Re掺杂PtNi金属气凝胶及其氧还原性能研究
Research on Rhenium-Doped PtNi Metal Aerogel for Electrocatalytic Oxygen Reduction Reaction
DOI: 10.12677/japc.2025.144059, PDF, HTML, XML,   
作者: 任美欣, 何乡帅, 贾子萱, 古晓琳, 李 波*:河南工业大学化学化工学院,河南 郑州;肖建军, 雷红红:河南省金属燃料电池重点实验室,河南 郑州;郑州佛光发电设备股份有限公司,河南 郑州;郑远远*:河南工业大学化学化工学院,河南 郑州;河南省金属燃料电池重点实验室,河南 郑州
关键词: 金属气凝胶合金电催化氧还原Metal Aerogel Alloy Electrocatalytic Oxygen Reduction
摘要: 质子交换膜燃料电池(PEMFC)作为高效清洁的能源,其应用受限于阴极氧还原反应(ORR)的缓慢动力学。Pt3Ni合金被广泛认为是质子交换膜燃料电池ORR中最具前景的催化剂。然而,Pt3Ni合金催化剂的实际应用受限于其耐久性不足,主要归因于Ni易流失和颗粒团聚。本研究通过一种超声辅助溶胶凝胶法,成功制备了Re掺杂PtNi金属气凝胶,以强化Pt-Ni键强度并抑制奥斯特瓦尔德熟化从而提升燃料电池耐久性和高效的电催化ORR性能。该催化剂在0.9 V时表现出质量活性达1.88 A∙mgPt1优异ORR活性(商业Pt/C的3.1倍)。耐久性测试表明,Re可以有效抑制Ni的浸出,特别是经过20,000次循环后质量活性仅衰减,半波电位只偏移6.5 mV,具备优异的耐久性。该研究通过界面调控为提升Pt基ORR催化剂耐久性提供了新策略。
Abstract: Proton exchange membrane fuel cells (PEMFCs) represent a highly efficient and clean energy conversion technology. Yet their widespread commercialization is hindered by the sluggish kinetics of the oxygen reduction reaction (ORR) at the cathode. Pt3Ni alloys are widely recognized as among the most promising catalysts for ORR in PEMFCs. However, their practical application is limited by insufficient durability, primarily caused by Ni leaching and nanoparticle agglomeration. In this study, we successfully synthesized Re-doped PtNi metal aerogels via an ultrasound-assisted solgel method, which reinforces the Pt-Ni bonding strength and suppresses Ostwald ripening, thereby significantly enhancing both the durability and electrocatalytic ORR performance. The resulting catalyst exhibits exceptional ORR activity, achieving a mass activity of 1.88 A∙mgPt1 at 0.9 V. Durability tests further revealed that Re doping effectively inhibits Ni dissolution. When tested in a PEMFC, the catalyst demonstrated remarkable stability, with only a 6.5 mV shift in half-wave potential after 20,000 cycles under low Pt loading. This work offers a novel strategy for improving the durability of Pt-based catalysts through rational interfacial modulation.
文章引用:任美欣, 何乡帅, 贾子萱, 古晓琳, 肖建军, 雷红红, 郑远远, 李波. Re掺杂PtNi金属气凝胶及其氧还原性能研究[J]. 物理化学进展, 2025, 14(4): 616-625. https://doi.org/10.12677/japc.2025.144059

1. 引言

质子交换膜燃料电池(PEMFC)作为高效清洁能源转换装置,其大规模应用受限于阴极氧还原反应(ORR)的缓慢动力学[1]-[3]。目前,铂基(Pt)材料在ORR中表现出优异的电催化活性,但由于Pt的储量稀缺[4]、成本高昂[5]、稳定性较差[6],严重阻碍了PEMFC的大规模商业化应用。Pt与其他金属的合金化[7]可以有效抑制催化剂脱合金化、奥斯特瓦尔德熟化[8] [9]和颗粒聚结进而抑制电化学活性面积(ECSA)损失,以此提高ORR的稳定性。近年来,通过与镍(Ni)等3d过渡金属合金化形成Pt3Ni合金[10],利用配体效应[11]和应变效应[12]来提高阴极催化剂的ORR活性并降低铂的负载量已被证明是一种有效策略。然而,Ni作为过渡金属,溶解电位较低[13],在质子交换膜燃料电池中强氧化、高电位情况下极易发生溶解流失[14]。一方面,Ni的溶出导致催化剂结构塌陷,削弱晶格压缩应变与电子调控效应[4]。另一方面,金属离子浸出在电池运行过程中会迁移至质子交换膜(PEM),通过占据原本供质子传输的位点,阻碍质子传导路径,从而显著降低膜的质子传导率,最终加剧电池性能的衰减[15]。尽管前人采用了有序合金化[16]、包覆层策略[17]、多组分掺杂[18]以及表面掺杂[19] [20]等策略,试图稳定Ni组分,但纳米颗粒体相缺陷仍会加速过渡金属原子的持续溶出,其长期稳定性瓶颈尚未突破。

近期研究表明,引入高熔点、强金属键特性的掺杂元素可有效抑制过渡金属溶解[21] [22]。铼(Re)因其独特的4f145d56s2价电子构型使其具有3180℃的超高熔点、优异化学稳定性、抗腐蚀性及强d电子耦合能力[23],成为稳定Pt3Ni催化剂的理想候选。特别是Re的高熔点特性能增强Pt3Ni晶格结合能[24],提高Ni体相扩散能垒从而抑制Ni迁移[25] [26]。另外,Re与Pt之间的强相互作用能够优化表面Pt电子态,削弱氧物种吸附强度,减缓电位循环中的表面重构,进而稳定材料表面结构,显著提升材料ORR的稳定性。

本文提出Re掺杂Pt3Ni金属气凝胶(Re-Pt3Ni MA)的新策略,通过超声辅助溶胶–凝胶法制备Re掺杂Pt3Ni金属气凝胶,利用超声急剧升温产生的空化效应[27],实现在室温下使Pt3Ni与Re在短时间内形成合金,并利用Re的稳定化作用与气凝胶的结构优势协同解决Ni溶解难题。通过SEM、TEM、XRD、XPS等表征手段,阐明Re掺杂对Ni溶出动力学的抑制机制。通过XPS价带谱解释了Re掺入优化了Pt3Ni合金的电子结构,使d带中心负移,削弱了催化过程中对*OH的吸附,达到了ORR过电位降低的目的。最终实现兼具高ORR活性(1.88 A∙mgPt1)与超长耐久性(>1万次循环)的阴极催化剂设计,为低铂燃料电池商业化提供新路径。

2. 实验部分

2.1. 试剂和仪器

本研究所用试剂包括六水合氯铂酸、硼氢化钠、六水合氯化镍、高铼酸钾、Nafion (5 wt%)、无水乙醇、商用Pt/C、浓硫酸均为分析纯,实验过程中均为直接使用,无需纯化。

本研究所使用的仪器为美国FEI公司Tecnai G2 F20透射电子显微镜、美国Thermo Scientific公司Thermo Scientific K-Alpha X射线光电子能谱、Bruker公司D8 Advance X射线粉末衍射仪、昆山KQ-300DE数控超声波清洗机、电感耦合等离子体光发射光谱仪ICP-OES,Perkin Elmer Optima8300测定、上海辰华仪器有限公司CHI760E电化学工作站。

2.2. 催化剂的合成及电催化氧还原性能测试

1) Pt3Ni金属气凝胶(Pt3Ni MA)的制备

量取95 mL的超纯水于烧杯中,将烧杯置于超声仪中,超声功率100%,先将浓度为0.386 M H2PtCl6∙6H2O溶液移取38.5 μL、浓度为0.05 mM NiCl2∙6H2O溶液移取2.5 mL加入烧杯分散均匀,将浓度为0.875 mM的NaBH4溶液移取2.5 mL快速加入烧杯中,可观察到烧杯中溶液迅速变黑,持续超声 30 min后在烧杯中出现絮状黑色固体,即Pt3Ni金属水凝胶前驱体。将金属气凝胶前驱体溶液静置12 h,可观察到Pt3Ni金属水凝胶前驱体在烧杯底部大量沉积,之后再用去离子水多次对Re-Pt3Ni水凝胶进行水洗,将水洗过的湿凝胶置于真空冷冻干燥机中在−50℃环境下预冻4 h、干燥24 h,即可获得Pt3Ni MA。

2) Re掺杂Pt3Ni金属气凝胶(Re-Pt3Ni MA)的制备

量取92.5 mL的超纯水于烧杯中,将烧杯置于超声仪中,超声功率100%,先将浓度为0.386 M H2PtCl6∙6H2O溶液移取38.5 μL、浓度为0.05 mM NiCl2∙6H2O溶液移取2.5 mL、浓度为0.01 mM KO4Re溶液2.5 mL加入烧杯,将浓度为0.875 mM的NaBH4溶液移取2.5 mL快速加入烧杯中,可观察到烧杯中溶液迅速变黑,持续超声30 min后在烧杯中出现絮状黑色固体,即Re-Pt3Ni金属水凝胶前驱体。将金属气凝胶前驱体溶液静置12 h,可观察到Re-Pt3Ni金属水凝胶前驱体在烧杯底部大量沉积,这是由于Re-Pt3Ni水凝胶小颗粒自组装形成大颗粒。之后再用去离子水多次对Re-Pt3Ni水凝胶进行水洗,将水洗过的湿凝胶置于真空冷冻干燥机中在−50℃环境下预冻4 h、干燥24 h,即可获得Re-Pt3Ni MA。

3) 催化剂墨水制备

将3.96 mL乙醇与0.04 mL 5 wt% Nafion溶液加入2.1 mg催化剂,经过1小时的超声处理后得到分散均匀的催化剂墨水。取10 μL催化剂墨水均匀涂覆于GCE表面,室温干燥。商用Pt/C催化剂按相同方法配制为0.4 mgPt∙mL1的墨水,并等体积(10 μL)涂覆于GCE。材料的ORR性能采用RDE方法测试,电化学工作站为CHI760E电化学站,铂丝为对电极,Ag/AgCl (3.0M KCl溶液)为参比电极。

3. 结果与讨论

3.1. 催化剂表征

金属气凝胶的宏观结构如图1(a)所示,Re-Pt3Ni MA具有三维泡沫状的块体结构。采用扫描电镜(SEM)对催化剂材料的微观形貌进行表征(图1(b))。从中可以清晰地观察到Re-Pt3Ni MA其内部基元为金属纳米线,由Re-Pt3Ni纳米线相互缠绕形成网络。这种金属气凝胶的多孔结构可为物质传输提供快速通道,其连续的纳米线网络结构能够加快电子转移。图1(c)为Pt/C、Pt3Ni MA、Re-Pt3Ni MA的XRD图谱,材料中均显示出(111)、(200)、(220)和(311)晶面的特征衍射峰,表明Pt/C、Pt3Ni MA、Re-Pt3Ni MA均为Pt的面心立方结构(fcc)。Re-Pt3Ni MA的衍射峰与Pt3Ni的衍射峰相对应,且无纯Ni或其氧化物的杂峰,证实了单一合金相的形成。Pt3Ni MA、Re-Pt3Ni MA相较于Pt/C衍射峰向高角度偏移,这源于半径较小的Ni原子替代Pt原子占据晶格导致的晶格压缩,符合Vegard定律的晶格收缩规律。与Pt3Ni MA相比Re-Pt3Ni MA衍射峰没有明显偏移,这是可能由于掺杂Re的量较少从而对最终晶体结构影响较小。

Figure 1. (a) Photo of Re-Pt3Ni MA; (b) SEM image of Re-Pt3Ni MA; (c) XRD patterns of Pt/C, Pt3Ni MA, and Re Pt3Ni MA

1. (a) Re-Pt3Ni MA的照片;(b) Re-Pt3Ni MA SEM的图;(c) Pt/C、Pt3Ni MA、Re-Pt3Ni MA的XRD图

Figure 2. (a) (b) TEM images of the Re-Pt3Ni MA; (c) size distribution histogram of the Re-Pt3Ni MA nanoparticles; (d) (e) HRTEM images; (g) EDX elemental mapping images (Scale bar: 20 nm)

2. (a) (b) Re-Pt3Ni MA的TEM图像;(c) Re-Pt3Ni MA粒径分布图;(d) (e) HRTEM图像;(g) EDX元素mapping图像(图中标尺为20 nm)

采用高分辨透射电镜(HRTEM)对Re-Pt3Ni MA的微观形貌进行表征(图2)。图2(a)图2(b)展示了Re-Pt3Ni MA的TEM图像,可观察到相互连接的三维网络结构由粒径分布于3~9 nm的球形纳米粒子构成,平均粒径为5.94 nm (图2(c))。这种独特的气凝胶结构归因于超声合成过程中短时间内急剧升温产生的空化效应使材料迅速形成合金,有效抑制了纳米粒子在合成过程中因高温而过度团聚。HR-TEM图像(图2(d)~(f))显示清晰的晶格条纹,测得晶面间距为0.221 nm,与Pt (111)晶面间距(0.226 nm)相比,呈现明显的晶格收缩,表明Ni原子的引入引起了晶格畸变。这一现象与XRD结果相互印证。EDS元素面扫描结果图2(g)证实了Pt、Ni、Re三种元素在整个金属气凝胶网络中均呈现高度均匀的空间分布,未观察到明显的元素偏析现象,表明掺杂元素Ni和Re完全融入Pt3Ni晶格中,这与XRD结果相一致。这种均匀的元素分布有利于减少循环过程中因局部成分不均引起的应力集中和相变。

Figure 3. High-resolution XPS spectra of Re-Pt3Ni MA (a) Pt 4f, (b) Ni 2p, (c) Re 4f; High-resolution XPS spectra of Pt3Ni MA (d) Pt 4f, (e) Ni 2p; and (f) valence-band XPS spectra of Pt/C, Pt3Ni MA, and Re-Pt3Ni

3. Re-Pt3Ni MA的(a) Pt 4f, (b) Ni 2p (c) Re 4f高分辨率XPS光谱;Pt3Ni MA的(d) Pt 4f,(e) Ni 2p高分辨率XPS光谱;(f) Pt/C, Pt3Ni MA, Re-Pt3Ni MA的XPS价带谱图

采用XPS分析Pt3Ni MA、Re-Pt3Ni MA中的Pt和Ni的价态和电子结构(图3),图3(a)为Re-Pt3Ni MA的Pt4f的XPS精细光谱图,可以看出Pt的4f轨道可以分为两对峰,位于71.15和74.45 eV的两个峰分别对应了Pt0的4f7/2和4f5/2,而位于72.11和75.40 eV的峰则对应于4f7/2和4f5/2的Pt2+,这说明Pt主要以金属态的形式存在,部分Pt以氧化态形式存在。在图3(d) Pt3Ni MA中位于71.31和74.61 eV的两个峰分别对应了Pt0的4f7/2和4f5/2,而位于72.27和75.57 eV的峰则对应于4f7/2和4f5/2的Pt2+。与Pt3Ni MA相比Re-Pt3Ni MA中Pt 4f7/2的峰位置向低结合能方向偏移了0.16 eV。这是由于Re向Pt转移部分电荷,导致Re-Pt3Ni MA的结合能相比于Pt3Ni MA更低。结合能的降低有利于降低ORR的活化能[28]。对Re-Pt3Ni MA的Ni 2p的XPS精细谱进行拟合分析(图3(b)),Ni 2p3/2与Ni 2p1/2自旋轨道分裂峰分别位于852.53 eV与869.71 eV,对应Ni0;位于853.93 eV对应NiO;位于856.23 eV与873.04eV对应于Ni (OH)2的Ni 2p3/2与Ni 2p1/2;其卫星峰位于859.90 eV与880.12 eV。图3(e)为Pt3Ni MA Ni 2p的XPS谱图,Ni 2p3/2与Ni 2p1/2自旋轨道分裂峰分别位于852.4 eV与869.72 eV,对应Ni0;位于853.26 eV对应NiO;在855.53 eV与873.41 eV拟合出的双峰对应于Ni (OH)2的Ni 2p3/2与Ni 2p1/2;其卫星峰位于859.05 eV与882.35 eV。与Pt3Ni MA相比Re-Pt3Ni MA的Ni 2p峰的峰位向高结合能方向偏移约0.25 eV,这可能是由于Re的引入能进一步诱导电子从Ni向Pt转移,导致Ni的电子云密度降低,其结合能正向移动[29]。Ni 2p向高结合能方向偏移,表明Ni2+的比例减少、Ni0含量增加,归因于高价态Re的掺入降低了Ni的价态[30]。这种价态的变化能有效抑制Ni的溶出,从而提升ORR稳定性。图3(c)为Pt3Ni MA Re4f的XPS精细光谱图,由图可知Re的存在,这与EDX的测量结果一致,证明金属Re成功掺入Pt3Ni中。Re 4f7/2与Re 4f5/2自旋轨道分裂峰分别位于41 eV与43.43 eV,对应Re0;在42.02 eV与44.74eV拟合出的双峰,对应于Re的氧化物的Re 4f7/2与Re 4f5/2。通过价带谱分析发现,图3(f)中Pt3Ni MA (−3.6 eV)、Re-Pt3Ni MA (−3.68 eV)相比于Pt/C的d带中心(−2.67 eV)向负方向偏移,说明Ni能够调节Pt的电子结构,使d带中心负移[31]。而Re的掺入使得d带中心进一步负移,根据d带中心理论,d带中心的适当下移将削弱Pt与O中间体的结合强度,从而有利于ORR活性的增强。

3.2. Re原子掺杂对催化剂ORR性能的影响

Figure 4. (a) CV curves of Pt/C, Pt3Ni MA, Re-Pt3Ni MA in N2-saturated 0.1 M HClO4 solution at a sweep rate of 50 mV∙s1. (b) ORR polarization curves at a scan rate of 10 mV∙s1 and a rotation rate of 1600 rpm, (c) corresponding mass activity Tafel plots, and (f) a comparison of the mass and specific activities at 0.9 V RHE of different catalysts in O2-saturated 0.1 M HClO4 solution. (d) ORR polarization curves of Re-Pt3Ni MA at different rotation rates. (e) The Koutecký-Levich plots at different applied potentials

4. (a) Pt/C、Pt3Ni MA、Re-Pt3Ni MA在N2饱和的0.1 M HClO4溶液中的CV曲线。Pt/C、Pt3Ni MA、Re-Pt3Ni MA在O2饱和的0.1 M HClO4溶液中的(b) ORR极化曲线和(c) 相应的质量活性Tafel曲线以及(f) 质量活性和面积比活性对比图。(d) Re-Pt3Ni MA不同转速下的ORR极化曲线。(e) 不同电位下的 Koutecký-Levich曲线

在0.1M HClO4电解液中,催化剂的本征ORR性能通过旋转圆盘电极(RDE)三电极体系评估。测试采用10 mV/s扫描速率及1600 rpm转速,重点关注0.9 V (vs.RHE)电位下的动力学电流。通过循环伏安(CV)曲线中氢脱附电荷积分图4(a),测得Re-Pt3Ni MA、Pt3Ni MA及商业Pt/C的电化学活性比表面积(ECSA)分别为53.6 m2∙g1、58.7 m2∙g1与65.3 m2∙g1。ORR极化曲线(图4(b))显示,测得Re-Pt3Ni MA的半波电位(E1/2)较Pt3Ni MA与商业Pt/C显著正移,表明其具备更快的ORR动力学。为定量比较催化活性,利用Koutecky-Levich (K-L)方程拟合计算动力学电流密度,并分别归一化至Pt负载量与ECSA,获得质量活性(MA)与面积比活性(SA)。图4(c)图4(f)表明Re-Pt3Ni MA的MA与SA均显著优于Pt3Ni MA与商业Pt/C。具体而言,在0.9 V (vs. RHE)下(图4(c)),Re-Pt3Ni MA的MA达1.88 A∙mgPt1,分别为Pt3Ni MA (0.91 A∙mgPt1)与商业Pt/C (0.61 A∙mgPt1)的2.1倍与3.1倍。其SA为3.86 mA∙cm2,分别为后两者的1.93倍与2.92倍(图4(f))。在所有样品中,Re-Pt3Ni MA表现出最高的 MA与SA。Re-Pt3Ni MA的优异性能归因于Re的掺入调控了Pt的电子结构,降低了ORR反应的活化能,进而提升ORR活性。图4(d)图4(e)分别显示了Re-Pt3Ni MA在不同转速下的极化曲线以及不同电位下相应的Koutecký-Levich曲线。其K-L曲线呈现线性关系,表明其遵循一级反应动力学过程。通过计算得出Re-Pt3Ni MA对ORR反应的电子转移数(n)约为4.0,表明O2在其表面的催化反应遵循四电子反应路径。

Figure 5. (a) ORR polarization curves of Re-Pt3Ni MA before and after modification; (b) Changes in mass activity of different catalysts before and after ADT; (c) Variations in Ni content for Pt3Ni MA and Re-Pt3Ni MA before and after ADT

5. (a) Re-Pt3Ni MA前后的ORR极化曲线;(b) 不同催化剂ADT前后的质量活性变化;(c) Pt3Ni MA, Re-Pt3Ni MA ADT前后的Ni含量变化

催化剂的长期稳定性通过加速耐久性测试(ADT)验证,扫描范围为0.6~1.1 V,扫描速率为100 mV/s。如图5(a)所示经20000次循环后,Re-Pt3Ni MA的半波电位偏移(ΔE1/2)仅6.5mV,其质量活性保持率达89.8% (1.69 A∙mgPt1)。图5(b)展示了ADT前后不同催化剂的质量活性变化,由衰减率可知Re-Pt3Ni MA表现出了更好的长耐久性,其质量活性仅下降了10.2%,而Pt/C和Pt3Ni MA则分别下降了86.7%和46.2%。可见Re的掺杂能有效提高Pt3Ni MA的长耐久性。图5(c)展示了Pt3Ni MA、Re-Pt3Ni MA ADT前后的Ni含量的变化,金属成分含量由ICP-OES测定。由图可知Re-Pt3Ni MA表现出了优异的结构稳定性,其Ni含量仅下降了19.1%,这证明了Re的掺入能够有效抑制Ni的浸出,进而体现出优异的耐久性。Ni溶解率的降低主要归因于高熔点的Re不但能形成稳定的Pt-Re键,还可以增强Pt3Ni的晶格结合能[24],提高Ni体相扩散能垒从而抑制Ni迁移,从而减缓电位循环中的表面重构,强化了结构稳定性。

Figure 6. (a) TEM image of Re-Pt3Ni MA before ADT; (b) TEM image of Re-Pt3Ni MA after ADT

6. (a) Re-Pt3Ni MA ADT前TEM图像;(b) Re-Pt3Ni MA ADT后TEM图像

为深入了解Re-Pt3Ni MA耐久性增强的原因,在耐久性试验后,将负载有催化剂的GCE进行超声处理分散在乙醇溶液中以收集催化剂,通过TEM进一步研究了Re-Pt3Ni MA 20000圈ADT前后形貌变化。如图6所示,ADT后的Re-Pt3Ni MA仍保持着清晰可见的由纳米线构成的链状结构,且纳米线的直径变化几乎可以忽略不计,说明Re-Pt3Ni MA并未发生熟化现象。该结果进一步说明Re的掺入能够增强Re-Pt3Ni MA的结构稳定性。

4. 结论

总而言之,我们提出了一种超声辅助溶胶—凝胶法合成Re-Pt3Ni MA,通过引入高熔点、强化学稳定性的Re有效抑制Pt3Ni催化剂中Ni的溶解,并在一定程度上避免了奥斯瓦尔德熟化现象,最终提高了催化剂结构稳定性。电化学测试表明,Re-Pt3Ni MA作为ORR催化剂表现出较高的活性,Re-Pt3Ni MA的质量活性为1.88 A∙mgPt1,分别为Pt3Ni MA (0.91 A∙mgPt1)与商业Pt/C (0.61 A∙mgPt1)的2.1倍与3.1倍。另外,经过2万次循环后,Re-Pt3Ni MA的质量活性仅损失了10.2%,对比Pt/C和Pt3Ni MA则分别下降了86.7%和46.2%。实验结果表明,Re和Ni的引入能诱导Pt产生一定程度的压缩应变,而Re可向Pt转移更多电子,进一步优化了铂d带中心位置,从而增强了催化活性。特别是Re的掺杂增强了体相中原子的相互作用,提高了Ni的迁移能垒,抑制了Ni的溶解,确保了合金催化剂在长期电化学条件下的催化活性和耐久性,表明Re-Pt3Ni MA催化剂在实际应用中具有巨大潜力。这项工作通过Re掺杂来提高Pt3Ni合金催化剂的ORR活性和耐久性,对设计具有高活性和高耐久性的低Pt合金催化剂具有深刻的启发作用。

NOTES

*通讯作者。

参考文献

[1] Pan, L., Merzdorf, T., Campos‐Roldàn, C.A., Guo, A., Lu, J., Schmidt, J., et al. (2025) From Seeds to Cell: Improving PEMFC Performance and Durability by Seed‐Mediation Synthesis for PtNiIr ORR Nanocatalysts. Advanced Science, 12, e05958. [Google Scholar] [CrossRef] [PubMed]
[2] Yang, B., Gu, T., Liu, W. and Wu, Z. (2025) Pore Engineering to Improve Oxygen Transport in Cathode Oxygen Reduction Catalysts of Proton Exchange Membrane Fuel Cells. Nano Research, 18, Article ID: 94907684. [Google Scholar] [CrossRef
[3] Zhao, L., Zhu, Z., Wang, J., Zuo, J., Chen, H., Qi, X., et al. (2025) Robust P‐D Orbital Coupling in PtCoIn@Pt Core-Shell Catalysts for Durable Proton Exchange Membrane Fuel Cells. Angewandte Chemie International Edition, 64, e202501805. [Google Scholar] [CrossRef] [PubMed]
[4] Zhang, X., Zhang, W., Gao, F., Zhang, Y. and Huang, X. (2025) Ultrafine 1D Platinum Group Metal-Based Nanostructures with Advanced Regulations for Fuel Cells Electrocatalysis. Catal, 1, Article No. 8. [Google Scholar] [CrossRef
[5] Lang, P., Yuan, N., Jiang, Q., Zhang, Y. and Tang, J. (2019) Recent Advances and Prospects of Metal‐Based Catalysts for Oxygen Reduction Reaction. Energy Technology, 8, Article ID: 1900984. [Google Scholar] [CrossRef
[6] Li, H., Yuan, S., You, J., Zhao, C., Cheng, X., Luo, L., et al. (2025) Revealing the Oxygen Transport Challenges in Catalyst Layers in Proton Exchange Membrane Fuel Cells and Water Electrolysis. Nano-Micro Letters, 17, Article No. 225. [Google Scholar] [CrossRef] [PubMed]
[7] Yoo, J., Park, Y., Choi, J., Roh, J., Shin, K., Cho, H., et al. (2023) Electrochemical Dealloying of Ni-Rich Pt-Ni Nanoparticle Network for Robust Oxygen-Reduction Electrocatalysts. ACS Sustainable Chemistry & Engineering, 11, 15460-15469. [Google Scholar] [CrossRef
[8] Luo, M., Sun, Y., Zhang, X., Qin, Y., Li, M., Li, Y., et al. (2018) Stable High‐Index Faceted Pt Skin on Zigzag‐Like PtFe Nanowires Enhances Oxygen Reduction Catalysis. Advanced Materials, 30, Article ID: 1705515. [Google Scholar] [CrossRef] [PubMed]
[9] Weber, P., Weber, D.J., Dosche, C. and Oezaslan, M. (2022) Highly Durable Pt-Based Core-shell Catalysts with Metallic and Oxidized Co Species for Boosting the Oxygen Reduction Reaction. ACS Catalysis, 12, 6394-6408. [Google Scholar] [CrossRef
[10] Jeong, C., Lee, J., Jo, H., Lee, K., Lee, S., Ophus, C., et al. (2025) Atomic-Scale 3D Structural Dynamics and Functional Degradation of Pt Alloy Nanocatalysts during the Oxygen Reduction Reaction. Nature Communications, 16, Article No. 8026. [Google Scholar] [CrossRef
[11] Jin, H., Xu, Z., Hu, Z., Yin, Z., Wang, Z., Deng, Z., et al. (2023) Mesoporous Pt@Pt-Skin Pt3Ni Core-Shell Framework Nanowire Electrocatalyst for Efficient Oxygen Reduction. Nature Communications, 14, Article No. 1518. [Google Scholar] [CrossRef] [PubMed]
[12] Wang, H., Gao, J., Chen, C., Zhao, W., Zhang, Z., Li, D., et al. (2023) PtNi-W/C with Atomically Dispersed Tungsten Sites toward Boosted ORR in Proton Exchange Membrane Fuel Cell Devices. Nano-Micro Letters, 15, Article No. 143. [Google Scholar] [CrossRef] [PubMed]
[13] Lu, S., Zheng, X., Jiang, K., Wang, Q., Wang, X., Shahzad, M.W., et al. (2025) Sub-3 nm Pt3Ni Nanoparticles for Urea-Assisted Water Splitting. Advanced Composites and Hybrid Materials, 8, Article No. 182. [Google Scholar] [CrossRef
[14] Wang, H., Luo, W., Zhu, L., Zhao, Z., E, B., Tu, W., et al. (2018) Synergistically Enhanced Oxygen Reduction Electrocatalysis by Subsurface Atoms in Ternary PdCuNi Alloy Catalysts. Advanced Functional Materials, 28, Article ID: 1707219. [Google Scholar] [CrossRef
[15] Wang, M., Sun, E., Wang, Y., Lei, L., Du, Z., Zaman, S., et al. (2025) Oxygen Reduction Electrocatalyst Degradation and Mitigation Strategies in Proton Exchange Membrane Fuel Cells. Applied Catalysis B: Environment and Energy, 367, Article ID: 125116. [Google Scholar] [CrossRef
[16] Wang, Z., Yao, X., Kang, Y., Miao, L., Xia, D. and Gan, L. (2019) Structurally Ordered Low‐Pt Intermetallic Electrocatalysts toward Durably High Oxygen Reduction Reaction Activity. Advanced Functional Materials, 29, Article ID: 1902987. [Google Scholar] [CrossRef
[17] Cui, J., Zhang, D., Liu, Z., Li, C., Zhang, T., Yin, S., et al. (2024) Carbon-Anchoring Synthesis of Pt1Ni1@Pt/C Core-Shell Catalysts for Stable Oxygen Reduction Reaction. Nature Communications, 15, Article No. 9458. [Google Scholar] [CrossRef] [PubMed]
[18] Li, T., Bo, L., Guan, X., Jiang, K., Liu, Y. and Tong, J. (2025) A Nd-Doped NiCo Spinel Dual Functional Catalyst for Both Oxygen Reduction Reactions and Oxygen Evolution Reactions: Enhanced Activity through Surface Reconstruction. Journal of Colloid and Interface Science, 691, Article ID: 137411. [Google Scholar] [CrossRef] [PubMed]
[19] Zhan, C., Sun, H., Lü, L., Bu, L., Li, L., Liu, Y., et al. (2022) Zinc Intercalated Lattice Expansion of Ultrafine Platinum-nickel Oxygen Reduction Catalyst for PEMFC. Advanced Functional Materials, 33, Article ID: 2212442. [Google Scholar] [CrossRef
[20] Xiao, Y.-X., Ying, J., Chen, J.-B., Yang, X., Tian, G., Li, J.-H., et al. (2024) Phosphorous Incorporated PtNi Networks with Synergistic Directional Electron Transfer for Efficient and Durable Seawater Hydrogen Production. Advanced Functional Materials, 35, Article ID: 2418264. [Google Scholar] [CrossRef
[21] Gao, L., Sun, T., Chen, X., Yang, Z., Li, M., Lai, W., et al. (2024) Identifying the Distinct Roles of Dual Dopants in Stabilizing the Platinum-Nickel Nanowire Catalyst for Durable Fuel Cell. Nature Communications, 15, Article No. 508. [Google Scholar] [CrossRef] [PubMed]
[22] Li, J.-L., Li, Y.-F. and Liu, Z.-P. (2023) In Situ Structure of a Mo-Doped Pt-Ni Catalyst during Electrochemical Oxygen Reduction Resolved from Machine Learning-Based Grand Canonical Global Optimization. JACS Au, 3, 1162-1175. [Google Scholar] [CrossRef] [PubMed]
[23] Scerri, E. (2010) Recognizing Rhenium. Nature Chemistry, 2, 598-598. [Google Scholar] [CrossRef] [PubMed]
[24] Pang, Q., Fan, X., Sun, K., Xiang, K., Dong, L., Zhao, S., et al. (2023) Advanced Progress of Rhenium (Re)-Based Electrode Materials in Electrocatalytic Hydrogen Evolution: A Review. Journal of Materials Chemistry A, 11, 14451-14468. [Google Scholar] [CrossRef
[25] Gao, L., Sun, T., Tan, X., Liu, M., Xue, F., Wang, B., et al. (2022) Trace Doping of Early Transition Metal Enabled Efficient and Durable Oxygen Reduction Catalysis on Pt-Based Ultrathin Nanowires. Applied Catalysis B: Environmental, 303, Article ID: 120918. [Google Scholar] [CrossRef
[26] Lim, J., Shin, K., Bak, J., Roh, J., Lee, S., Henkelman, G., et al. (2021) Outstanding Oxygen Reduction Reaction Catalytic Performance of In-PtNi Octahedral Nanoparticles Designed via Computational Dopant Screening. Chemistry of Materials, 33, 8895-8903. [Google Scholar] [CrossRef
[27] Yuan, Y., Zhao, H., Xv, W., Zhang, D., Wang, Z., Li, H., et al. (2022) Noble Metal Aerogels Rapidly Synthesized by Ultrasound for Electrocatalytic Reaction. Chinese Chemical Letters, 33, 2021-2025. [Google Scholar] [CrossRef
[28] Li, X., Duan, X., Zhang, S., Wang, C., Hua, K., Wang, Z., et al. (2024) Strategies for Achieving Ultra‐Long ORR Durability—Rh Activates Interatomic Interactions in Alloys. Angewandte Chemie International Edition, 63, e202400549. [Google Scholar] [CrossRef] [PubMed]
[29] Xiao, F., Sun, H., Geng, S., Hu, X., Jiang, K., Zhang, Q., et al. (2025) Rare Earth-Decorated Platinum-Nickel-Cobalt Knot-Like Nanowires Achieve Efficient Bifunctional Electrocatalysis for PEMFC. Nano Energy, 144, Article ID: 111379. [Google Scholar] [CrossRef
[30] Liao, H., Tang, Y., Ma, W., Liu, Y., Dong, Y. and Huang, F. (2025) Exceptional Layered Cathode Stability at 4.8 V via Supersaturated High-Valence Cation Design. Nature Energy, 10, 1107-1115. [Google Scholar] [CrossRef
[31] Yang, L., Bai, J., Zhang, N., Jiang, Z., Wang, Y., Xiao, M., et al. (2024) Rare Earth Evoked Subsurface Oxygen Species in Platinum Alloy Catalysts Enable Durable Fuel Cells. Angewandte Chemie International Edition, 63, e202315119. [Google Scholar] [CrossRef] [PubMed]