|
[1]
|
Pan, L., Merzdorf, T., Campos‐Roldàn, C.A., Guo, A., Lu, J., Schmidt, J., et al. (2025) From Seeds to Cell: Improving PEMFC Performance and Durability by Seed‐Mediation Synthesis for PtNiIr ORR Nanocatalysts. Advanced Science, 12, e05958. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Yang, B., Gu, T., Liu, W. and Wu, Z. (2025) Pore Engineering to Improve Oxygen Transport in Cathode Oxygen Reduction Catalysts of Proton Exchange Membrane Fuel Cells. Nano Research, 18, Article ID: 94907684. [Google Scholar] [CrossRef]
|
|
[3]
|
Zhao, L., Zhu, Z., Wang, J., Zuo, J., Chen, H., Qi, X., et al. (2025) Robust P‐D Orbital Coupling in PtCoIn@Pt Core-Shell Catalysts for Durable Proton Exchange Membrane Fuel Cells. Angewandte Chemie International Edition, 64, e202501805. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhang, X., Zhang, W., Gao, F., Zhang, Y. and Huang, X. (2025) Ultrafine 1D Platinum Group Metal-Based Nanostructures with Advanced Regulations for Fuel Cells Electrocatalysis. Catal, 1, Article No. 8. [Google Scholar] [CrossRef]
|
|
[5]
|
Lang, P., Yuan, N., Jiang, Q., Zhang, Y. and Tang, J. (2019) Recent Advances and Prospects of Metal‐Based Catalysts for Oxygen Reduction Reaction. Energy Technology, 8, Article ID: 1900984. [Google Scholar] [CrossRef]
|
|
[6]
|
Li, H., Yuan, S., You, J., Zhao, C., Cheng, X., Luo, L., et al. (2025) Revealing the Oxygen Transport Challenges in Catalyst Layers in Proton Exchange Membrane Fuel Cells and Water Electrolysis. Nano-Micro Letters, 17, Article No. 225. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yoo, J., Park, Y., Choi, J., Roh, J., Shin, K., Cho, H., et al. (2023) Electrochemical Dealloying of Ni-Rich Pt-Ni Nanoparticle Network for Robust Oxygen-Reduction Electrocatalysts. ACS Sustainable Chemistry & Engineering, 11, 15460-15469. [Google Scholar] [CrossRef]
|
|
[8]
|
Luo, M., Sun, Y., Zhang, X., Qin, Y., Li, M., Li, Y., et al. (2018) Stable High‐Index Faceted Pt Skin on Zigzag‐Like PtFe Nanowires Enhances Oxygen Reduction Catalysis. Advanced Materials, 30, Article ID: 1705515. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Weber, P., Weber, D.J., Dosche, C. and Oezaslan, M. (2022) Highly Durable Pt-Based Core-shell Catalysts with Metallic and Oxidized Co Species for Boosting the Oxygen Reduction Reaction. ACS Catalysis, 12, 6394-6408. [Google Scholar] [CrossRef]
|
|
[10]
|
Jeong, C., Lee, J., Jo, H., Lee, K., Lee, S., Ophus, C., et al. (2025) Atomic-Scale 3D Structural Dynamics and Functional Degradation of Pt Alloy Nanocatalysts during the Oxygen Reduction Reaction. Nature Communications, 16, Article No. 8026. [Google Scholar] [CrossRef]
|
|
[11]
|
Jin, H., Xu, Z., Hu, Z., Yin, Z., Wang, Z., Deng, Z., et al. (2023) Mesoporous Pt@Pt-Skin Pt3Ni Core-Shell Framework Nanowire Electrocatalyst for Efficient Oxygen Reduction. Nature Communications, 14, Article No. 1518. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wang, H., Gao, J., Chen, C., Zhao, W., Zhang, Z., Li, D., et al. (2023) PtNi-W/C with Atomically Dispersed Tungsten Sites toward Boosted ORR in Proton Exchange Membrane Fuel Cell Devices. Nano-Micro Letters, 15, Article No. 143. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lu, S., Zheng, X., Jiang, K., Wang, Q., Wang, X., Shahzad, M.W., et al. (2025) Sub-3 nm Pt3Ni Nanoparticles for Urea-Assisted Water Splitting. Advanced Composites and Hybrid Materials, 8, Article No. 182. [Google Scholar] [CrossRef]
|
|
[14]
|
Wang, H., Luo, W., Zhu, L., Zhao, Z., E, B., Tu, W., et al. (2018) Synergistically Enhanced Oxygen Reduction Electrocatalysis by Subsurface Atoms in Ternary PdCuNi Alloy Catalysts. Advanced Functional Materials, 28, Article ID: 1707219. [Google Scholar] [CrossRef]
|
|
[15]
|
Wang, M., Sun, E., Wang, Y., Lei, L., Du, Z., Zaman, S., et al. (2025) Oxygen Reduction Electrocatalyst Degradation and Mitigation Strategies in Proton Exchange Membrane Fuel Cells. Applied Catalysis B: Environment and Energy, 367, Article ID: 125116. [Google Scholar] [CrossRef]
|
|
[16]
|
Wang, Z., Yao, X., Kang, Y., Miao, L., Xia, D. and Gan, L. (2019) Structurally Ordered Low‐Pt Intermetallic Electrocatalysts toward Durably High Oxygen Reduction Reaction Activity. Advanced Functional Materials, 29, Article ID: 1902987. [Google Scholar] [CrossRef]
|
|
[17]
|
Cui, J., Zhang, D., Liu, Z., Li, C., Zhang, T., Yin, S., et al. (2024) Carbon-Anchoring Synthesis of Pt1Ni1@Pt/C Core-Shell Catalysts for Stable Oxygen Reduction Reaction. Nature Communications, 15, Article No. 9458. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, T., Bo, L., Guan, X., Jiang, K., Liu, Y. and Tong, J. (2025) A Nd-Doped NiCo Spinel Dual Functional Catalyst for Both Oxygen Reduction Reactions and Oxygen Evolution Reactions: Enhanced Activity through Surface Reconstruction. Journal of Colloid and Interface Science, 691, Article ID: 137411. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhan, C., Sun, H., Lü, L., Bu, L., Li, L., Liu, Y., et al. (2022) Zinc Intercalated Lattice Expansion of Ultrafine Platinum-nickel Oxygen Reduction Catalyst for PEMFC. Advanced Functional Materials, 33, Article ID: 2212442. [Google Scholar] [CrossRef]
|
|
[20]
|
Xiao, Y.-X., Ying, J., Chen, J.-B., Yang, X., Tian, G., Li, J.-H., et al. (2024) Phosphorous Incorporated PtNi Networks with Synergistic Directional Electron Transfer for Efficient and Durable Seawater Hydrogen Production. Advanced Functional Materials, 35, Article ID: 2418264. [Google Scholar] [CrossRef]
|
|
[21]
|
Gao, L., Sun, T., Chen, X., Yang, Z., Li, M., Lai, W., et al. (2024) Identifying the Distinct Roles of Dual Dopants in Stabilizing the Platinum-Nickel Nanowire Catalyst for Durable Fuel Cell. Nature Communications, 15, Article No. 508. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Li, J.-L., Li, Y.-F. and Liu, Z.-P. (2023) In Situ Structure of a Mo-Doped Pt-Ni Catalyst during Electrochemical Oxygen Reduction Resolved from Machine Learning-Based Grand Canonical Global Optimization. JACS Au, 3, 1162-1175. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Scerri, E. (2010) Recognizing Rhenium. Nature Chemistry, 2, 598-598. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Pang, Q., Fan, X., Sun, K., Xiang, K., Dong, L., Zhao, S., et al. (2023) Advanced Progress of Rhenium (Re)-Based Electrode Materials in Electrocatalytic Hydrogen Evolution: A Review. Journal of Materials Chemistry A, 11, 14451-14468. [Google Scholar] [CrossRef]
|
|
[25]
|
Gao, L., Sun, T., Tan, X., Liu, M., Xue, F., Wang, B., et al. (2022) Trace Doping of Early Transition Metal Enabled Efficient and Durable Oxygen Reduction Catalysis on Pt-Based Ultrathin Nanowires. Applied Catalysis B: Environmental, 303, Article ID: 120918. [Google Scholar] [CrossRef]
|
|
[26]
|
Lim, J., Shin, K., Bak, J., Roh, J., Lee, S., Henkelman, G., et al. (2021) Outstanding Oxygen Reduction Reaction Catalytic Performance of In-PtNi Octahedral Nanoparticles Designed via Computational Dopant Screening. Chemistry of Materials, 33, 8895-8903. [Google Scholar] [CrossRef]
|
|
[27]
|
Yuan, Y., Zhao, H., Xv, W., Zhang, D., Wang, Z., Li, H., et al. (2022) Noble Metal Aerogels Rapidly Synthesized by Ultrasound for Electrocatalytic Reaction. Chinese Chemical Letters, 33, 2021-2025. [Google Scholar] [CrossRef]
|
|
[28]
|
Li, X., Duan, X., Zhang, S., Wang, C., Hua, K., Wang, Z., et al. (2024) Strategies for Achieving Ultra‐Long ORR Durability—Rh Activates Interatomic Interactions in Alloys. Angewandte Chemie International Edition, 63, e202400549. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Xiao, F., Sun, H., Geng, S., Hu, X., Jiang, K., Zhang, Q., et al. (2025) Rare Earth-Decorated Platinum-Nickel-Cobalt Knot-Like Nanowires Achieve Efficient Bifunctional Electrocatalysis for PEMFC. Nano Energy, 144, Article ID: 111379. [Google Scholar] [CrossRef]
|
|
[30]
|
Liao, H., Tang, Y., Ma, W., Liu, Y., Dong, Y. and Huang, F. (2025) Exceptional Layered Cathode Stability at 4.8 V via Supersaturated High-Valence Cation Design. Nature Energy, 10, 1107-1115. [Google Scholar] [CrossRef]
|
|
[31]
|
Yang, L., Bai, J., Zhang, N., Jiang, Z., Wang, Y., Xiao, M., et al. (2024) Rare Earth Evoked Subsurface Oxygen Species in Platinum Alloy Catalysts Enable Durable Fuel Cells. Angewandte Chemie International Edition, 63, e202315119. [Google Scholar] [CrossRef] [PubMed]
|