|
[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhang, Y., Rumgay, H., Li, M., Cao, S. and Chen, W. (2023) Nasopharyngeal Cancer Incidence and Mortality in 185 Countries in 2020 and the Projected Burden in 2040: Population-Based Global Epidemiological Profiling. JMIR Public Health and Surveillance, 9, e49968. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Siak, P.Y., Khoo, A.S., Leong, C.O., Hoh, B. and Cheah, S. (2021) Current Status and Future Perspectives about Molecular Biomarkers of Nasopharyngeal Carcinoma. Cancers, 13, Article 3490. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bossi, P., Chan, A.T., Licitra, L., Trama, A., Orlandi, E., Hui, E.P., et al. (2021) Nasopharyngeal Carcinoma: ESMO-EURACAN Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 32, 452-465. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Alabi, R.O., Elmusrati, M., Leivo, I., Almangush, A. and Mäkitie, A.A. (2024) Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects. International Journal of Medical Informatics, 188, Article ID: 105464. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tang, F.H., Chu, C.Y.W. and Cheung, E.Y.W. (2021) Radiomics AI Prediction for Head and Neck Squamous Cell Carcinoma (HNSCC) Prognosis and Recurrence with Target Volume Approach. BJR|Open, 3, Article ID: 20200073. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ai, Q., King, A.D., So, T.Y., Lam, W.K.J., Mo, F.K.F., Tse, I.O.L., et al. (2020) MRI of Benign Hyperplasia in the Nasopharynx: Is There an Association with Epstein-Barr Virus? Clinical Radiology, 75, 711.e13-711.e18. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wong, L.M., King, A.D., Ai, Q.Y.H., Lam, W.K.J., Poon, D.M.C., Ma, B.B.Y., et al. (2020) Convolutional Neural Network for Discriminating Nasopharyngeal Carcinoma and Benign Hyperplasia on MRI. European Radiology, 31, 3856-3863. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhang, H., Hu, L., Qin, F., Chang, J., Zhong, Y., Dou, W., et al. (2024) Synthetic MRI and Diffusion-Weighted Imaging for Differentiating Nasopharyngeal Lymphoma from Nasopharyngeal Carcinoma: Combination with Morphological Features. British Journal of Radiology, 97, 1278-1285. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Li, Q., Yu, Q., Gong, B., Ning, Y., Chen, X., Gu, J., et al. (2023) The Effect of Magnetic Resonance Imaging Based Radiomics Models in Discriminating Stage I-II and III-IVA Nasopharyngeal Carcinoma. Diagnostics, 13, Article 300. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Feng, Q., Liang, J., Wang, L., Ge, X., Ding, Z. and Wu, H. (2022) A Diagnosis Model in Nasopharyngeal Carcinoma Based on PET/MRI Radiomics and Semiquantitative Parameters. BMC Medical Imaging, 22, Article No. 150. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lin, M., Tang, X., Cao, L., Liao, Y., Zhang, Y. and Zhou, J. (2022) Using Ultrasound Radiomics Analysis to Diagnose Cervical Lymph Node Metastasis in Patients with Nasopharyngeal Carcinoma. European Radiology, 33, 774-783. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Tseng, H., Shen, C., Kao, P., Chuang, C., Yan, D., Liao, Y., et al. (2024) Prediction of Persistent Tumor Status in Nasopharyngeal Carcinoma Post-Radiotherapy-Related Treatment: A Machine Learning Approach. Cancers, 17, Article 96. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liao, H., Zhao, Y., Pei, W., Huang, X., Huang, S., Wei, W., et al. (2025) An Interpretable Machine Learning Model Assists in Predicting Induction Chemotherapy Response and Survival for Locoregionally Advanced Nasopharyngeal Carcinoma Using MRI: A Multicenter Study. European Radiology, 35, 5121-5134. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Pan, G., Sun, X., Kong, F., Wang, J., He, X., Lu, X., et al. (2024) Delta Magnetic Resonance Imaging Radiomics Featuresbased Nomogram Predicts Long-Term Efficacy after Induction Chemotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma. Oral Oncology, 157, Article ID: 106987. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Chen, Z., Han, X., Lin, L., Lin, G., Li, B., Kou, J., et al. (2025) Harnessing Deep Learning to Optimize Induction Chemotherapy Choices in Nasopharyngeal Carcinoma. Radiotherapy and Oncology, 211, Article ID: 111047. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wu, Q., Qiang, W., Pan, L., Cha, T., Li, Q., Gao, Y., et al. (2025) Performance of MRI-Based Radiomics for Prediction of Residual Disease Status in Patients with Nasopharyngeal Carcinoma after Radical Radiotherapy. Scientific Reports, 15, Article No. 16758. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wang, X., Song, J., Qiu, Q., Su, Y., Wang, L. and Cao, X. (2025) A Stacked Multimodality Model Based on Functional MRI Features and Deep Learning Radiomics for Predicting the Early Response to Radiotherapy in Nasopharyngeal Carcinoma. Academic Radiology, 32, 1631-1644. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Mai, H., Li, L., Xin, X., Jiang, Z., Tang, Y., Huang, J., et al. (2025) Prediction of Immunotherapy Response in Nasopharyngeal Carcinoma: A Comparative Study Using MRI-Based Radiomics Signature and Programmed Cell Death Ligand 1 Expression Score. European Radiology, 35, 4403-4414. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sun, J., Wu, X., Zhang, X., Huang, W., Zhong, X., Li, X., et al. (2025) Radiomic Model Associated with Tumor Microenvironment Predicts Immunotherapy Response and Prognosis in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma. Research, 8, Article ID: 0749. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liu, Z., Zang, S., OuYang, P., Jing, B., Zheng, C., Zhao, Y., et al. (2025) Multimodal Prognostic Model for de Novo Metastatic Nasopharyngeal Carcinoma after First-Line Immunochemotherapy. Radiotherapy and Oncology, 210, Article ID: 111010. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Jin, X., Li, W., Guo, Y., Wu, G., Huang, W. and Chen, F. (2025) Predicting Progression-Free Survival Using Dynamic Contrast-Enhanced Imaging-Based Radiomics in Advanced Nasopharyngeal Carcinoma Patients Treated with Nimotuzumab. European Radiology, 35, 5135-5145. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ritlumlert, N., Wongwattananard, S., Prayongrat, A., Oonsiri, S., Kitpanit, S., Kannarunimit, D., et al. (2023) Improved Prediction of Radiation-Induced Hypothyroidism in Nasopharyngeal Carcinoma Using Pre-Treatment CT Radiomics. Scientific Reports, 13, Article No. 17437. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wang, M., Xi, Y., Wang, L., Chen, H., Jiang, F. and Ding, Z. (2024) Predictive Value of Delta Radiomics in Xerostomia after Chemoradiotherapy in Patients with Stage III-IV Nasopharyngeal Carcinoma. Radiation Oncology, 19, Article No. 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhong, X., Li, L., Jiang, H., Yin, J., Lu, B., Han, W., et al. (2020) Cervical Spine Osteoradionecrosis or Bone Metastasis after Radiotherapy for Nasopharyngeal Carcinoma? The MRI-Based Radiomics for Characterization. BMC Medical Imaging, 20, Article No. 104. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yang, S., Peng, Q., Wu, A., Zhang, B., Liu, Z., Chen, E., et al. (2023) Radiomics and Dosiomics for Predicting Radiation-Induced Hypothyroidism and Guiding Intensity-Modulated Radiotherapy. iScience, 26, Article ID: 108394. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Gao, X., Peng, Y., Lu, S., An, Y., Chen, M., Zhang, J., et al. (2025) Deep Learning-Based Multi-Omics Model to Predict Nasopharyngeal Necrosis of Re-Irradiation for Recurrent Nasopharyngeal Carcinoma. Frontiers in Oncology, 15, Article 1607218. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chen, L., Wang, Z., Meng, Y., Zhao, C., Wang, X., Zhang, Y., et al. (2024) A Clinical-Radiomics Nomogram Based on Multisequence MRI for Predicting the Outcome of Patients with Advanced Nasopharyngeal Carcinoma Receiving Chemoradiotherapy. Frontiers in Oncology, 14, Article 1460426. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kou, J., Peng, J., Lv, W., Wu, C., Chen, Z., Zhou, G., et al. (2025) A Serial MRI-Based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma. Radiology: Artificial Intelligence, 7, e230544. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lin, D., Li, H., Liu, T., Lv, X., Xie, C., Ou, X., et al. (2024) Radiomic Signatures Associated with Tumor Immune Heterogeneity Predict Survival in Locally Recurrent Nasopharyngeal Carcinoma. JNCI: Journal of the National Cancer Institute, 116, 1294-1302. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Hu, C., Xu, C., Chen, J., Huang, Y., Meng, Q., Lin, Z., et al. (2025) Deep Learning MRI-Based Radiomic Models for Predicting Recurrence in Locally Advanced Nasopharyngeal Carcinoma after Neoadjuvant Chemoradiotherapy: A Multi-Center Study. Clinical & Experimental Metastasis, 42, Article No. 30. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhu, C., Huang, H., Liu, X., Chen, H., Jiang, H., Liao, C., et al. (2021) A Clinical-Radiomics Nomogram Based on Computed Tomography for Predicting Risk of Local Recurrence after Radiotherapy in Nasopharyngeal Carcinoma. Frontiers in Oncology, 11, Article 637687. [Google Scholar] [CrossRef] [PubMed]
|