|
[1]
|
Zhang, Y.Y., Li, X.S., Ren, K.D., Peng, J. and Luo, X.J. (2023) Restoration of Metal Homeostasis: A Potential Strategy against Neurodegenerative Diseases. Ageing Research Reviews, 87, Article ID: 101931. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Patel, R. and Aschner, M. (2021) Commonalities between Copper Neurotoxicity and Alzheimer’s Disease. Toxics, 9, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Cong, C., Cong, H., Yao, Y., Bai, Y. and Xu, L. (2025) Copper Homeostasis and Cuproptosis in Alzheimer’s Disease (Review). International Journal of Molecular Medicine, 56, Article No. 172. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Meng, D., Luo, G. and Liu, P. (2025) Copper Metabolism and Cuproptosis in Alzheimer’s Disease: Mechanisms and Therapeutic Potential. Biomedicine & Pharmacotherapy, 190, Article ID: 118354. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Long, H.Z., Zhou, Z.W., Cheng, Y., Luo, H.Y., Li, F.J., Xu, S.G., et al. (2022) The Role of Microglia in Alzheimer’s Disease from the Perspective of Immune Inflammation and Iron Metabolism. Frontiers in Aging Neuroscience, 14, Article ID: 888989. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wang, J., Fu, J., Zhao, Y., Liu, Q., Yan, X. and Su, J. (2023) Iron and Targeted Iron Therapy in Alzheimer’s Disease. International Journal of Molecular Sciences, 24, Article No. 16353. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhao, D., Yang, K., Guo, H., Zeng, J., Wang, S., Xu, H., et al. (2023) Mechanisms of Ferroptosis in Alzheimer’s Disease and Therapeutic Effects of Natural Plant Products: A Review. Biomedicine & Pharmacotherapy, 164, Article ID: 114312. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Li, Z., Liu, Y., Wei, R., Yong, V.W. and Xue, M. (2022) The Important Role of Zinc in Neurological Diseases. Biomolecules, 13, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
De Benedictis, C.A., Haffke, C., Hagmeyer, S., Sauer, A.K. and Grabrucker, A.M. (2021) Expression Analysis of Zinc Transporters in Nervous Tissue Cells Reveals Neuronal and Synaptic Localization of ZIP4. International Journal of Molecular Sciences, 22, Article No. 4511. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Baj, J., Flieger, W., Barbachowska, A., Kowalska, B., Flieger, M., Forma, A., et al. (2023) Consequences of Disturbing Manganese Homeostasis. International Journal of Molecular Sciences, 24, Article No. 14959. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Skalny, A.V., Aschner, M. and Tinkov, A.A. (2021) Zinc. In: Advances in Food and Nutrition Research, Vol. 96, Elsevier, 251-310.
|
|
[12]
|
Schloss, J.V. (2025) Is Dolichol Pathway Dysfunction a Significant Factor in Alzheimer’s Disease? Inflammopharmacology, 33, 4651-4658. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Xu, W., Su, X., Qin, J., Jin, Y., Zhang, N. and Huang, S. (2024) Identification of Autophagy-Related Biomarkers and Diagnostic Model in Alzheimer’s Disease. Genes, 15, Article No. 1027. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhao, H., Wang, J., Li, Z., Wang, S., Yu, G. and Wang, L. (2023) Identification Ferroptosis-Related Hub Genes and Diagnostic Model in Alzheimer’s Disease. Frontiers in Molecular Neuroscience, 16, Article ID: 1280639. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yan, R., Wang, W., Yang, W., Huang, M. and Xu, W. (2024) Mitochondria-Related Candidate Genes and Diagnostic Model to Predict Late-Onset Alzheimer’s Disease and Mild Cognitive Impairment. Journal of Alzheimer’s Disease, 99, s299-s315. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhang, Y. and Kiryu, H. (2023) Identification of Oxidative Stress-Related Genes Differentially Expressed in Alzheimer’s Disease and Construction of a Hub Gene-Based Diagnostic Model. Scientific Reports, 13, Article No. 6817. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015) Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Research, 43, e47-e47. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yu, G., Wang, L., Han, Y. and He, Q. (2012) Clusterprofiler: An R Package for Comparing Biological Themes among Gene Clusters. OMICS: A Journal of Integrative Biology, 16, 284-287. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Szklarczyk, D., Gable, A.L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S., et al. (2020) The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Research, 49, D605-D612. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ayton, S., Lei, P. and Bush, A.I. (2013) Metallostasis in Alzheimer’s Disease. Free Radical Biology and Medicine, 62, 76-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Xu, W., Xu, Q., Cheng, H. and Tan, X. (2017) The Efficacy and Pharmacological Mechanism of Zn(7)MT3 to Protect against Alzheimer’s Disease. Scientific Reports, 7, Article No. 13763. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhong, G., Wang, X., Li, J., Xie, Z., Wu, Q., Chen, J., et al. (2024) Insights into the Role of Copper in Neurodegenerative Diseases and the Therapeutic Potential of Natural Compounds. Current Neuropharmacology, 22, 1650-1671. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Dringen, R., Scheiber, I.F. and Mercer, J.F.B. (2013) Copper Metabolism of Astrocytes. Frontiers in Aging Neuroscience, 5, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Gromadzka, G., Tarnacka, B., Flaga, A. and Adamczyk, A. (2020) Copper Dyshomeostasis in Neurodegenerative Diseases—Therapeutic Implications. International Journal of Molecular Sciences, 21, Article No. 9259. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Thirupathi, A. and Chang, Y.Z. (2019) Brain Iron Metabolism and CNS Diseases. In: Advances in Experimental Medicine and Biology, Springer, 1-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Peng, Y., Chang, X. and Lang, M. (2021) Iron Homeostasis Disorder and Alzheimer’s Disease. International Journal of Molecular Sciences, 22, Article No. 12442. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Singh, R., Panghal, A., Jadhav, K., Thakur, A., Verma, R.K., Singh, C., et al. (2024) Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer’s Disease. Molecular Neurobiology, 61, 10916-10940. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Di Paolo, G. and Kim, T. (2011) Linking Lipids to Alzheimer’s Disease: Cholesterol and Beyond. Nature Reviews Neuroscience, 12, 284-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Han, X. (2005) Lipid Alterations in the Earliest Clinically Recognizable Stage of Alzheimers Disease: Implication of the Role of Lipids in the Pathogenesis of Alzheimers Disease. Current Alzheimer Research, 2, 65-77. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Cunnane, S., Nugent, S., Roy, M., Courchesne-Loyer, A., Croteau, E., Tremblay, S., et al. (2011) Brain Fuel Metabolism, Aging, and Alzheimer’s Disease. Nutrition, 27, 3-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wiehler, A., Branzoli, F., Adanyeguh, I., Mochel, F. and Pessiglione, M. (2022) A Neuro-Metabolic Account of Why Daylong Cognitive Work Alters the Control of Economic Decisions. Current Biology, 32, 3564-3575.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, D., Xiao, M., Wang, L. and Jia, W. (2018) Blood-Based Glutamate Scavengers Reverse Traumatic Brain Injury-Induced Synaptic Plasticity Disruption by Decreasing Glutamate Level in Hippocampus Interstitial Fluid, but Not Cerebral Spinal Fluid, in Vivo. Neurotoxicity Research, 35, 360-372. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhang, D., Mably, A.J., Walsh, D.M. and Rowan, M.J. (2016) Peripheral Interventions Enhancing Brain Glutamate Homeostasis Relieve Amyloid β-and TNFα-Mediated Synaptic Plasticity Disruption in the Rat Hippocampus. Cerebral Cortex, 27, 3724-3735. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, Y., Chen, J., Han, J., Yang, Z., Zhu, J., Ren, A., et al. (2022) Cloning and Characterization of Phosphoglucose Isomerase in Lentinula edodes. Journal of Basic Microbiology, 62, 740-749. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Tian, Q., Li, J., Wu, B., Wang, J., Xiao, Q., Tian, N., et al. (2023) Hypoxia‐Sensing VGLL4 Promotes LDHA‐Driven Lactate Production to Ameliorate Neuronal Dysfunction in a Cellular Model Relevant to Alzheimer’s Disease. The FASEB Journal, 37, e23290. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Newington, J.T., Pitts, A., Chien, A., Arseneault, R., Schubert, D. and Cumming, R.C. (2011) Amyloid Beta Resistance in Nerve Cell Lines Is Mediated by the Warburg Effect. PLOS ONE, 6, e19191. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yoo, I.D., Park, M.W., Cha, H.W., Yoon, S., Boonpraman, N., Yi, S.S., et al. (2020) Elevated CLOCK and BMAL1 Contribute to the Impairment of Aerobic Glycolysis from Astrocytes in Alzheimer’s Disease. International Journal of Molecular Sciences, 21, Article No. 7862. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Pozdnyakov, D.I., Zolotych, D.S., Rukovitsyna, V.M. and Oganesyan, E.T. (2022) Chromone Derivatives Suppress Neuroinflammation and Improve Mitochondrial Function in the Sporadic Form of Alzheimer’s Disease under Experimental Conditions. Iranian Journal of Basic Medical Sciences, 25, 871-881
|
|
[39]
|
Horváth, G., Sváb, G., Komlódi, T., Ravasz, D., Kacsó, G., Doczi, J., et al. (2022) Reverse and Forward Electron Flow-Induced H2O2 Formation Is Decreased in α-Ketoglutarate Dehydrogenase (α-KGDH) Subunit (E2 or E3) Heterozygote Knock Out Animals. Antioxidants, 11, Article No. 1487. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Kilbride, S.M., Gluchowska, S.A., Telford, J.E., O’Sullivan, C. and Davey, G.P. (2011) High-Level Inhibition of Mitochondrial Complexes III and IV Is Required to Increase Glutamate Release from the Nerve Terminal. Molecular Neurodegeneration, 6, Article No. 53. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Diaz, F., Enríquez, J.A. and Moraes, C.T. (2012) Cells Lacking Rieske Iron-Sulfur Protein Have a Reactive Oxygen Species-Associated Decrease in Respiratory Complexes I and IV. Molecular and Cellular Biology, 32, 415-429. [Google Scholar] [CrossRef] [PubMed]
|