States, Overall and by Population Subgroup. American Journal of Epidemiology, 179, 216-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Chen, S.Y., Li, C.Y., Qin, Z.H., et al. (2023) Serum Metabolomic Profiles for Distinguishing Lung Cancer from Pulmonary Tuberculosis: Identification of Rapid and Noninvasive Biomarker. The Journal of Infectious Diseases, 228, 1154-1165. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Weiner, J., Maertzdorf, J., Sutherland, J.S., Duffy, F.J., Thompson, E., Suliman, S., et al. (2018) Metabolite Changes in Blood Predict the Onset of Tuberculosis. Nature Communications, 9, Article No. 5208. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Tripathi, D., Devalraju, K.P., Neela, V.S.K., Mukherjee, T., Paidipally, P., Radhakrishnan, R.K., et al. (2022) Metabolites Enhance Innate Resistance to Human Mycobacterium tuberculosis Infection. JCI Insight, 7, e152357. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Chen, Y.H., Lu, T.Y., Pettersson-Kymmer, U., et al. (2023) Genomic Atlas of the Plasma Metabolome Prioritizes Metabolites Implicated in Human Diseases. Nature Genetics, 55, 44-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Tan, H.J., Zhao, J., Wang, B.S., et al. (2025) Noninvasive Markers for Warning Premature Ovarian Insufficiency: A Mendelian Randomisation Study. Journal of Ovarian Research, 18, Article No. 127. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Magnus, M.C., Miliku, K., Bauer, A., Engel, S.M., Felix, J.F., Jaddoe, V.W.V., et al. (2018) Vitamin D and Risk of Pregnancy Related Hypertensive Disorders: Mendelian Randomisation Study. British Medical Journal, 361, k2167. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Papadimitriou, N., Dimou, N., Tsilidis, K.K., Banbury, B., Martin, R.M., Lewis, S.J., et al. (2020) Physical Activity and Risks of Breast and Colorectal Cancer: A Mendelian Randomisation Analysis. Nature Communications, 11, Article No. 597. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chen, J.H., Chen, R.R., Xiang, S.Y., et al. (2021) Cigarette Smoking and Schizophrenia: Mendelian Randomisation Study. The British Journal of Psychiatry, 218, 98-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Tao, H.R., Fan, S.J., Zhu, T.X., et al. (2023) Psychiatric Disorders and Type 2 Diabetes Mellitus: A Bidirectional Mendelian Randomization. European Journal of Clinical Investigation, 53, e13893. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Xu, W.C., Zhang, F.J., Shi, Y.Z., et al. (2022) Causal Association of Epigenetic Aging and COVID-19 Severity and Susceptibility: A Bidirectional Mendelian Randomization Study. Frontiers in Medicine, 9, Article 989950. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Long, Y.W., Tang, L.H., Zhou, Y.Y., et al. (2023) Causal Relationship between Gut Microbiota and Cancers: A Two-Sample Mendelian Randomisation Study. BMC Medicine, 21, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Fahy, E., Subramaniam, S., Brown, H.A., Glass, C.K., Merrill, A.H., Murphy, R.C., et al. (2005) A Comprehensive Classification System for Lipids. Journal of Lipid Research, 46, 839-861. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sumner, L.W., Amberg, A., Barrett, D., et al. (2007) Proposed Minimum Reporting Standards for Chemical Analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3, 211-221.
|
|
[20]
|
Getahun, H., Matteelli, A., Chaisson, R.E. and Raviglione, M. (2015) Latent Mycobacterium tuberculosis Infection. New England Journal of Medicine, 372, 2127-2135. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Blumberg, H.M. and Ernst, J.D. (2016) The Challenge of Latent TB Infection. Journal of the American Medical Association, 316, 931-933. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yang, B.Y., Guo, X.J., Shi, C.Y., et al. (2024) Alterations in Purine and Pyrimidine Metabolism Associated with Latent Tuberculosis Infection: Insights from Gut Microbiome and Metabolomics Analyses. mSystems, 9, e0081224. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Daniel, J., Maamar, H., Deb, C., Sirakova, T.D. and Kolattukudy, P.E. (2011) Mycobacterium tuberculosis Uses Host Triacylglycerol to Accumulate Lipid Droplets and Acquires a Dormancy-Like Phenotype in Lipid-Loaded Macrophages. PLOS Pathogens, 7, e1002093. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Martinez, N., Smulan, L.J., Jameson, M.L., Smith, C.M., Cavallo, K., Bellerose, M., et al. (2023) Glycerol Contributes to Tuberculosis Susceptibility in Male Mice with Type 2 Diabetes. Nature Communications, 14, Article No. 5840. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Leung, C.C. (2018) Repurposing Metformin to Prevent and Treat Tuberculosis. Respirology, 23, 974-975. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Healy, C., Ehrt, S. and Gouzy, A. (2025) An Exacerbated Phosphate Starvation Response Triggers Mycobacterium tuberculosis Glycerol Utilization at Acidic pH. mBio, 16, e0282524. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Baker, J.J. and Abramovitch, R.B. (2018) Genetic and Metabolic Regulation of Mycobacterium tuberculosis Acid Growth Arrest. Scientific Reports, 8, Article No. 4168. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Nikolaus, S., Schulte, B., Al-Massad, N., Thieme, F., Schulte, D.M., Bethge, J., et al. (2017) Increased Tryptophan Metabolism Is Associated with Activity of Inflammatory Bowel Diseases. Gastroenterology, 153, 1504-1516.e2. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zamoscik, V., Schmidt, S.N.L., Bravo, R., Ugartemendia, L., Plieger, T., Rodríguez, A.B., et al. (2021) Tryptophan-Enriched Diet or 5-Hydroxytryptophan Supplementation Given in a Randomized Controlled Trial Impacts Social Cognition on a Neural and Behavioral Level. Scientific Reports, 11, Article No. 21637. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Meier, T.B. and Savitz, J. (2022) The Kynurenine Pathway in Traumatic Brain Injury: Implications for Psychiatric Outcomes. Biological Psychiatry, 91, 449-458. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R.D., Shanahan, F., et al. (2013) The Microbiome-Gut-Brain Axis during Early Life Regulates the Hippocampal Serotonergic System in a Sex-Dependent Manner. Molecular Psychiatry, 18, 666-673. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
van Laarhoven, A., Dian, S., Aguirre-Gamboa, R., Avila-Pacheco, J., Ricaño-Ponce, I., Ruesen, C., et al. (2018) Cerebral Tryptophan Metabolism and Outcome of Tuberculous Meningitis: An Observational Cohort Study. The Lancet Infectious Diseases, 18, 526-535. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hubková, B., Valko-Rokytovská, M., Čižmárová, B., Zábavníková, M., Mareková, M. and Birková, A. (2022) Tryptophan: Its Metabolism along the Kynurenine, Serotonin, and Indole Pathway in Malignant Melanoma. International Journal of Molecular Sciences, 23, Article 9160. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Jiang, J.Y., Li, Z.P., Chen, C., et al. (2021) Metabolomics Strategy Assisted by Transcriptomics Analysis to Identify Potential Biomarkers Associated with Tuberculosis. Infection and Drug Resistance, 14, 4795-4807. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Szelest, M., Walczak, K. and Plech, T. (2021) A New Insight into the Potential Role of Tryptophan-Derived Ahr Ligands in Skin Physiological and Pathological Processes. International Journal of Molecular Sciences, 22, Article 1104. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Shu, H.Y., Peng, Y.Z., Hang, W.J., et al. (2022) Emerging Roles of Ceramide in Cardiovascular Diseases. Emerging Roles of Ceramide in Cardiovascular Diseases. Aging and Disease, 13, 232-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Anes, E., Kühnel, M.P., Bos, E., Moniz-Pereira, J., Habermann, A. and Griffiths, G. (2003) Selected Lipids Activate Phagosome Actin Assembly and Maturation Resulting in Killing of Pathogenic Mycobacteria. Nature Cell Biology, 5, 793-802. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Elsbach, P. (1968) Increased Synthesis of Phospholipid during Phagocytosis. Journal of Clinical Investigation, 47, 2217-2229. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Rubio, J.M., Astudillo, A.M., Casas, J., Balboa, M.A. and Balsinde, J. (2018) Regulation of Phagocytosis in Macrophages by Membrane Ethanolamine Plasmalogens. Frontiers in Immunology, 9, Article 1723. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Gil-de-Gómez, L., Astudillo, A.M., Lebrero, P., Balboa, M.A. and Balsinde, J. (2017) Essential Role for Ethanolamine Plasmalogen Hydrolysis in Bacterial Lipopolysaccharide Priming of Macrophages for Enhanced Arachidonic Acid Release. Frontiers in Immunology, 8, Article 1251. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Tilley, S.L., Coffman, T.M. and Koller, B.H. (2001) Mixed Messages: Modulation of Inflammation and Immune Responses by Prostaglandins and Thromboxanes. Journal of Clinical Investigation, 108, 15-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Pellegrini, J.M., Martin, C., Morelli, M.P., Schander, J.A., Tateosian, N.L., Amiano, N.O., et al. (2021) PGE2 Displays Immunosuppressive Effects during Human Active Tuberculosis. Scientific Reports, 11, Article No. 13559. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Aronoff, D.M., Canetti, C. and Peters-Golden, M. (2004) Prostaglandin E2 Inhibits Alveolar Macrophage Phagocytosis through an E-Prostanoid 2 Receptor-Mediated Increase in Intracellular Cyclic AMP. The Journal of Immunology, 173, 559-565. [Google Scholar] [CrossRef] [PubMed]
|