血液代谢物与肺结核的相关性:双向孟德尔随机化研究
Association between Blood Metabolites and Pulmonary Tuberculosis: A Mendelian Randomization Analysis
DOI: 10.12677/acm.2025.15113338, PDF, HTML, XML,    科研立项经费支持
作者: 张艳灵, 王瑶瑶:青岛大学青岛医学院,山东 青岛;孙书芳:青岛市中心血站业务科,山东 青岛;李庆海, 郝万明*:康复大学青岛医院(青岛市市立医院)呼吸与危重症医学科,山东 青岛;于新娟:康复大学青岛医院(青岛市市立医院)临床研究中心,山东 青岛
关键词: 肺结核血液代谢物孟德尔随机化Pulmonary Tuberculosis Blood Metabolites Mendelian Randomization
摘要: 目的:利用双向双样本孟德尔随机化研究揭示了特定血液代谢物对肺结核的潜在因果效应。方法:工具变量来源于全基因组关联研究(GWAS)。应用五种不同的回归拟合方法进行双样本MR分析,主要分析方法为逆方差加权法(Inverse-variance weighted, IVW),MR-Egger、Weighted median、Simple mode、Weighted mode作为补充方法;此外,还考虑了连锁不平衡和弱工具变量引起的潜在偏差。为保证结果的可靠性,还进行了敏感性分析:水平多效性分析(MR-Egger intercept检验)和异质性分析(Cochran’s Q检验和Funnel plot检验)均不符合标准的代谢物被认为对结果没有实质性的因果效应;同时应用Leave-one-out分析保证结果稳健性。结果:研究证实42种血液代谢与肺结核有关,其中包括13种风险因素(5-羟基吲哚硫酸盐的风险比最高,OR = 1.3035,95% CI:1.1074~1.5344,P = 0.0014)和29种防御因素(磷酸盐与甘油的比值最高,OR = 0.7512,95% CI:0.6296~0.8964,P = 0.0015)。为了评估肺结核对这些血液代谢物是否有反向因果关系,我们进行了反向MR分析。结果表明两者之间没有反向因果关系。结论:遗传学证据表明,5-羟基吲哚硫酸盐水平等13种血液代谢物是肺结核的风险因素,磷酸盐与甘油的比值等29种血液代谢物是肺结核的防御因素。
Abstract: Objective: To evaluate the causal relationship between blood metabolites and pulmonary tuberculosis (PTB) using a bidirectional two-sample Mendelian randomization (MR) approach. Methods: Instrumental variables were derived from Genome-Wide Association Studies (GWAS). Five distinct MR methods were applied for two-sample MR analysis: inverse-variance weighted (IVW) as the primary method, supplemented by MR-Egger, weighted median, simple mode, and weighted mode. Potential biases due to linkage disequilibrium and weak instrumental variables were also considered. To ensure the reliability of the results, sensitivity analyses were conducted. Metabolites that did not meet the standards in horizontal pleiotropy analysis (MR-Egger intercept test) and heterogeneity analysis (Cochran’s Q test and funnel plot test) were considered to have no substantial causal effect on the outcome; Leave-one-out analysis was used to ensure robustness of results. Results: Elevated levels of 42 blood metabolites were associated with PTB risk, comprising 13 risk factors (e.g.,5-hydroxyindole sulfate, highest OR = 1.3035, 95%CI: 1.1074~1.5344, P = 0.0014) and 29 protective factors (e.g., ratio of phosphate to glycerol, Lowest OR = 0.7512, 95%CI: 0.6296~0.8964, P = 0.0015). To assess whether there was a reverse causal relationship between pulmonary tuberculosis and these blood metabolites, we performed a reverse MR analysis. The results showed no reverse causal relationship. Conclusion: Genetic evidence suggests that 13 blood metabolites, including 5-hydroxyindole sulfate, are risk factors for pulmonary tuberculosis, while 29 blood metabolites, including the phosphate-to-glycerol ratio, are defensive factors against pulmonary tuberculosis.
文章引用:张艳灵, 孙书芳, 李庆海, 于新娟, 王瑶瑶, 郝万明. 血液代谢物与肺结核的相关性:双向孟德尔随机化研究[J]. 临床医学进展, 2025, 15(11): 2204-2219. https://doi.org/10.12677/acm.2025.15113338

1. 引言

由结核分枝杆菌(Mycobacterium tuberculosis, MTB)引起的结核病(Tuberculosis, TB)是一种主要传染病,仍然是一个全球性的公共卫生问题,肺结核(Pulmonary Tuberculosis, PTB)是最为典型和常见的形式。全球三分之一的人口感染了MTB [1],但<10%的人口会发展为活动性结核病(Active Tuberculosis, ATB),而大多数人将保持健康[2]-[6]。潜伏性结核病感染(LTBI)通常是一种无症状、影像学未被发现的过程。如果MTB克服免疫系统的限制并繁殖,就会进展为ATB。确定疾病风险的生物标志物,识别TB高危感染者将有助于早期预防和治疗TB。Chen等人发现代谢物与PTB之间存在关联[7]。组氨酸、丙氨酸和色氨酸等代谢物与PTB发病呈正相关,而皮质醇等代谢物与PTB发病呈负相关[8]。Deepak Tripathi等人进一步证实,代谢物醋酸脱氧皮质酮通过调节先天性免疫反应发挥抗结核功能[9]。然而,代谢物与PTB风险之间的遗传关联在很大程度上仍然未知。孟德尔随机化(Mendelian Randomization, MR)应用遗传工具变量(Instrumental Variables, IVs)来确定暴露与结果之间的遗传关系,从而减少反向因果关系和混杂因素。本研究旨在采用双向双样本MR分析法探讨血液代谢物与PTB之间的因果关系。我们从遗传层面系统地研究了血液代谢物对PTB的影响,以及PTB对血液代谢物的潜在影响。

2. 研究方法

2.1. 总体设计

本研究使用的所有数据来自公开访问的全基因组关联研究(GWAS),每项研究均获得了相应伦理委员会的批准,因此无需进一步的伦理审批。基于GWAS数据筛选出符合条件的IVs,进行双样本MR分析,研究血液代谢物与PTB的因果关系(见图1)。本研究严格遵循MR分析的三个假设:(1) 选择的IVs与暴露强相关;(2) IVs与任何混杂因素无关;(3) IVs只能通过暴露来影响结果。

Figure 1. Schematic illustration of the MR analysis

1. MR分析示意图

2.2. 全基因组关联研究(GWAS)数据来源

血液代谢物[10]和PTB的全基因组关联研究(GWAS)摘要数据分别来自GWAS目录 (https://www.ebi.ac.uk/gwas/),数据的详细信息见表1

2.3. 工具变量(IVs)的选择

根据最近的研究,IVs的筛选标准是P < 1 × 105,linkage disequilibrium R2 < 0.001,clumping distance = 10,000 kb,F statistics > 10 [11]-[13]。最初,我们确定了与暴露因素相关的1294个代谢物的单核苷酸多态性(SNPs)。为了剔除与PTB有内在联系的SNPs,基于以往荟萃分析研究得出可能导致肺结核发病的混杂因素(见表2),我们在Pheno Scanner (http://www.phenoscanner.medschl.cam.ac.uk/)上进行了搜索,并剔除了与混杂因素有关的54个SNPs。最终确定1240个SNPs为IV。

Table 1. GWAS study data information

1. GWAS数据库研究数据信息

暴露/结局

作者,出版时间

样本量n

病例数

对照数

人群

GWAS ID

PMID

1400种血液代谢物

Yiheng Chen等,2023

-

-

-

欧洲

GCST90199621-90201020

36635386

肺结核

Sakaue等,2021

477,386

895

476,491

欧洲

GCST90018892

34594039

注:数据来源:https://www.ebi.ac.uk/gwas

Table 2. Confounding factors identified from previous meta-analysis studies as potentially contributing to the onset of pulmonary tuberculosis

2. 基于以往荟萃分析研究得出的可能导致肺结核发病的混杂因素

暴露

混杂因素

作者

PMID

PTB

吸烟

Alexander L Chu等

34049397

酒精

Sameer Imtiaz等

28705945

糖尿病

Jung Eun Yoo等

34546370

BMI

Peng Lu等

34217872

AIDS

Faiz Ahmad Khan等

22820541

注:PTB:肺结核;BMI:身体质量指数;AIDS:获得性免疫缺陷综合征。

2.4. 统计分析

逆方差加权法(Inverse-variance weighted, IVW)作为主要方法估计血液代谢物与PTB之间的因果关系[14]。此外,本研究还使用了MR-Egger、Weighted median、Weighted mode和Simple mode作为补充方法[15] [16]。使用Cochran’s Q统计量评估SNPs的异质性[17]。横向多效性是通过MR-Egger回归得到的截距来评估的。为了验证分析结果的稳健性,还使用了“leave-one-out”方法进行了敏感性分析,确认每个SNP对总体因果估计的影响[15] [17]。所有分析均使用Two Sample MR软件包和R编程语言进行。

3. 结果

3.1. MR分析

我们采用IVW方法分析了这些血液代谢物对PTB风险的影响,结果发现78个血液代谢物可能对PTB有影响(见表3)。随后,我们使用五种方法(MR Egger、加权中位数、逆方差加权、简单模式和加权模式)进一步筛选出了具有一致比值(OR)方向的代谢物,并确定了43个血液代谢物(见图2)。其中,14个血液代谢物被确定为PTB的风险因素,如5-羟基吲哚硫酸盐水平(OR = 1.3035, 95% CI = 1.1074~1.5344, P = 0.0014)、半胱氨酸与丙氨酸比值(OR = 1.1919, 95% CI = 1.0702~1.3275, P = 0. OR = 0.7512, 95% CI = 0.6296~0.8964, P = 0.0015),1-棕榈酰-2-亚油酰-GPI (16:0/18:2)水平(OR = 0.7952, 95% CI = 0.7117~0.8886, P < 0.001)等29种血液代谢物被认为是保护因素。

Table 3. 78 blood metabolites with potential effects on pulmonary tuberculosis

3. 对肺结核有潜在影响的78种血液代谢物

ID

P-value

血液代谢物

GCST90199672

0.007717679

Oxalate (ethanedioate) levels

GCST90199691

0.046885685

1-methylhistidine levels

GCST90199715

0.008012883

Myristoleate (14:1n5) levels

GCST90199727

0.016819323

1-oleoyl-GPC (18:1) levels

GCST90199738

0.019967442

Stachydrine levels

GCST90199793

0.03134883

1-linoleoyl-GPE (18:2) levels

GCST90199800

0.031320536

Carnitine C5:1 levels

GCST90199819

0.009714864

Tryptophan betaine levels

GCST90199824

0.016448665

4-vinylphenol sulfate levels

GCST90199829

0.001701626

3-methyladipate levels

GCST90199844

0.04663961

1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) levels

GCST90199846

0.005116351

Glycosyl-N-stearoyl-sphingosine (d18:1/18:0) levels

GCST90199848

0.031305837

Succinylcarnitine levels

GCST90199865

0.028360224

2-hydroxyglutarate levels

GCST90199906

0.034553761

1-(1-enyl-palmitoyl)-GPE (p-16:0) levels

GCST90199990

0.041565662

3-hydroxypyridine sulfate levels

GCST90199998

0.024071315

Propyl 4-hydroxybenzoate sulfate levels

GCST90200037

0.003540205

1-stearoyl-2-linoleoyl-gpc (18:0/18:2) levels

GCST90200039

0.03135841

1-stearoyl-2-linoleoyl-GPE (18:0/18:2) levels

GCST90200050

0.005174926

5-hydroxyindole sulfate levels

GCST90200074

0.045491772

1-linoleoyl-GPG (18:2) levels

GCST90200075

0.023443846

1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (p-16:0/18:2) levels

GCST90200078

0.005213426

1-myristoyl-2-arachidonoyl-GPC (14:0/20:4) levels

GCST90200082

0.014080798

1-oleoyl-2-linoleoyl-GPE (18:1/18:2) levels

GCST90200100

0.015191429

Perfluorooctanesulfonate (PFOS) levels

GCST90200101

0.037899489

Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC) levels

GCST90200104

0.037055057

Hexadecadienoate (16:2n6) levels

GCST90200160

0.0176299

Trans-2-hexenoylglycine levels

GCST90200168

0.015265002

Hydroxyasparagine levels

GCST90200174

0.026906852

3-hydroxybutyroylglycine levels

GCST90200193

0.003538056

Ethyl beta-glucopyranoside levels

GCST90200199

0.042625531

Ascorbic acid 3-sulfate levels

GCST90200243

0.012958988

Hydroxypalmitoyl sphingomyelin (d18:1/16:0(OH)) levels

GCST90200314

0.010761188

N-acetylneuraminate levels

GCST90200328

0.034285774

3-methoxytyrosine levels

GCST90200332

0.000235436

1-palmitoyl-2-linoleoyl-GPI (16:0/18:2) levels

GCST90200333

0.018393607

Taurocholic acid levels

GCST90200383

0.048033549

Cystathionine levels

GCST90200392

0.030828318

Orotate levels

GCST90200437

0.026527691

Fructose levels

GCST90200452

0.036946443

Plasma free asparagine levels

GCST90200506

0.043366726

X-12812 levels

GCST90200508

0.002988338

X-12738 levels

GCST90200516

0.004619955

X-12847 levels

GCST90200529

0.021376201

X-16397 levels

GCST90200537

0.041976386

X-16087 levels

GCST90200583

0.001617854

X-21807 levels

GCST90200604

0.033260739

X-23276 levels

GCST90200611

0.013369487

X-23636 levels

GCST90200656

0.027001934

X-25371 levels

GCST90200664

0.038728822

X-25810 levels

GCST90200674

0.013575181

Androsterone sulfate levels

GCST90200685

0.006699329

1-stearoyl-2-arachidonoyl-gpc (18:0/20:4) levels

GCST90200688

0.027795564

Androsterone glucuronide levels

GCST90200691

0.025493961

N-delta-acetylornithine levels

GCST90200692

0.006077635

1-palmitoyl-2-arachidonoyl-gpc (16:0/20:4n6) levels

GCST90200695

0.044565934

2'-o-methyluridine levels

GCST90200700

0.01913446

Decadienedioic acid (C10:2-DC) levels

GCST90200725

0.020012219

Adenosine 5'-diphosphate (ADP) to creatine ratio

GCST90200740

0.00503361

Arachidonate (20:4n6) to oleate to vaccenate (18:1) ratio

GCST90200756

0.037426408

Glycine to pyridoxal ratio

GCST90200757

0.046693968

Glycine to alanine ratio

GCST90200764

0.007908104

Phosphate to uridine ratio

GCST90200786

0.004696625

Cysteine to alanine ratio

GCST90200794

0.026776394

Oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [1] ratio

GCST90200795

0.026102701

Oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [2] ratio

GCST90200836

0.017425527

Glycerol to glycerol 3-phosphate ratio

GCST90200845

0.033180446

Adenosine 5'-monophosphate (AMP) to citrate ratio

GCST90200902

0.026184213

Phosphate to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [2] ratio

GCST90200903

0.002006806

Phosphate to glycerol ratio

GCST90200908

0.022499189

Retinol (Vitamin A) to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [2] ratio

GCST90200918

0.010215493

N-palmitoyl-sphingosine (d18:1 to 16:0) to N-palmitoyl-sphinganine (d18:0 to 16:0) ratio

GCST90200926

0.028058428

N-stearoyl-sphingosine (d18:1 to 18:0) to N-palmitoyl-sphinganine (d18:0 to 16:0) ratio

GCST90200929

0.005414896

Glycerol to carnitine ratio

GCST90200961

0.046091686

Adenosine 5'-diphosphate (ADP) to ornithine ratio

GCST90200965

0.029227711

Glutamate to 5-oxoproline ratio

GCST90200979

0.004408218

Arachidonate (20:4n6) to linoleate (18:2n6) ratio

GCST90200994

0.017555245

Glutamine to alanine ratio

注:我们从孟德尔分析结果中选取P值小于0.05的血液代谢物,并将逆方差加权法(Inverse-variance weighted, IVW)作为主要分析方法。

Figure 2. Forest plot of the MR analysis between 43 blood metabolites and PTB

2. 43种血液代谢物与PTB之间的MR分析的森林图

MR估计了43种血液代谢物对PTB风险的遗传预测效应,并将IVW视为主要方法。红框中突出显示的血液代谢物是最高风险和防御因素。乙基beta-吡喃葡萄糖苷水平血液代谢物随后被排除在下一步分析之外。SNPs:分析的SNP数量;P-value (P值):统计显著性阈值设置为P < 0.05;OR,比值比:OR > 1表示风险增加,OR < 1表示风险降低;CI,置信区间。

3.2. 敏感性分析

接下来,我们进行了敏感性分析(基因多效性检验:MR-Egger,异质性检验:Cochran’s Q),结果没有发现血液代谢物与肺结核之间存在基因多效性和异质性(P值均大于0.05) (见表4)。我们还利用漏斗图和leave-one-out分析进一步评估了敏感性。在leave-one-out分析中,除了血液代谢物乙基beta-吡喃葡萄糖苷(Ethyl beta-glucopyranoside levels)在剔除SNP (rs181558)时效应估计值(小于0)及置信区间发生显著变化(总体效应估计值大于0)外,其他42个代谢物leave-one-out分析显示,结果均有稳健性。剔除任一单个SNP后,效应估计值均未发生显著改变(均大于0或均小于0),这说明分析结果不受任何单一IV的影响。在漏斗图(Funnel plot)分析中,SNPs的分布与IVW和MR-Egger线对称,进一步支持血液代谢物和肺结核之间的因果关联。

为了进一步验证去除乙基beta-吡喃葡萄糖苷中离群SNP后的因果效应,我们进行了MR分析,发现乙基beta-吡喃葡萄糖苷与PTB风险之间没有显著的因果关系(IVW P值大于0.05)。

此外,为了评估PTB对这些血液代谢物是否有因果关系,我们进行了反向MR分析。结果表明它们之间没有反向因果关系。

Table 4. Test results for heterogeneity and pleiotropy between various blood metabolites and pulmonary tuberculosis

4. 各种血液代谢物对肺结核之间存在异质性及多效性关系的检验结果

血液代谢物

ID

Cochrane’s Q

df

P for heterogeneitya

Egger_intercept

SE

P for pleiotropyb

Oxalate (ethanedioate) levels

GCST90199672

13.77662969

21

0.879001298

−0.016239559

0.014267236

0.268471547

1-oleoyl-GPC (18:1) levels

GCST90199727

11.55079359

12

0.482395747

−0.019801725

0.031744443

0.545486532

1-linoleoyl-GPE (18:2) levels

GCST90199793

35.258068

28

0.162479291

−0.004540853

0.010281366

0.662253414

Carnitine C5:1 levels

GCST90199800

13.50181411

20

0.854831002

0.001186838

0.012131187

0.923089124

Tryptophan betaine levels

GCST90199819

47.2637487

34

0.064819286

0.001811226

0.009503573

0.85001939

3-methyladipate levels

GCST90199829

16.24621032

16

0.435913181

−0.014065029

0.015893873

0.390157459

Glycosyl-N-stearoyl-sphingosine (d18:1/18:0) levels

GCST90199846

26.70362649

27

0.479869708

0.004977033

0.011848347

0.677891774

1-(1-enyl-palmitoyl)-GPE (p-16:0) levels

GCST90199906

12.84709567

20

0.883847632

−0.004908461

0.014529535

0.739197922

Propyl 4-hydroxybenzoate sulfate levels

GCST90199998

16.41904002

23

0.836752127

0.007150888

0.01606559

0.660591953

1-stearoyl-2-linoleoyl-gpc (18:0/18:2) levels

GCST90200037

11.52220939

21

0.951628272

0.014370173

0.011708637

0.233955658

5-hydroxyindole sulfate levels

GCST90200050

11.6711604

12

0.472437354

0.015289681

0.034722934

0.668222909

1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (p-16:0/18:2) levels

GCST90200075

15.7432729

17

0.542101992

0.030572887

0.016537942

0.083074253

1-myristoyl-2-arachidonoyl-GPC (14:0/20:4) levels

GCST90200078

26.75442633

18

0.083718133

−0.013722965

0.012970456

0.304850719

1-oleoyl-2-linoleoyl-GPE (18:1/18:2) levels

GCST90200082

30.70700162

28

0.330243639

−0.000594996

0.009608601

0.951080092

Perfluorooctanesulfonate (PFOS) levels

GCST90200100

16.99920858

19

0.589921442

−0.021831997

0.027140307

0.431655689

Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC) levels

GCST90200101

27.78652325

23

0.223962103

−0.006586847

0.013893727

0.640108703

Hexadecadienoate (16:2n6) levels

GCST90200104

11.39289332

14

0.654932723

0.024013508

0.02625266

0.376999522

Hydroxyasparagine levels

GCST90200168

18.49332639

19

0.489743684

−0.001399588

0.021536114

0.948899919

Ethyl beta-glucopyranoside levels

GCST90200193

18.06675683

14

0.203757282

−0.012574898

0.010398162

0.248067281

Hydroxypalmitoyl sphingomyelin (d18:1/16:0(OH)) levels

GCST90200243

16.4605003

25

0.900423691

0.016715462

0.009942212

0.10568177

N-acetylneuraminate levels

GCST90200314

24.55033406

29

0.701356373

−0.001148049

0.012611624

0.928116055

1-palmitoyl-2-linoleoyl-GPI (16:0/18:2) levels

GCST90200332

14.46232901

15

0.490793018

0.027462073

0.016375307

0.115710765

Orotate levels

GCST90200392

22.43518006

21

0.374815281

0.004169978

0.00820789

0.616979419

Fructose levels

GCST90200437

13.62453737

23

0.937121029

−0.006709654

0.012176571

0.587166262

X-12847 levels

GCST90200516

7.767236978

13

0.858426682

−0.005902409

0.025626778

0.821721262

X-16397 levels

GCST90200529

13.02830143

13

0.445627971

0.000935333

0.040462766

0.981937767

X-21807 levels

GCST90200583

18.49101059

19

0.4898958

−0.004668121

0.016918071

0.785748471

X-23636 levels

GCST90200611

14.33967441

14

0.424723814

0.008115827

0.031807599

0.80259658

X-25810 levels

GCST90200664

27.46139894

31

0.648812581

−0.002420938

0.007212816

0.739475418

Androsterone sulfate levels

GCST90200674

26.17567262

28

0.563388806

0.005037254

0.008839784

0.573498224

1-stearoyl-2-arachidonoyl-gpc (18:0/20:4) levels

GCST90200685

27.96537245

31

0.622952093

0.003862696

0.006080352

0.530065184

Androsterone glucuronide levels

GCST90200688

17.10541628

23

0.804046621

−0.003027979

0.008629166

0.729000927

1-palmitoyl-2-arachidonoyl-gpc (16:0/20:4n6) levels

GCST90200692

30.10063113

25

0.220543118

−0.014994211

0.008135908

0.077719848

Decadienedioic acid (C10:2-DC) levels

GCST90200700

15.66180555

18

0.616136833

−0.004452808

0.011224108

0.696511163

Phosphate to uridine ratio

GCST90200764

22.40103825

25

0.612494472

0.005718598

0.017921421

0.752416809

Cysteine to alanine ratio

GCST90200786

17.77871047

24

0.81360931

−0.001421756

0.016134704

0.930545736

Oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [1] ratio

GCST90200794

18.90494262

20

0.528012374

−0.003596263

0.01021807

0.728748198

Oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [2] ratio

GCST90200795

27.48803621

23

0.235762517

0.004631867

0.008633552

0.596999701

Phosphate to glycerol ratio

GCST90200903

14.89259847

14

0.385535756

0.001797696

0.029486427

0.952312896

N-stearoyl-sphingosine (d18:1 to 18:0) to N-palmitoyl-sphinganine (d18:0 to 16:0) ratio

GCST90200926

33.22693609

27

0.189683675

0.012030104

0.01721843

0.490957416

Glycerol to carnitine ratio

GCST90200929

22.97200917

21

0.34547265

0.007342357

0.008172007

0.37962139

Glutamate to 5-oxoproline ratio

GCST90200965

20.72700899

20

0.413354313

−0.038544973

0.023013584

0.110338906

Arachidonate (20:4n6) to linoleate (18:2n6) ratio

GCST90200979

16.8098428

22

0.773767813

−0.001646849

0.00923666

0.860200212

注:a:异质性检验的P值是通过Cochrane’s Q检验得出的,若P值小于0.05,则表明可能存在异质性。b:多效性检验的P值是通过MR-Egger检验得出的,若P值小于0.05则表明可能存在多效性。Df:代表自由度SE:代表标准误。

3.3. 血液代谢物分类结果

为进一步确定42种代谢物的类别,参考KEGG通路数据库(KEGG PATHWAY Database)及人类代谢组数据库(Human Metabolome Database)等[18] [19],按类别(如脂类、有机酸类)分层。脂类占比最高(28.57%,12/42),其次为代谢物比值(21.43%, 9/42),提示脂代谢和通路平衡在本研究中的重要性。完整数据见补充表S1

4. 讨论

本研究是第一个系统评估血液代谢物与PTB之间因果关系的孟德尔随机化研究。该MR研究显示,PTB风险与42种血液代谢物之间存在遗传关联,包括13种风险因素和29种防御因素。敏感性分析进一步证实了42种血液代谢物与PTB之间的关系。OR值(比值比,Odds Ratio)是用于衡量暴露因素与疾病关联强度的重要指标。OR = 1:表示暴露因素与疾病无关联,即该因素对疾病的发生没有影响;OR > 1:表明暴露因素与疾病呈正相关,是疾病的危险因素,暴露人群患疾病的风险高于非暴露人群;OR < 1:提示暴露因素与疾病呈负相关,是保护因素,暴露人群患疾病的风险低于非暴露人群。OR值的大小反映暴露因素与疾病关联的紧密程度。OR值越大,关联越强;OR值越小,关联越弱。基于OR值,我们得出5-羟基吲哚硫酸盐和磷酸盐甘油比值的增加分别表现出最高的风险和防御性。在这42种代谢物中,脂类代谢物占比最高。此外,本研究未观察到反向关联。

PTB是由MTB引起的传染病,对于全球公共卫生事业带来巨大的挑战,潜伏性结核感染(LTBI)是一种针对结核分枝杆菌的持续免疫状态,没有活动性肺结核(ATB)的典型症状[20]。据估计,全球有30%的人口患有LTBI,其中5%~10%的患者在接触结核分枝杆菌的前2年发展为ATB [21] [22]。宿主因素(如代谢状态)对发病的影响机制不清,因此,我们想研究血液代谢物对PTB的潜在影响,揭示宿主–病原体之间相互作用的可能代谢机制,发现新型的生物标志物,并识别高危人群和治疗靶点。

甘油是甘油三酯的重要代谢产物,其产生过程是MTB休眠及复苏期间的主要能量来源,且与药物耐受性及毒力改变相关[23]。在最近的一项研究中揭示了高脂饮食(HFD)-链脲佐菌素(STZ)诱导的2型糖尿病小鼠的血浆中甘油水平升高显著增强了MTB的增殖与毒力,从而进一步加重TB [24]。还有研究表明,利用二甲双胍(TB的主要宿主导向治疗候选药物)减弱脂肪细胞释放甘油的能力来缓解TB的症状,这进一步证实了甘油代谢针对TB的治疗意义[25]。Claire Healy等研究表明[26],MTB在酸性环境(pH < 5.8)中的生长停滞受磷酸盐(Pi)饥饿反应调控[27]。MTB在酸中的生长可以通过Pi饥饿反应调节因子regX3的过表达并增强甘油利用来恢复,因此,磷酸盐(Pi)与甘油比值升高(即Pi相对充足而甘油相对受限)可能会强化MTB在酸性环境中的生长停滞,但这仍需进一步研究。

本研究表明5-羟基吲哚硫酸盐(5-hydroxyindole sulfate, 5-HIS)作为TB的一个重要风险因素。5-HIS与色氨酸有直接且重要的生物代谢关系。它是色氨代谢途径中血清素(5-羟色胺)分解的终末产物。色氨酸是人体必需氨基酸[28],无法由人体合成,需从食物中摄[29]。到目前为止,关于色氨酸摄入不足对人类疾病如脑损伤[30]、癌症、和自身免疫性疾病[31]的影响有许多研究。在一些色氨酸代谢和TB的研究中,将低色氨酸脑脊液水平与改善结核性脑膜炎的生存结果联系起来[32]。这与我们的研究结果一致。色氨酸经色氨酸羟化酶催化,合成5-羟色氨酸,5-羟色氨酸经芳香族L-氨基酸脱羧酶作用,脱羧形成血清素(5-羟色胺),血清素是重要的神经递质,调节情绪、睡眠、食欲等。5-HIS是血清素代谢的主要排泄形式[33]。最近的一项非靶向代谢组学研究[34],辅以转录组学分析,从TB和健康对照组之间的33种差异代谢物中选择了包括5-羟基吲哚乙酸在内的7种潜在的TB诊断生物标志物。硫酸吲哚衍生物,已被鉴定为AhR配体[35]。AhR是一种在免疫细胞中广泛表达的转录因子,其激活会以配体依赖性方式改变先天性和适应性免疫反应。目前没有直接的证据表明5-HIS与TB存在特定的直接关联,但我们的结果表明5-HIS是TB的一个重要风险因素,具体机制需要进一步的研究。

在我们所发现的42种代谢物中,脂类代谢物占比最高。其中,PTB的防御因素包括:糖基-N-硬脂酰鞘氨醇(d18:1/18:0)、1-棕榈酰基-2-亚油酰基甘油磷酸肌醇水平等9种代谢物。PTB的风险因素包括:1-肉豆蔻酰基-2-花生四烯酰基甘油磷酸胆碱(14:0/20:4)水平,1-硬脂酰基-2-花生四烯酰基甘油磷酸胆碱(18:0/20:4)水平,1-棕榈酰基-2-花生四烯酰基甘油磷酸胆碱(16:0/20:4n6)水平。这3种风险血液代谢物都是含花生四烯酸的磷脂酰胆碱(Glyceryl phosphorylcholine, GPC)。9种防御血液代谢物可能通过抗氧化、膜稳定和直接抗菌作用,增强宿主防御,减少MTB的存活。我们在遗传学上确定了糖基-N-硬脂酰鞘氨醇(d18:1/18:0)对PTB的防御作用,这种作用可能通过促进巨噬细胞吞噬体与溶酶体的融合,增强对病原体的杀灭效果[36] [37]。与我们的研究一致,1-亚油酰基甘油磷酸乙醇胺(18:2)是溶血磷脂酰乙醇胺(lysophosphatidylethanolamine, LPE)中的一种,LPE对维持吞噬细胞膜动态平衡和吞噬功能具有重要作用[38]。1-(1-烯基–棕榈酰)–甘油磷酸乙醇胺(p-16:0)属于乙醇胺缩醛磷脂,缺乏膜乙醇胺缩醛磷脂的细胞对调理酵母聚糖颗粒的吞噬能力显著降低[39]。另外,乙醇胺缩醛磷脂是细胞膜的组成成分,部分由其修饰的磷脂分子具有抗氧化能力,能帮助保护细胞膜免受氧化应激的损伤,维持细胞膜结构稳定[40]。尽管有研究表明,花生四烯酸代谢驱动炎症反应,早期利于控制感染,但长期可能被病原体利用,导致免疫抑制和组织损伤,并抑制巨噬细胞的吞噬作用[41]-[43]。但是,我们证明3种含花生四烯酸GPC作为PTB的风险因素,具体机制仍需要进一步的研究。

总之,我们的研究结果揭示了血浆代谢物与PTB之间的风险和防御关系。但是,在这项研究中需要考虑几个限制。第一,尽管该研究基于大样本量并表现出很强的普遍性,但是,大多数参与者是欧洲血统,因此需要进一步验证其他种族群体的适用性。第二,本研究在获取工具变量与暴露和结局的数据时,尽管尽量使用了独立的样本库,但不能完全排除部分样本存在重叠的可能性。已知的或未知的样本重叠可能会引入过度拟合,并导致血液代谢物与肺结核关联的标准误被低估,从而使得置信区间变窄、P值偏向于显著,增加了第一类错误的风险,这有待于未来更大规模、协作性的数据发布。第三,本研究主要反映了遗传变异在个体成年期(即GWAS样本采集的平均年龄)的累积效应,应考虑发育补偿以及生命阶段效应的影响。第四,尽管这项研究建立了统计相关性,但阐明具体的生物学机制需要额外的探索。未来的研究可以在不同祖先人群中进行跨种族MR分析、利用纵向队列数据探索生命历程中的因果效应动态、以及结合多组学数据来阐明潜在的生物学机制,并在细胞和动物模型水平上验证这些血液代谢物与PTB之间的关联。尽管其应用存在一定的局限性,但本研究可为揭示宿主-MTB之间相互作用的代谢机制,发现新型的生物标志物,并识别高危人群和治疗靶点提供重要参考。

利益冲突

所有作者声明无利益冲突。

作者贡献声明

张艳灵:研究设计,论文撰写;孙书芳:数据分析与整理,文章撰写;李庆海:数据处理与可视化,文章校对及修改;于新娟:数据分析与整理,文章修改;王瑶瑶:数据获取、清洗与初步分析,文章校对;郝万明:研究指导,文章定稿,资金支持。

基金项目

山东省医药卫生科技重点项目(202403020661)。

附 件

Supplementary Table S1. Detailed classification information of 42 blood metabolites

补充S1. 42种血液代谢物的详细分类信息

主类

血液代谢物

数量

占比

脂质

1-oleoyl-GPC (18:1) levels

12

28.57%

1-linoleoyl-GPE (18:2) levels

1-stearoyl-2-linoleoyl-GPC (18:0/18:2) levels

1-myristoyl-2-arachidonoyl-GPC (14:0/20:4) levels

1-oleoyl-2-linoleoyl-GPE (18:1/18:2) levels

1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) levels

(1-palmitoyl-2-linoleoyl-GPI) levels

1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) levels

1-(1-enyl-palmitoyl)-GPE (p-16:0) levels

1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (p-16:0/18:2) levels

Glycosyl-N-stearoyl-sphingosine (d18:1/18:0) levels

Hydroxypalmitoyl sphingomyelin (d18:1/16:0(OH)) levels

有机酸类

Oxalate (ethanedioate) levels

4

9.52%

3-methyladipate levels

Orotate levels

Decadienedioic acid (C10:2-DC) levels

酰基肉碱类

Carnitine C5:1 levels

2

4.76%

Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC) levels

氨基酸及其衍生物

Tryptophan betaine levels

4

9.52%

Hydroxyasparagine levels

5-hydroxyindole sulfate levels

N-acetylneuraminate levels

硫酸盐/酯类

Propyl 4-hydroxybenzoate sulfate levels

2

4.76%

Androsterone sulfate levels

糖类

Fructose levels

1

2.38%

全氟化合物

Perfluorooctanesulfonate (PFOS) levels

1

2.38%

代谢物比值

Cysteine to alanine ratio ratio

9

21.43%

Phosphate to uridine ratio ratio

Phosphate to glycerol ratio ratio

N-stearoyl-sphingosine (d18:1/18:0) to N-palmitoyl-sphinganine (d18:0/16:0) ratio

Glycerol to carnitine ratio

Glutamate to 5-oxoproline ratio

Arachidonate (20:4n6) to linoleate (18:2n6) ratio

Oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [1] ratio

Oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [2] ratio

其他/未分类

X-12847 levels

7

16.67%

X-16397 levels

X-21807 levels

X-23636 levels

X-25810 levels

Androsterone glucuronide levels

Hexadecadienoate (16:2n6) levels

注:分类信息参考KEGG通路数据库(KEGG PATHWAY Database)及人类代谢组数据库(Human Metabolome Database)等。

NOTES

*通讯作者。

参考文献

[1] Zak, D.E., Penn-Nicholson, A., Scriba, T.J., Thompson, E., Suliman, S., Amon, L.M., et al. (2016) A Blood RNA Signature for Tuberculosis Disease Risk: A Prospective Cohort Study. The Lancet, 387, 2312-2322. [Google Scholar] [CrossRef] [PubMed]
[2] Horsburgh, C.R., O’Donnell, M., Chamblee, S., Moreland, J.L., Johnson, J., Marsh, B.J., et al. (2010) Revisiting Rates of Reactivation Tuberculosis: A Population-Based Approach. American Journal of Respiratory and Critical Care Medicine, 182, 420-425. [Google Scholar] [CrossRef] [PubMed]
[3] Horsburgh, C.R. (2004) Priorities for the Treatment of Latent Tuberculosis Infection in the United States. New England Journal of Medicine, 350, 2060-2067. [Google Scholar] [CrossRef] [PubMed]
[4] Comstock, G.W., Livesay, V.T. and Woolpert, S.F. (1974) The Prognosis of a Positive Tuberculin Reaction in Childhood and Adolescence. American Journal of Epidemiology, 99, 131-138. [Google Scholar] [CrossRef] [PubMed]
[5] Vynnycky, E. (2000) Lifetime Risks, Incubation Period, and Serial Interval of Tuberculosis. American Journal of Epidemiology, 152, 247-263. [Google Scholar] [CrossRef] [PubMed]
[6] Shea, K.M., Kammerer, J.S., Winston, C.A., Navin, T.R. and Horsburgh, C.R. (2014) Estimated Rate of Reactivation of Latent Tuberculosis Infection in the United States, Overall and by Population Subgroup. American Journal of Epidemiology, 179, 216-225. [Google Scholar] [CrossRef] [PubMed]
[7] Chen, S.Y., Li, C.Y., Qin, Z.H., et al. (2023) Serum Metabolomic Profiles for Distinguishing Lung Cancer from Pulmonary Tuberculosis: Identification of Rapid and Noninvasive Biomarker. The Journal of Infectious Diseases, 228, 1154-1165. [Google Scholar] [CrossRef] [PubMed]
[8] Weiner, J., Maertzdorf, J., Sutherland, J.S., Duffy, F.J., Thompson, E., Suliman, S., et al. (2018) Metabolite Changes in Blood Predict the Onset of Tuberculosis. Nature Communications, 9, Article No. 5208. [Google Scholar] [CrossRef] [PubMed]
[9] Tripathi, D., Devalraju, K.P., Neela, V.S.K., Mukherjee, T., Paidipally, P., Radhakrishnan, R.K., et al. (2022) Metabolites Enhance Innate Resistance to Human Mycobacterium tuberculosis Infection. JCI Insight, 7, e152357. [Google Scholar] [CrossRef] [PubMed]
[10] Chen, Y.H., Lu, T.Y., Pettersson-Kymmer, U., et al. (2023) Genomic Atlas of the Plasma Metabolome Prioritizes Metabolites Implicated in Human Diseases. Nature Genetics, 55, 44-53. [Google Scholar] [CrossRef] [PubMed]
[11] Tan, H.J., Zhao, J., Wang, B.S., et al. (2025) Noninvasive Markers for Warning Premature Ovarian Insufficiency: A Mendelian Randomisation Study. Journal of Ovarian Research, 18, Article No. 127. [Google Scholar] [CrossRef] [PubMed]
[12] Magnus, M.C., Miliku, K., Bauer, A., Engel, S.M., Felix, J.F., Jaddoe, V.W.V., et al. (2018) Vitamin D and Risk of Pregnancy Related Hypertensive Disorders: Mendelian Randomisation Study. British Medical Journal, 361, k2167. [Google Scholar] [CrossRef] [PubMed]
[13] Papadimitriou, N., Dimou, N., Tsilidis, K.K., Banbury, B., Martin, R.M., Lewis, S.J., et al. (2020) Physical Activity and Risks of Breast and Colorectal Cancer: A Mendelian Randomisation Analysis. Nature Communications, 11, Article No. 597. [Google Scholar] [CrossRef] [PubMed]
[14] Chen, J.H., Chen, R.R., Xiang, S.Y., et al. (2021) Cigarette Smoking and Schizophrenia: Mendelian Randomisation Study. The British Journal of Psychiatry, 218, 98-103. [Google Scholar] [CrossRef] [PubMed]
[15] Tao, H.R., Fan, S.J., Zhu, T.X., et al. (2023) Psychiatric Disorders and Type 2 Diabetes Mellitus: A Bidirectional Mendelian Randomization. European Journal of Clinical Investigation, 53, e13893. [Google Scholar] [CrossRef] [PubMed]
[16] Xu, W.C., Zhang, F.J., Shi, Y.Z., et al. (2022) Causal Association of Epigenetic Aging and COVID-19 Severity and Susceptibility: A Bidirectional Mendelian Randomization Study. Frontiers in Medicine, 9, Article 989950. [Google Scholar] [CrossRef] [PubMed]
[17] Long, Y.W., Tang, L.H., Zhou, Y.Y., et al. (2023) Causal Relationship between Gut Microbiota and Cancers: A Two-Sample Mendelian Randomisation Study. BMC Medicine, 21, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
[18] Fahy, E., Subramaniam, S., Brown, H.A., Glass, C.K., Merrill, A.H., Murphy, R.C., et al. (2005) A Comprehensive Classification System for Lipids. Journal of Lipid Research, 46, 839-861. [Google Scholar] [CrossRef] [PubMed]
[19] Sumner, L.W., Amberg, A., Barrett, D., et al. (2007) Proposed Minimum Reporting Standards for Chemical Analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3, 211-221.
[20] Getahun, H., Matteelli, A., Chaisson, R.E. and Raviglione, M. (2015) Latent Mycobacterium tuberculosis Infection. New England Journal of Medicine, 372, 2127-2135. [Google Scholar] [CrossRef] [PubMed]
[21] Blumberg, H.M. and Ernst, J.D. (2016) The Challenge of Latent TB Infection. Journal of the American Medical Association, 316, 931-933. [Google Scholar] [CrossRef] [PubMed]
[22] Yang, B.Y., Guo, X.J., Shi, C.Y., et al. (2024) Alterations in Purine and Pyrimidine Metabolism Associated with Latent Tuberculosis Infection: Insights from Gut Microbiome and Metabolomics Analyses. mSystems, 9, e0081224. [Google Scholar] [CrossRef] [PubMed]
[23] Daniel, J., Maamar, H., Deb, C., Sirakova, T.D. and Kolattukudy, P.E. (2011) Mycobacterium tuberculosis Uses Host Triacylglycerol to Accumulate Lipid Droplets and Acquires a Dormancy-Like Phenotype in Lipid-Loaded Macrophages. PLOS Pathogens, 7, e1002093. [Google Scholar] [CrossRef] [PubMed]
[24] Martinez, N., Smulan, L.J., Jameson, M.L., Smith, C.M., Cavallo, K., Bellerose, M., et al. (2023) Glycerol Contributes to Tuberculosis Susceptibility in Male Mice with Type 2 Diabetes. Nature Communications, 14, Article No. 5840. [Google Scholar] [CrossRef] [PubMed]
[25] Leung, C.C. (2018) Repurposing Metformin to Prevent and Treat Tuberculosis. Respirology, 23, 974-975. [Google Scholar] [CrossRef] [PubMed]
[26] Healy, C., Ehrt, S. and Gouzy, A. (2025) An Exacerbated Phosphate Starvation Response Triggers Mycobacterium tuberculosis Glycerol Utilization at Acidic pH. mBio, 16, e0282524. [Google Scholar] [CrossRef] [PubMed]
[27] Baker, J.J. and Abramovitch, R.B. (2018) Genetic and Metabolic Regulation of Mycobacterium tuberculosis Acid Growth Arrest. Scientific Reports, 8, Article No. 4168. [Google Scholar] [CrossRef] [PubMed]
[28] Nikolaus, S., Schulte, B., Al-Massad, N., Thieme, F., Schulte, D.M., Bethge, J., et al. (2017) Increased Tryptophan Metabolism Is Associated with Activity of Inflammatory Bowel Diseases. Gastroenterology, 153, 1504-1516.e2. [Google Scholar] [CrossRef] [PubMed]
[29] Zamoscik, V., Schmidt, S.N.L., Bravo, R., Ugartemendia, L., Plieger, T., Rodríguez, A.B., et al. (2021) Tryptophan-Enriched Diet or 5-Hydroxytryptophan Supplementation Given in a Randomized Controlled Trial Impacts Social Cognition on a Neural and Behavioral Level. Scientific Reports, 11, Article No. 21637. [Google Scholar] [CrossRef] [PubMed]
[30] Meier, T.B. and Savitz, J. (2022) The Kynurenine Pathway in Traumatic Brain Injury: Implications for Psychiatric Outcomes. Biological Psychiatry, 91, 449-458. [Google Scholar] [CrossRef] [PubMed]
[31] Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R.D., Shanahan, F., et al. (2013) The Microbiome-Gut-Brain Axis during Early Life Regulates the Hippocampal Serotonergic System in a Sex-Dependent Manner. Molecular Psychiatry, 18, 666-673. [Google Scholar] [CrossRef] [PubMed]
[32] van Laarhoven, A., Dian, S., Aguirre-Gamboa, R., Avila-Pacheco, J., Ricaño-Ponce, I., Ruesen, C., et al. (2018) Cerebral Tryptophan Metabolism and Outcome of Tuberculous Meningitis: An Observational Cohort Study. The Lancet Infectious Diseases, 18, 526-535. [Google Scholar] [CrossRef] [PubMed]
[33] Hubková, B., Valko-Rokytovská, M., Čižmárová, B., Zábavníková, M., Mareková, M. and Birková, A. (2022) Tryptophan: Its Metabolism along the Kynurenine, Serotonin, and Indole Pathway in Malignant Melanoma. International Journal of Molecular Sciences, 23, Article 9160. [Google Scholar] [CrossRef] [PubMed]
[34] Jiang, J.Y., Li, Z.P., Chen, C., et al. (2021) Metabolomics Strategy Assisted by Transcriptomics Analysis to Identify Potential Biomarkers Associated with Tuberculosis. Infection and Drug Resistance, 14, 4795-4807. [Google Scholar] [CrossRef] [PubMed]
[35] Szelest, M., Walczak, K. and Plech, T. (2021) A New Insight into the Potential Role of Tryptophan-Derived Ahr Ligands in Skin Physiological and Pathological Processes. International Journal of Molecular Sciences, 22, Article 1104. [Google Scholar] [CrossRef] [PubMed]
[36] Shu, H.Y., Peng, Y.Z., Hang, W.J., et al. (2022) Emerging Roles of Ceramide in Cardiovascular Diseases. Emerging Roles of Ceramide in Cardiovascular Diseases. Aging and Disease, 13, 232-245. [Google Scholar] [CrossRef] [PubMed]
[37] Anes, E., Kühnel, M.P., Bos, E., Moniz-Pereira, J., Habermann, A. and Griffiths, G. (2003) Selected Lipids Activate Phagosome Actin Assembly and Maturation Resulting in Killing of Pathogenic Mycobacteria. Nature Cell Biology, 5, 793-802. [Google Scholar] [CrossRef] [PubMed]
[38] Elsbach, P. (1968) Increased Synthesis of Phospholipid during Phagocytosis. Journal of Clinical Investigation, 47, 2217-2229. [Google Scholar] [CrossRef] [PubMed]
[39] Rubio, J.M., Astudillo, A.M., Casas, J., Balboa, M.A. and Balsinde, J. (2018) Regulation of Phagocytosis in Macrophages by Membrane Ethanolamine Plasmalogens. Frontiers in Immunology, 9, Article 1723. [Google Scholar] [CrossRef] [PubMed]
[40] Gil-de-Gómez, L., Astudillo, A.M., Lebrero, P., Balboa, M.A. and Balsinde, J. (2017) Essential Role for Ethanolamine Plasmalogen Hydrolysis in Bacterial Lipopolysaccharide Priming of Macrophages for Enhanced Arachidonic Acid Release. Frontiers in Immunology, 8, Article 1251. [Google Scholar] [CrossRef] [PubMed]
[41] Tilley, S.L., Coffman, T.M. and Koller, B.H. (2001) Mixed Messages: Modulation of Inflammation and Immune Responses by Prostaglandins and Thromboxanes. Journal of Clinical Investigation, 108, 15-23. [Google Scholar] [CrossRef] [PubMed]
[42] Pellegrini, J.M., Martin, C., Morelli, M.P., Schander, J.A., Tateosian, N.L., Amiano, N.O., et al. (2021) PGE2 Displays Immunosuppressive Effects during Human Active Tuberculosis. Scientific Reports, 11, Article No. 13559. [Google Scholar] [CrossRef] [PubMed]
[43] Aronoff, D.M., Canetti, C. and Peters-Golden, M. (2004) Prostaglandin E2 Inhibits Alveolar Macrophage Phagocytosis through an E-Prostanoid 2 Receptor-Mediated Increase in Intracellular Cyclic AMP. The Journal of Immunology, 173, 559-565. [Google Scholar] [CrossRef] [PubMed]