|
[1]
|
Gao, Z., Han, Y., Chen, S., Li, Z., Tong, H. and Wang, F. (2017) Photoresponsive Supramolecular Polymer Networks via Hydrogen Bond Assisted Molecular Tweezer/Guest Complexation. ACS Macro Letters, 6, 541-545. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Hart, L.R., Hunter, J.H., Nguyen, N.A., Harries, J.L., Greenland, B.W., Mackay, M.E., et al. (2014) Multivalency in Healable Supramolecular Polymers: The Effect of Supramolecular Cross-Link Density on the Mechanical Properties and Healing of Non-Covalent Polymer Networks. Polymer Chemistry, 5, 3680-3688. [Google Scholar] [CrossRef]
|
|
[3]
|
Wang, H., Ji, X., Li, Y., Li, Z., Tang, G. and Huang, F. (2018) An ATP/ATPase Responsive Supramolecular Fluorescent Hydrogel Constructed via Electrostatic Interactions between Poly(Sodium-P-Styrenesulfonate) and a Tetraphenylethene Derivative. Journal of Materials Chemistry B, 6, 2728-2733. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Chen, H., Zeng, X., Tham, H.P., Phua, S.Z.F., Cheng, W., Zeng, W., et al. (2019) NIR-Light-Activated Combination Therapy with a Precise Ratio of Photosensitizer and Prodrug Using a Host-Guest Strategy. Angewandte Chemie International Edition, 58, 7641-7646. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Yang, K., Wen, J., Chao, S., Liu, J., Yang, K., Pei, Y., et al. (2018) A Supramolecular Photosensitizer System Based on the Host-Guest Complexation between Water-Soluble Pillar[6]arene and Methylene Blue for Durable Photodynamic Therapy. Chemical Communications, 54, 5911-5914. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Yu, G., Zhao, X., Zhou, J., Mao, Z., Huang, X., Wang, Z., et al. (2018) Supramolecular Polymer-Based Nanomedicine: High Therapeutic Performance and Negligible Long-Term Immunotoxicity. Journal of the American Chemical Society, 140, 8005-8019. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Pedersen, C.J. (1967) Cyclic Polyethers and Their Complexes with Metal Salts. Journal of the American Chemical Society, 89, 2495-2496. [Google Scholar] [CrossRef]
|
|
[8]
|
Wu, Y., Aslani, S., Han, H., Tang, C., Wu, G., Li, X., et al. (2024) Mirror-Image Cyclodextrins. Nature Synthesis, 3, 698-706. [Google Scholar] [CrossRef]
|
|
[9]
|
Harada, A. (2001) Cyclodextrin-Based Molecular Machines. Accounts of Chemical Research, 34, 456-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Crini, G. (2014) Review: A History of Cyclodextrins. Chemical Reviews, 114, 10940-10975. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ikeda, A. and Shinkai, S. (1997) Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. Chemical Reviews, 97, 1713-1734. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Freeman, W.A., Mock, W.L. and Shih, N.Y. (1981) Cucurbituril. Journal of the American Chemical Society, 103, 7367-7368. [Google Scholar] [CrossRef]
|
|
[13]
|
Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. and Nakamoto, Y. (2008) Para-Bridged Symmetrical Pillar[5]arenes: Their Lewis Acid Catalyzed Synthesis and Host-Guest Property. Journal of the American Chemical Society, 130, 5022-5023. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Cao, D., Kou, Y., Liang, J., Chen, Z., Wang, L. and Meier, H. (2009) A Facile and Efficient Preparation of Pillararenes and a Pillarquinone. Angewandte Chemie International Edition, 48, 9721-9723. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Jie, K., Zhou, Y., Li, E. and Huang, F. (2018) Nonporous Adaptive Crystals of Pillararenes. Accounts of Chemical Research, 51, 2064-2072. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Tashiro, S. and Shionoya, M. (2020) Novel Porous Crystals with Macrocycle-Based Well-Defined Molecular Recognition Sites. Accounts of Chemical Research, 53, 632-643. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Song, S., Zhang, H. and Liu, Y. (2024) Light-Controlled Macrocyclic Supramolecular Assemblies and Luminescent Behaviors. Accounts of Materials Research, 5, 1109-1120. [Google Scholar] [CrossRef]
|
|
[18]
|
Chen, J., Zhang, Y., Zhao, L., Zhang, Y., Chen, L., Ma, M., et al. (2021) Supramolecular Drug Delivery System from Macrocycle-Based Self-Assembled Amphiphiles for Effective Tumor Therapy. ACS Applied Materials & Interfaces, 13, 53564-53573. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Jiang, N., Wang, Y., Qin, A., Sun, J.Z. and Tang, B.Z. (2019) Effective Enhancement of the Emission Efficiency of Tetraphenylporphyrin in Solid State by Tetraphenylethene Modification. Chinese Chemical Letters, 30, 143-148. [Google Scholar] [CrossRef]
|
|
[20]
|
Wu, H., Chen, Z., Chi, W., Bindra, A.K., Gu, L., Qian, C., et al. (2019) Structural Engineering of Luminogens with High Emission Efficiency Both in Solution and in the Solid State. Angewandte Chemie International Edition, 58, 11419-11423. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kim, T., Baek, E., Kim, H., Han, J., Lee, Y., Oh, H., et al. (2025) Tunable Emission Properties of Indolizine-Based Aggregation-Induced Emission Luminogens for White-Light Emission. JACS Au, 5, 3262-3274. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tsai, W.-K., Wang, C.-I., Liao, C.-H., Yao, C.-N., et al. (2019) Molecular Design of Near-Infrared Fluorescent Pdots for Tumor Targeting: Aggregation-Induced Emission versus Anti-Aggregation-Caused Quenching. Chemical Science, 10, 198-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Fan, W., Li, Z., Chen, K., Wang, Z. and Yang, L. (2025) Aggregation-Induced Emission in Natural Product Research: Recent Advances and Future Perspectives. Coordination Chemistry Reviews, 542, Article 216843. [Google Scholar] [CrossRef]
|
|
[24]
|
Luo, J., Xie, Z., Lam, J.W.Y., Cheng, L., Tang, B.Z., Chen, H., et al. (2001) Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole. Chemical Communications, 2001, 1740-1741. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Huang, B., Chen, W.C., Li, Z., Zhang, J., et al. (2018) Manipulation of Molecular Aggregation States to Realize Polymorphism, AIE, MCL, and TADF in a Single Molecule. Angewandte Chemie International Edition, 57, 12473-12477. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Mei, J., Hong, Y., Lam, J.W.Y., Qin, A., Tang, Y. and Tang, B.Z. (2014) Aggregation-Induced Emission: The Whole Is More Brilliant than the Parts. Advanced Materials, 26, 5429-5479. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Leung, N.L.C., Xie, N., Yuan, W., Liu, Y., Wu, Q., Peng, Q., et al. (2014) Restriction of Intramolecular Motions: The General Mechanism behind Aggregation-Induced Emission. Chemistry—A European Journal, 20, 15349-15353. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Li, Q. and Li, Z. (2017) The Strong Light-Emission Materials in the Aggregated State: What Happens from a Single Molecule to the Collective Group. Advanced Science, 4, Article 1600484. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Lou, X.Y. and Yang, Y.W. (2020) Aggregation-Induced Emission Systems Involving Supramolecular Assembly. Aggregate, 1, 19-30. [Google Scholar] [CrossRef]
|
|
[30]
|
Jiang, B.P., Guo, D.S., Liu, Y.C., Wang, K.P. and Liu, Y. (2014) Photomodulated Fluorescence of Supramolecular Assemblies of Sulfonatocalixarenes and Tetraphenylethene. ACS Nano, 8, 1609-1618. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ni, J., Min, T., Li, Y., Zha, M., Zhang, P., Ho, C.L., et al. (2020) Planar Aiegens with Enhanced Solid-State Luminescence and ROS Generation for Multidrug-Resistant Bacteria Treatment. Angewandte Chemie International Edition, 59, 10179-10185. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wang, L., Salguero, C., Lopez, S.A. and Li, J. (2024) Machine Learning Photodynamics Uncover Blocked Non-Radiative Mechanisms in Aggregation-Induced Emission. Chem, 10, 2295-2310. [Google Scholar] [CrossRef]
|
|
[33]
|
Guan, W.L., Chen, J.F., Liu, J., Shi, B., Yao, H., Zhang, Y., et al. (2024) Macrocycles-Assembled AIE Supramolecular Polymer Networks. Coordination Chemistry Reviews, 507, Article 215717. [Google Scholar] [CrossRef]
|
|
[34]
|
Tuo, W., Sun, Y., Lu, S., Li, X., Sun, Y. and Stang, P.J. (2020) Pillar[5]arene-Containing Metallacycles and Host-Guest Interaction Caused Aggregation-Induced Emission Enhancement Platforms. Journal of the American Chemical Society, 142, 16930-16934. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Hassanian-Moghaddam, D., Aboudzadeh, M.A. and Ahmadi, M. (2025) Strategies for Designing Luminescent Metallo-Supramolecular Polymer Networks. Coordination Chemistry Reviews, 540, Article 216796. [Google Scholar] [CrossRef]
|
|
[36]
|
Wang, Z., Nie, J., Qin, W., Hu, Q. and Tang, B.Z. (2016) Gelation Process Visualized by Aggregation-Induced Emission Fluorogens. Nature Communications, 7, Article No. 12033. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Gale, P.A. and Caltagirone, C. (2018) Fluorescent and Colorimetric Sensors for Anionic Species. Coordination Chemistry Reviews, 354, 2-27. [Google Scholar] [CrossRef]
|
|
[38]
|
Han, X., Han, Y. and Chen, C.F. (2025) Fluorescent Macrocyclic Arenes: Synthesis and Applications. Angewandte Chemie International Edition, 64, e202424276. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wu, G. and Yang, Y.W. (2024) Macrocycle-Based Fluorochromic Systems. Cell Reports Physical Science, 5, Article 101873. [Google Scholar] [CrossRef]
|
|
[40]
|
Zhang, R., Xie, Y., Li, X., Wang, K. and Hu, X.Y. (2025) Supramolecular Artificial Light-Harvesting Systems Incorporating Aggregation-Induced Emissive Components: From Fabrication to Efficient Energy Conversion. Chemical Communications, 61, 6851-6863. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Feng, H.T., Yuan, Y.X., Xiong, J.B., et al. (2018) Macrocycles and Cages Based on Tetraphenylethylene with Aggregation-Induced Emission Effect. Chemical Society Reviews, 47, 7452-7476. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Han, B., Zhu, L., Wang, X., Bai, M. and Jiang, J. (2018) Conformation-Controlled Emission of AIE Luminogen: A Tetraphenylethene Embedded Pillar[5]arene Skeleton. Chemical Communications, 54, 837-840. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Tian, X., Zuo, M., Niu, P., Velmurugan, K., Wang, K., Zhao, Y., et al. (2021) Orthogonal Design of a Water-Soluble meso-Tetraphenylethene-Functionalized Pillar[5]arene with Aggregation-Induced Emission Property and Its Therapeutic Application. ACS Applied Materials & Interfaces, 13, 37466-37474. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Li, Q., Wu, Y., Cao, J., Liu, Y., Wang, Z., Zhu, H., et al. (2022) Pillararene-Induced Intramolecular Through-Space Charge Transfer and Single-Molecule White-Light Emission. Angewandte Chemie International Edition, 61, e202202381. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Fang, W., Zhang, J., Guo, M., Zhao, Y. and Sue, A.C.H. (2024) Triphenylamine[3]arenes: Streamlining Synthesis of a Versatile Macrocyclic Platform for Supramolecular Architectures and Functionalities. Angewandte Chemie International Edition, 63, e202409120. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zhu, Y.-Q., Chen, Z., Chen, Z.-Y., et al. (2024) Discrete Macrocyclic Polymer Hosts‐Induced Cascade Luminescence Enhancement and Application in Bioimaging. Chemistry—A European Journal, 30, e202402808. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zhang, K., Lou, X., Wang, Y., Huan, W. and Yang, Y. (2025) Emission Enhancement Induced by the Supramolecular Assembly of Leggero Pillar[5]arenes for the Detection and Separation of Silver Ions. Chinese Chemical Letters, 36, Article 110464. [Google Scholar] [CrossRef]
|
|
[48]
|
Chen, T., Wang, J., Tang, R., Huang, Y., Zhao, Q. and Yao, Y. (2023) An Amphiphilic [2]biphenyl-Extended Pillar[6]arene: Synthesis, Controllable Self-Assembly in Water and Application in Cell-Imaging. Chinese Chemical Letters, 34, Article 108088. [Google Scholar] [CrossRef]
|