|
[1]
|
Stoll, B.J., Hansen, N.I., Bell, E.F., Walsh, M.C., Carlo, W.A., Shankaran, S., et al. (2015) Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993-2012. JAMA, 314, 1039-1051. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Rumsfeld, J.S., Joynt, K.E. and Maddox, T.M. (2016) Big Data Analytics to Improve Cardiovascular Care: Promise and Challenges. Nature Reviews Cardiology, 13, 350-359. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Costa, F., Titolo, A., Ferrocino, M., Biagi, E., Dell’Orto, V., Perrone, S., et al. (2024) Lung Ultrasound in Neonatal Respiratory Distress Syndrome: A Narrative Review of the Last 10 Years. Diagnostics, 14, Article No. 2793. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Stone, A. and Huynh, T. (2024) Neonatal Respiratory Distress Syndrome in E292V Homozygous ABCA3. BMJ Case Reports, 17, e261347. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zeng, Y. (2024) Relationship between Platelet Count and Severity of Neonatal Respiratory Distress Syndrome. Italian Journal of Pediatrics, 50, 208.
|
|
[6]
|
Kyzy Begimai, M., Mounika, S., Manoj, J., Priyanka, S. and Das, A. (2025) Challenges of Neonatal Respiratory Distress Syndrome. International Journal of Advanced Research, 13, 245-250. [Google Scholar] [CrossRef]
|
|
[7]
|
Mousavi, S.F., Bakht, R., Tapak, L., Goli, M.A. and Refaei, M. (2025) Supporting Mothers of Discharged Premature Infants: A Clinical Trial on Tele Counseling for Self-Efficacy and Anxiety Management. BMC Pregnancy and Childbirth, 25, Article No. 794. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhang, Y., Shao, S., Mu, Q., Feng, J., Liu, J., Zeng, C., et al. (2022) Plasma Apelin and Vascular Endothelial Growth Factor Levels in Preterm Infants: Relationship to Neonatal Respiratory Distress Syndrome. The Journal of Maternal-Fetal & Neonatal Medicine, 35, 10064-10071. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Liu, C., He, Y., Ai, Q., et al. (2022) A Pilot Study of Plasma Interleukin-6 and Interleukin-27 in Differential Diagnosis of Acute Respiratory Distress Syndrome and Neonatal Respiratory Distress Syndrome in Preterm Infants. Chinese Journal of Contemporary Pediatrics, 24, 428-432.
|
|
[10]
|
Sidey-Gibbons, J.A.M. and Sidey-Gibbons, C.J. (2019) Machine Learning in Medicine: A Practical Introduction. BMC Medical Research Methodology, 19, Article No. 64. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
陈琦, 徐仕霞. 床旁肺超声评分与新生儿呼吸窘迫综合征患儿病情严重程度的关系[J]. 中国超声医学杂志, 2025, 41(5): 505-508.
|
|
[12]
|
高敏, 张楠楠, 荣辉, 等. 肺部高频超声评分对新生儿呼吸窘迫综合征预测及预后评估的价值[J]. 中国现代医学杂志, 2022, 32(17): 81-87.
|
|
[13]
|
张珂, 饶兴愉. 新生儿呼吸窘迫综合征患儿发生支气管肺发育不良的Nomogram预测模型的建立与评估[J]. 重庆医科大学学报, 2024, 49(10): 1110-1118.
|
|
[14]
|
柴凤云, 仝实, 韩梅, 等. 俯卧位在新生儿呼吸窘迫综合征有创呼吸支持中的临床研究[J]. 中国当代儿科杂志, 2024, 26(6): 619-624.
|
|
[15]
|
刘伟华, 解谦, 周雅玲. 新生儿呼吸窘迫综合征雾化吸入疗法的定量分析[J]. 哈尔滨理工大学学报, 2024, 29(1): 124-132.
|
|
[16]
|
韩同英, 叶琼波, 德吉玉珍, 等. 高海拔地区新生儿呼吸窘迫综合征初始呼吸支持策略的影响因素及早期结局分析[J]. 中国全科医学, 2022, 25(27): 3384-3389.
|
|
[17]
|
丁冉, 陈强, 张倩薇, 等. 不同分期组织学绒毛膜羊膜炎与胎龄小于32周早产儿呼吸窘迫综合征关系的研究[J]. 中国当代儿科杂志, 2021, 23(3): 248-253.
|
|
[18]
|
何明嫄. 早产儿呼吸窘迫综合征高频振荡通气后两种撤机方式的安全性研究: 前瞻性随机病例对照试验[D]: [硕士学位论文]. 厦门: 厦门大学, 2021.
|
|
[19]
|
陆俊秀, 赖春华, 杨冰岩, 等. 血清氨基末端脑钠肽前体及白细胞介素-6水平在新生儿呼吸窘迫综合征早期诊断和严重程度评估中的应用[J]. 中国医学科学院学报, 2019, 41(1): 80-85.
|
|
[20]
|
王美琪, 梅花, 刘春枝. 新生儿呼吸窘迫综合征及支气管肺发育不良防治进展[J]. 临床儿科杂志, 2018, 36(9): 702-706.
|
|
[21]
|
Kahn, M.G., Callahan, T.J., Barnard, J., Bauck, A.E., Brown, J., Davidson, B.N., et al. (2016) A Harmonized Data Quality Assessment Terminology and Framework for the Secondary Use of Electronic Health Record Data. eGEMs, 4, Article No. 1244. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Johnson, J.M. and Khoshgoftaar, T.M. (2019) Survey on Deep Learning with Class Imbalance. Journal of Big Data, 6, Article No. 27. [Google Scholar] [CrossRef]
|
|
[23]
|
Lundberg, S.M. and Lee, S.I. (2017) A Unified Approach to Interpreting Model Predictions. Annual Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 4768-4777.
|
|
[24]
|
Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J. and Greenspan, H. (2018) GAN-Based Synthetic Medical Image Augmentation for Increased CNN Performance in Liver Lesion Classification. Neurocomputing, 321, 321-331. [Google Scholar] [CrossRef]
|
|
[25]
|
Rieke, N., Hancox, J., Li, W., Milletarì, F., Roth, H.R., Albarqouni, S., et al. (2020) The Future of Digital Health with Federated Learning. NPJ Digital Medicine, 3, Article No. 119. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sheller, M.J., Edwards, B., Reina, G.A., Martin, J., Pati, S., Kotrotsou, A., et al. (2020) Federated Learning in Medicine: Facilitating Multi-Institutional Collaborations without Sharing Patient Data. Scientific Reports, 10, Article No. 12598. [Google Scholar] [CrossRef] [PubMed]
|