|
[1]
|
Ríos-Parada, V., Jiménez-Quero, V.G., Valdez-Tamez, P.L. and Montes-García, P. (2017) Characterization and Use of an Untreated Mexican Sugarcane Bagasse Ash as Supplementary Material for the Preparation of Ternary Concretes. Construction and Building Materials, 157, 83-95. [Google Scholar] [CrossRef]
|
|
[2]
|
Liu, F., Huang, S., Liu, G. and Yu, S. (2024) Estimation of Unfrozen Water Content of Saturated Sandstones Using Nuclear Magnetic Resonance, Mercury Intrusion Porosimetry, and Ultrasonic Tests. Journal of Rock Mechanics and Geotechnical Engineering, 16, 3465-3484. [Google Scholar] [CrossRef]
|
|
[3]
|
Wei, Y., Cao, X., Wang, G., Zhang, M. and Lv, Z. (2023) Study on Carbon Fixation Ratio and Properties of Foamed Concrete. Materials, 16, Article 3441. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhang, A., Yang, W., Ge, Y., Wang, Y. and Liu, P. (2020) Study on the Hydration and Moisture Transport of White Cement Containing Nanomaterials by Using Low Field Nuclear Magnetic Resonance. Construction and Building Materials, 249, Article 118788. [Google Scholar] [CrossRef]
|
|
[5]
|
Elkhoury, J.E., Shankar, R. and Ramakrishnan, T.S. (2019) Resolution and Limitations of X-Ray Micro-CT with Applications to Sandstones and Limestones. Transport in Porous Media, 129, 413-425. [Google Scholar] [CrossRef]
|
|
[6]
|
Chung, S., Kim, J., Stephan, D. and Han, T. (2019) Overview of the Use of Micro-Computed Tomography (Micro-Ct) to Investigate the Relation between the Material Characteristics and Properties of Cement-Based Materials. Construction and Building Materials, 229, Article 116843. [Google Scholar] [CrossRef]
|
|
[7]
|
Kariem, H., Hellmich, C., Kiefer, T., Jäger, A. and Füssl, J. (2018) Micro-CT-Based Identification of Double Porosity in Fired Clay Ceramics. Journal of Materials Science, 53, 9411-9428. [Google Scholar] [CrossRef]
|
|
[8]
|
Li, Y., Wang, B., Ren, Z., Zuo, J., Liu, S. and Liu, D. (2024) Effect of Microstructure Heterogeneity on Shale Strength: Insights from Micro-CT Imaging and Numerical Simulations. Rock Mechanics and Rock Engineering, 58, 225-244. [Google Scholar] [CrossRef]
|
|
[9]
|
Guo, F., Zhang, Z. and Yang, Z. (2024) A Continuous Hydration Model for Cement Paste with Realistic CT Image-Based Particles and Simulation of Microstructural Evolution. Cement and Concrete Research, 184, Article 107607. [Google Scholar] [CrossRef]
|
|
[10]
|
Zhang, H., Šavija, B., Luković, M. and Schlangen, E. (2019) Experimentally Informed Micromechanical Modelling of Cement Paste: An Approach Coupling X-Ray Computed Tomography and Statistical Nanoindentation. Composites Part B: Engineering, 157, 109-122. [Google Scholar] [CrossRef]
|
|
[11]
|
Lei, J. and Fan, Y. (2024) Rock CT Image Fracture Segmentation Based on Convolutional Neural Networks. Rock Mechanics and Rock Engineering, 57, 5883-5898. [Google Scholar] [CrossRef]
|
|
[12]
|
Qajar, J., Mohammadi, M. and Aghaei, H. (2021) An Investigation on the Robustness and Accuracy of Permeability Estimation from 3D Μ-CT Images of Rock Samples Based on the Solution of Laplace’s Equation for Pressure. Computers & Geosciences, 155, Article 104857. [Google Scholar] [CrossRef]
|
|
[13]
|
Sinka, I.C., Burch, S.F., Tweed, J.H. and Cunningham, J.C. (2004) Measurement of Density Variations in Tablets Using X-Ray Computed Tomography. International Journal of Pharmaceutics, 271, 215-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, M. and Jivkov, A.P. (2016) Micromechanical Modelling of Deformation and Fracture of Hydrating Cement Paste Using X-Ray Computed Tomography Characterisation. Composites Part B: Engineering, 88, 64-72. [Google Scholar] [CrossRef]
|
|
[15]
|
张天付, 谢淑云, 鲍征宇, 等. 基于高分辨率CT的孔隙型白云岩储层孔隙系统分形与多重分形研究[J]. 地质科技情报, 2016, 35(6): 55-62.
|
|
[16]
|
Wang, Y., Yang, W., Li, Z., et al. (2019) Review on Microstructure Study of Cementitious Materials with XCT Technology. Materials Reports, 33, 2902-2909.
|
|
[17]
|
Hu, B., Chai, G., Liu, X., Wen, X., Gu, Z., Xie, L., et al. (2023) Insights into the Microscopic Oil-Water Flow Characteristics and Displacement Mechanisms during Waterflooding in Sandstone Reservoir Rock Based on Micro-CT Technology: A Pore-Scale Numerical Simulation Study. Materials, 16, Article 3555. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ban, H., Karki, P. and Kim, Y. (2014) Nanoindentation Test Integrated with Numerical Simulation to Characterize Mechanical Properties of Rock Materials. Journal of Testing and Evaluation, 42, 787-796. [Google Scholar] [CrossRef]
|
|
[19]
|
Li, Y., Luo, S., Lu, M., Wu, Y., Zhou, N., Wang, D., et al. (2021) Cross-Scale Characterization of Sandstones via Statistical Nanoindentation: Evaluation of Data Analytics and Upscaling Models. International Journal of Rock Mechanics and Mining Sciences, 142, Article 104738. [Google Scholar] [CrossRef]
|
|
[20]
|
Liu, K., Ostadhassan, M. and Bubach, B. (2016) Applications of Nano-Indentation Methods to Estimate Nanoscale Mechanical Properties of Shale Reservoir Rocks. Journal of Natural Gas Science and Engineering, 35, 1310-1319. [Google Scholar] [CrossRef]
|
|
[21]
|
Liu, X., Xu, D., Li, S., Qiu, S. and Jiang, Q. (2023) An Insight into the Mechanical and Fracture Characterization of Minerals and Mineral Interfaces in Granite Using Nanoindentation and Micro X-Ray Computed Tomography. Rock Mechanics and Rock Engineering, 56, 3359-3375. [Google Scholar] [CrossRef]
|
|
[22]
|
Ma, Z., Pathegama Gamage, R. and Zhang, C. (2020) Application of Nanoindentation Technology in Rocks: A Review. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6, 769-776. [Google Scholar] [CrossRef]
|
|
[23]
|
Sun, C., Li, G., Gomah, M.E., Xu, J. and Sun, Y. (2020) Creep Characteristics of Coal and Rock Investigated by Nanoindentation. International Journal of Mining Science and Technology, 30, 769-776. [Google Scholar] [CrossRef]
|
|
[24]
|
Velez, K., Maximilien, S., Damidot, D., Fantozzi, G. and Sorrentino, F. (2001) Determination by Nanoindentation of Elastic Modulus and Hardness of Pure Constituents of Portland Cement Clinker. Cement and Concrete Research, 31, 555-561. [Google Scholar] [CrossRef]
|
|
[25]
|
Liu, X., Xu, D., Li, S., Duan, S., Xu, H., Jiang, Q., et al. (2024) Estimating the Mechanical Properties of Rocks and Rock Masses Based on Mineral Micromechanics Testing. Rock Mechanics and Rock Engineering, 57, 5267-5278. [Google Scholar] [CrossRef]
|
|
[26]
|
Constantinides, G. and Ulm, F. (2004) The Effect of Two Types of C-S-H on the Elasticity of Cement-Based Materials: Results from Nanoindentation and Micromechanical Modeling. Cement and Concrete Research, 34, 67-80. [Google Scholar] [CrossRef]
|
|
[27]
|
唐旭海, 许婧璟, 张怡恒, 等. 基于微观岩石力学试验和NWA13618陨石的小行星岩石力学参数分析[J]. 岩土力学, 2022, 43(5): 1157-1163.
|
|
[28]
|
张兆鹏, 张士诚, 石善志, 等. 基于纳米压痕实验和均匀化方法评价砾岩多尺度力学性质——以玛湖凹陷南斜坡致密砾岩储层为例[J]. 岩石力学与工程学报, 2022, 41(5): 926-940.
|
|
[29]
|
Li, L., Huang, B., Tan, Y., Li, X. and Ranjith, P.G. (2022) Using Micro-Indentation to Determine the Elastic Modulus of Shale Laminae and Its Implication: Cross-Scale Correlation of Elastic Modulus of Mineral and Rock. Marine and Petroleum Geology, 143, Article 105740. [Google Scholar] [CrossRef]
|
|
[30]
|
Li, Y., Chen, J., Yang, J., Liu, J. and Tong, W. (2022) Determination of Shale Macroscale Modulus Based on Microscale Measurement: A Case Study Concerning Multiscale Mechanical Characteristics. Petroleum Science, 19, 1262-1275. [Google Scholar] [CrossRef]
|
|
[31]
|
张妹珠, 许婧璟, 江权, 等. 基于原子力显微镜的板岩杨氏模量宏微观跨尺度表征方法研究[J]. 岩土力学, 2022, 43(A1): 245-257.
|
|
[32]
|
Luo, S., Lu, Y., Wu, Y., Song, J., DeGroot, D.J., Jin, Y., et al. (2020) Cross-Scale Characterization of the Elasticity of Shales: Statistical Nanoindentation and Data Analytics. Journal of the Mechanics and Physics of Solids, 140, Article 103945. [Google Scholar] [CrossRef]
|
|
[33]
|
何智海, 倪雅倩, 杜时贵, 等. 纳米压痕技术在岩石材料中的应用与研究进展[J]. 岩石力学与工程学报, 2022, 41(10): 2045-2066.
|
|
[34]
|
Constantinides, G., Ravi Chandran, K.S., Ulm, F.-J. and Van Vliet, K.J. (2006) Grid Indentation Analysis of Composite Microstructure and Mechanics: Principles and Validation. Materials Science and Engineering: A, 430, 189-202. [Google Scholar] [CrossRef]
|
|
[35]
|
Blanchard, R., Morin, C., Malandrino, A., Vella, A., Sant, Z. and Hellmich, C. (2016) Patient‐Specific Fracture Risk Assessment of Vertebrae: A Multiscale Approach Coupling X‐Ray Physics and Continuum Micromechanics. International Journal for Numerical Methods in Biomedical Engineering, 32, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Hounsfield, G.N. (1973) Computerized Transverse Axial Scanning (Tomography): Part 1. Description of System. The British Journal of Radiology, 46, 1016-1022. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Chen, J.J., Sorelli, L., Vandamme, M., Ulm, F. and Chanvillard, G. (2010) A Coupled Nanoindentation/SEM‐EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C-S-H/Ca(OH)2 Nanocomposites. Journal of the American Ceramic Society, 93, 1484-1493. [Google Scholar] [CrossRef]
|
|
[38]
|
Krakowiak, K.J., Thomas, J.J., Musso, S., James, S., Akono, A. and Ulm, F. (2015) Nano-Chemo-Mechanical Signature of Conventional Oil-Well Cement Systems: Effects of Elevated Temperature and Curing Time. Cement and Concrete Research, 67, 103-121. [Google Scholar] [CrossRef]
|
|
[39]
|
Deirieh, A., Ortega, J.A., Ulm, F.-. and Abousleiman, Y. (2012) Nanochemomechanical Assessment of Shale: A Coupled WDS-Indentation Analysis. Acta Geotechnica, 7, 271-295. [Google Scholar] [CrossRef]
|
|
[40]
|
Lura, P., Trtik, P. and Münch, B. (2011) Validity of Recent Approaches for Statistical Nanoindentation of Cement Pastes. Cement and Concrete Composites, 33, 457-465. [Google Scholar] [CrossRef]
|