柱芳烃超分子体系中的聚集诱导发射
Research Progress and Prospects of Aggregation-Induced Emission in Pillararene Supramolecular Systems
摘要: 聚集诱导发光(AIE)作为一种有效克服传统“聚集引起猝灭”问题的策略,为开发高性能发光材料开辟了广阔前景。柱芳烃因其对称的刚性柱状结构、富电子空腔、易于功能化修饰以及优异的主客体识别能力,为构建具有可调光物理性质的超分子组装体提供了理想平台。本文系统综述了近年来基于柱芳烃组装构筑具有AIE活性超分子体系的研究进展,重点聚焦于四苯乙烯(TPE)和三苯胺(TPA)两类典型AIE单元。本综述从分子设计角度出发,分别探讨了含TPE/TPA基元的柱芳烃主体化合物的合成策略,以及以TPE/TPA为客体的主客体复合体系的构建方法,旨在阐明其结构设计与发光行为之间的内在关联。
Abstract: Aggregation-induced emission (AIE) represents a robust strategy to address the long-standing “aggregation-caused quenching” (ACQ) dilemma of conventional luminescent materials, thereby laying a solid foundation for the advancement of high-performance emissive materials. Pillararenes, featuring symmetric rigid pillar-shaped architectures, electron-rich cavities, facile functionalization, and superior host-guest recognition capabilities, have emerged as an ideal scaffold for fabricating supramolecular assemblies with tailorable photophysical properties. This review comprehensively summarizes the recent progress in the construction of AIE-active supramolecular systems via pillararene-based assembly, with a particular focus on two archetypal AIE-active moieties, namely tetraphenylethylene (TPE) and triphenylamine (TPA). From the viewpoint of molecular design, the review elaborates on two core approaches: the synthetic strategies for pillararene-based host compounds integrated with TPE/TPA units, and the fabrication methodologies for host-guest composite systems using TPE/TPA as guest molecules. Ultimately, this work aims to establish the intrinsic correlation between structural design principles and luminescent behaviors, while also providing insights into the future development of pillararene-based AIE supramolecular materials.
文章引用:龚文平. 柱芳烃超分子体系中的聚集诱导发射[J]. 分析化学进展, 2025, 15(4): 392-403. https://doi.org/10.12677/aac.2025.154038

1. 背景介绍

超分子体系凭借氢键[1]、π-π堆积[2]、疏水效应[3]及主客体络合[4]-[6]等非共价相互作用,已成为构建功能材料的重要平台。在众多大环宿主分子中,冠醚[7]、环糊精[8]-[10]、杯芳烃[11]、葫芦脲[12]以及柱芳烃[13]-[15]等因其明确的空腔结构、可预测的结合行为及丰富的结构多样性而受到广泛关注。其中,柱[n]芳烃(又称“柱芳烃”)是一类相对较新的大环主体,最早由Ogoshi等人于2008年系统研究报道。这类大环化合物通常由对苯二酚与多聚甲醛缩合制备,具有对称的刚性柱状空腔、富电子特性以及易于功能化等结构优势。其独特的主客体识别行为,使柱芳烃在分子识别[16]、传感[17]及药物递送[18]等多个研究领域展现出广阔的应用前景。

在超分子研究中,开发在固态或聚集态具有高荧光量子产率的发光体系是一个重要方向[19]-[21]。然而,许多传统荧光团在聚集状态下会因强烈的π-π相互作用或非辐射衰减途径,出现荧光强度显著降低的现象,即聚集导致荧光猝灭(ACQ) [22]。这一效应严重限制了此类材料在实际应用中的潜力[23]

唐本忠及其同事提出的聚集诱导发射(AIE) [24]概念为解决传统发光材料在聚集状态下荧光猝灭(ACQ)的问题提供了有效途径。与ACQ分子不同,AIE活性分子在稀溶液中几乎不发光,而在形成聚集体时荧光显著增强[25]。这一独特现象主要源于聚集对分子内运动(RIM) [26]的限制,从而抑制了非辐射衰减途径,促进了辐射跃迁过程[27]-[30]。典型的AIE发光体(AIEgen)如四苯乙烯(TPE)、六苯基硅烷和三苯胺(TPA)衍生物,均通过苯环旋转受限等空间效应实现聚集态下的高效发光[31]。然而,AIE性能的充分发挥依赖于对聚集过程的精细调控。无序或随机聚集可能导致发射波长偏移甚至荧光部分猝灭,影响材料发光的亮度与重现性,从而制约其在高端光电器件及生物成像等领域的应用[32]。因此,实现对聚集形貌、堆积方式及分子排列的精确调控,是进一步提升AIE材料性能并拓展其应用前景的关键所在。

通过将聚集诱导发光分子(AIEgens)引入超分子体系,研究者能够利用主–客体相互作用、构象限制以及空间预组织等策略[33] [34],构建出结构规整且具有AIE活性的功能组装体。这一策略为开发刺激响应型与自适应发光材料提供了新的设计思路[35]-[37]。一方面,柱芳烃可以与聚集诱导发射发光体共价连接形成柱芳烃发光体,这既受益于结构刚性,也受益于RIM诱导的发射增强[38] [39]。另一方面,聚集诱导发射发光体(AIEgens)可作为客体被柱芳烃主体包覆或组装,从而实现对聚集状态的精确调控并优化其发光行为。柱芳烃通过主客体络合或模板效应,能够引导AIEgens形成尺寸、形貌及分子排布明确的纳米结构(如纳米颗粒、小泡等) [40]。这种可控组装过程有效避免了因随机、无序聚集所导致的发射不均或荧光猝灭问题,有助于提升材料性能的均一性与稳定性。

得益于柱芳烃基超分子聚集诱导发光(AIE)系统发展迅速,已成为超分子化学与材料科学交叉领域的研究热点。柱芳烃凭借其独特的空腔结构和优异的主客体识别能力,在构建具有明确结构的AIE功能组装体中发挥了关键的导向作用。本文系统综述了基于柱芳烃导向策略设计AIE活性超分子组装体的最新研究进展,重点关注以四苯乙烯(TPE)和三苯胺(TPA)为代表的两类典型AIE结构单元[41]。全文结构安排如下:第二节首先讨论将TPE或TPA作为构筑单元直接嵌入大环骨架所形成的整合型AIE系统;随后,在第三节中进一步阐述以TPE或TPA作为客体的主客体复合型AIE组装体,以揭示柱芳烃在调控发光行为中的结构导向功能。

2. AIE分子构筑的柱芳烃主体

不同的功能构件可以赋予相应的大环芳烃独特的结构和性质,从而拓宽了其在多个领域的潜在应用。

Figure 1. Synthesis of EtP5A-DPE and Molecular structure of EtP5A-DPE (a) together with the images of the EtP5A-DPE crystal (b) under bright field and UV-light irradiation at the wavelength of 330~380 nm (c), respectively (scale bar: 500 μm), and the two conformational enantiomers of pR,P-EtP5A-DPE and pS,M-EtP5A-DPE (d)

1. EtP5A-DPE的合成和EtP5A-DPE的分子结构(a),以及EtP5A-DPE晶体分别在明场(b)和波长为330~380 nm 的紫外光照射下(c)的图像(比例尺:500 μm),此外还包含pR,P-EtP5A-DPE与pS,M-EtP5A-DPE两种构象对映异构体(d)

2018年,柏铭和贾春江报道的新型内消旋修饰柱[5]芳烃衍生物EtP5A-DPE (图1),为柱芳烃与AIE分子的构象调控协同作用提供典型案例[42]。该化合物通过全乙基取代柱[5]芳烃一个内消旋位进行锂化,再与二苯甲酮亲核加成及脱水反应合成,将AIE分子四苯乙烯(TPE)嵌入柱芳烃骨架。

晶体状态下,EtP5A-DPE因TPE单元的螺旋构象及柱芳烃骨架扭曲,呈现典型AIE特性,在紫外光下发蓝光;溶液中,其在THF-水混合体系中,水体积分数超65%时荧光显著增强。与客体1,4-二氰基丁烷(DCB)作用时,溶液中DCB限制柱芳烃苯环旋转使荧光增强,而固态下DCB嵌入柱芳烃空腔,导致TPE构象改变(部分苯环与C=C键近乎垂直),AIE发射消失,且该非荧光复合物经研磨可恢复荧光,凸显构象调控对柱芳烃-AIE体系发光性能的关键作用。

2021年,胡晓玉的团队[43]通过正交设计策略,结合了柱状[5]芳烃的主客体识别特性和热塑性弹性体的AIE效应,合成了水溶性的介孔TPE修饰的柱状[5]芳烃。此外,和专门设计的前药客体G100通过主客体相互作用和荧光共振能量转移正交整合形成AIE纳米颗粒,进一步构建了超分子给药系统(图2)。该系统允许谷胱甘肽(GSH)刺激反应药物的释放,同时伴随着从暗黄色到亮黄色的荧光变化,从而能够有效地抑制癌细胞的增殖并实时跟踪肿瘤组织的分布,这可能是癌症治疗的一种有前途的候选方法。

Figure 2. Schematic illustration of the formation of supramolecular nanoparticles and their stimuli-responsive drug release

2. 超分子纳米颗粒的形成及其刺激响应药物释放的示意图

黄飞鹤课题组2022年设计合成的双功能柱[5]芳烃TPCN-P5-TPA,为柱芳烃调控AIE分子光物理性质开辟新路径[44]。该化合物以柱[5]芳烃为间隔基,连接电子给体三苯胺(TPA)与受体三苯基丙烯腈(TPCN,具AIE特性),形成线性供体–间隔基–受体结构,如图3所示。

柱[5]芳烃的庞大结构使分子呈扭曲构象,实现供体与受体电子分离,诱导分子内空间电荷转移(TSCT),同时保留AIE特性。在THF-水体系中,随水含量增加,TPCN-P5-TPA因分子内运动受限(RIM)触发TSCT发射,呈现蓝光局域激发与黄光TSCT双发射。通过调控溶剂黏度或加入极性客体己二腈,可调节双发射比例,实现单分子白光发射,凸显柱芳烃在AIE体系中构建多功能光材料的关键作用。

苏纪豪和赵艳丽在2024年开发了一种合成一类新的柱芳烃衍生物(三苯胺[3]芳烃(TPA-H2))的简化方法[45],如图4,是通过BF3-Et2O催化的TPA功能化单体与多聚甲醛的环化反应。溴化前体的引入使高效的三聚反应成为可能,并促进了进一步的功能修饰,从而创造了一个多功能的大环平台。这些螺旋桨形状的大环具有固有的三重对称性,使它们适合构建扩展的超分子骨架和金属–有机笼子。它们强大的给电子三苯胺核心赋予了大环显著的光物理性质(图4),特别是具有高量子产率的热激活延迟荧光(TADF),以及特征的聚集增强发射。这种结构精确度和发射响应性的双重功能,突显了TPA-H2在先进材料设计中的用途,特别是在发光系统和分子主体框架中。

Figure 3. Chemical structures and synthetic routes of (a) TPCN-P5-TPA and (b) TPCN-ph-TPA. Conditions: i) Pd(PPh3)4, K2CO3, toluene/EtOH/H2O (3:1:1, v/v/v), 12 h, 85˚C; ii) Pd(PPh3)4, K2CO3, THF/H2O (4:1, v/v), 48 h, 90˚C. (c) Single-crystal structures of TPCN-P5-TPA and TPCN-ph-TPA. Hydrogen atoms and solvent molecules are omitted for clarity. The dihedral angles of the triphenyl moieties are shown here. (d) Schematic diagrams of conformations and charge transfer mechanisms for the traditional donor-acceptor (D-A) structure and pillar[5]arene-bridged D-A structure. Different photoluminescent properties and responsiveness are also proposed. AIE: Aggregation-Induced Emission; TBCT: Through-Bond Charge Transfer; TSCT: Through-Space Charge Transfer; P5: Pillar[5]arene; LE: Local Excited; RIM: Restriction of Intramolecular Motion

3. (a) TPCN-P5-TPA和 (b) TPCN-ph-TPA的化学结构和合成路线。条件:i) 钯(PPh3)4,K2一氧化碳3、甲苯/EtOH/H2O (3:1:1, v/v/v),12 h,85˚C;ii) 钀(PPh3)4,K2一氧化碳3,THF/H2O (4:1, v/v),48 h,90˚C。(c) TPCN-P5-TPA和TPCN-ph-TPA的单晶结构。为了清楚起见,省略了氢原子和溶剂分子。此处显示了三苯基单元的二面角。(d) 传统供体–受体(D-A)结构和柱[5]芳烃桥D-A结构的构象和电荷转移机制的示意图。还提出了不同的光致发光特性和响应性。AIE:聚集诱导发射;TBCT:直通债券费用转移;TSCT:通空间电荷转移;P5:柱[5]芳烃;LE:局部兴奋;RIM:限制分子内运动

Figure 4. Structural formulas and cartoon representations of triphenylamine[3]arenes (TPA[3]) and their UV/Vis absorption and luminescent properties: (a) UV/Vis absorption spectra of different TPA[3] (0.01 mM in toluene); (b) their corresponding delayed fluorescence spectra; (c) time-resolved transient photoluminescence decay curves. Iodine Adsorption and Retention: (d) static iodine adsorption of different TPA[3] at 1 bar and 343 K; (e) their corresponding iodine retention tests after exposure to air at 298 K and 1 bar; (f) EDS mapping of iodine in M-TPA[3]-CN@I₂ at 1 bar (red indicates the uniform adsorption of iodine on M-TPA[3]-CN)

4. 三苯胺[3]芳烃(TPA[3])的结构式和卡通表示和TPA[3]的紫外/可见吸收和发光特性:(a) 不同TPA[3]的紫外/可见光(甲苯中为0.01 mM),(b) 它们相应的延迟荧光光谱,以及(c) 时间分辨瞬态光致发光衰减曲线。碘吸附和保留:(d) 不同TPA[3]在1 bar和343 K下的静态碘吸附,(e) 在298 K和1 bar的空气中暴露后它们相应的碘保留测试,(f) 碘在1 bar的EDS映射M-TPA[3]-CN@I2,红色表示碘在M-TPA[3]-CN上的均匀吸附

该模式以共价连接为核心,将TPE、TPA等AIE活性单元直接嵌入柱芳烃大环骨架,形成整合型结构。合成上需精准控制反应条件,可通过修饰柱芳烃或AIE单元优化分子设计,灵活性高。发光调控依托柱芳烃刚性结构限制AIE单元分子内运动(RIM),减少非辐射衰减,部分体系还能通过柱芳烃骨架构象变化或供体–受体电子分离(如TSCT)调节发射特性,甚至实现单分子白光发射、热激活延迟荧光(TADF)等复杂光物理过程。性能上结构稳定性强,AIE单元与柱芳烃结合紧密,功能多样性突出,主要应用于光电子器件(如白光发光二极管)、先进发光材料(如高量子产率TADF材料)及基于构象变化的分子识别与传感领域。

3. AIE充当客体与柱芳烃形成主客体络合

在涉及柱芳烃主体的组装过程中,AIE活性分子可以被功能性修饰,以作为能够参与主客体相互作用的客体组件。这使得能够精确地它们的光物理性质的调制。柱芳烃的存在不仅为客体分子提供了一个组织良好和可预测的空间排列,而且还允许通过改变结合模式、缔合强度或外部刺激来调节它们的发光行为。这种对发射的超分子控制提高了AIE系统的复杂性和响应性,从而扩大了它们在高灵敏度传感、防伪技术、生物成像和刺激反应药物输送方面的潜在应用。

2024年,白倩、王兴火和吴明雪等提出了离散大环聚合物主体的概念来构建超分子发光体系[46] (图5),为柱芳烃与AIE分子协同增强发光提供新范式。该体系将含2~3个柱[5]芳烃单元的多头柱芳烃(P2, P3)、嵌段聚合物F127与AIE分子(TPE-(CN)4,DSA-(TACN)2)结合,通过主客体作用实现级联超分子组装诱导发光增强(SAIEE)。

多头柱芳烃的柱[5]芳烃单元与AIE分子形成稳定主客体复合物(如P2与TPE-(CN)4为2:1结合),限制AIE分子运动(RIM)以增强发光;嵌段聚合物F127的加入后,其与柱芳烃-AIE复合物形成三元组装体进一步增强了在水溶液中的SAIEE性能。通过主–客体相互作用比较了水柱[5]芳烃和AIE分子的二元组装,聚合物的加入提供了双重限制力,导致了稳定的SAIEE在水中的性能,并显著提高了量子产率。

该体系还可构建人工光捕获系统,且生物相容性良好,成功应用于HeLa细胞成像,拓展了柱芳烃-AIE体系在生物医学领域的应用。

Figure 5. Schematic illustration of the cascade SAIEE supramolecular assembly system in water based on discrete macrocyclic polymer hosts and AIE molecules, as well as its applications in artificial light-harvesting systems and bioimaging fields

5. 基于离散大环聚合物宿主和AIE分子的水中级联SAIEE超分子组装系统及其在人工光捕获系统和生物成像领域的应用示意图

2025年,杨英威课题组通过将胞嘧啶部分引入柱芳烃框架和利用双位TPE-G3客体[47],不仅表现出经典的AIE性质,而且在与特定金属离子结合时显示出超分子组装诱导的增强发射(SAIEE)效应(图6)。设计的基本原理强调空间预组织,通过配位基序选择性结合,以及通过RIM进行荧光放大。这种方法有效地连接了合成主客体化学和响应的光物理,使水环境中能够精确的分子识别、信号转导和污染物去除能力。

Figure 6. Illustration of the silver ions’ detection and separation process using the recyclable supramolecular assembly G ⊂ CP5L

6. 利用可回收超分子组装体G ⊂ CP5L实现银离子检测与分离过程的示意图

Figure 7. (a) Synthetic route to amphiphilic [2]biphenyl-extended-pillar[6]arenes (AM-[2]BP-ExP6). (b) Cartoon representation of AM-[2]BP-ExP6 and AM-[2]BP-ExP6⊃QTPE self-assembly in water

7. (a) 两亲性[2]联苯延伸柱[6]芳烃(AM-[2]BP-ExP6)的合成路线;(b) AM-[2]BP-ExP6及AM-[2]BP-ExP6⊃QTPE 在水中自组装的示意图

2023年,秦昭和姚勇对TPE-G3进行改性可以得到TPE-G4。合理地设计和合成了一种两亲性的[2]联苯延伸柱[6]芳烃(AM-[2]BPExP6),其中聚乙二醇链赋予了亲水性,一个刚性的大环腔提供了疏水结合结构域(图7) [48]。这一独特的结构基序使AM-[2]BP-ExP6能够在水中自组装成纤维聚集体,与季铵盐改性的四苯基乙烯客体(TPE-G4)相互作用,形成稳定的2:1主客体络合物,表现出明显的荧光增强。得到的超分子粒子具有良好的球形和强烈的蓝色发射,表现出典型的AIE行为,由于RIMS的聚集,荧光增强,并进一步应用于生物成像,具有良好的细胞兼容性。

此模式基于非共价主客体相互作用,AIE分子经功能修饰后作为客体,与柱芳烃主体组装形成稳定络合体系,部分场景会引入嵌段聚合物等第三方组分优化性能。组装过程可逆性好,柱芳烃空腔为AIE客体提供有序排列空间,避免随机聚集导致的荧光猝灭;发光调控依赖主客体结合强度、结合模式的变化,外界刺激(如加入特定分子、环境因素改变)可改变结合状态,进而调节发光强度与波长,部分体系还能实现超分子组装诱导发光增强(SAIEE)。性能上体系构建简便、无需复杂共价合成,生物相容性易通过引入水溶性组分调控,核心应用于生物医学领域(如细胞成像、刺激响应型药物递送)、环境监测与污染物去除(如金属离子检测回收)及人工光捕获系统构建。

从连接方式看,前者为共价连接、结构稳定,后者为非共价作用、可逆性强;从调控重点看,前者侧重通过分子设计实现复杂光物理功能,后者侧重通过外界刺激灵活调控发光与应用性能;从应用场景看,前者聚焦光电子与先进发光材料,后者聚焦生物医学与环境领域,二者互补构成柱芳烃-AIE超分子体系的核心研究方向。其对比如表1

Table 1. Comparison of the two modes in terms of core structural design, luminescence regulation mechanism, performance advantages, and application-focused fields

1. 两种模式在结构设计核心、发光调控机制、性能优势、应用侧重领域的对比

对比 维度

AIE分子构筑柱芳烃主体模式

AIE充当客体与柱芳烃形成主客体络合模式

结构 设计 核心

将AIE单元(TPE/TPA)直接嵌入柱芳烃大环 骨架,形成共价连接的整合型结构

AIE分子经功能修饰作为客体,与柱芳烃主体通过非共价主客体相互作用组装

发光 调控 机制

1. 依托柱芳烃刚性结构限制AIE单元分子 内运动(RIM),促进辐射跃迁

2. 柱芳烃骨架构象变化(如扭曲)可调节AIE 单元发光特性

3. 部分体系通过供体–受体电子分离诱导电荷 转移 (如TSCT)调控发射

1. 柱芳烃主体空腔为AIE客体提供有序排列空间,避免 随机聚集导致的荧光猝灭

2. 主客体结合强度、结合模式变化可调节AIE客体发光 强度与波长

3. 引入第三方组分(如嵌段聚合物)可进一步增强发光调控效果(如SAIEE)

性能 优势

1. 结构稳定性高,AIE单元与柱芳烃结合紧密, 不易脱离

2. 可实现复杂光物理过程(如单分子白光发射、TADF),功能多样性强

3. 分子设计灵活性高,可通过修饰柱芳烃或AIE单元优化性能

1. 组装过程可逆性好,便于外界刺激(如GSH、极性客体)调控发光与功能(如药物释放)

2. 体系构建简便,无需复杂共价合成,易于批量制备

3. 生物相容性易调控(如引入水溶性聚合物),适合生物 医学应用(如细胞成像、药物递送)

应用 侧重 领域

1. 光电子器件(如白光发光二极管)

2. 先进发光材料(如高量子产率TADF材料)

3. 分子识别与传感(基于构象变化的荧光响应)

1. 生物医学领域(如细胞成像、刺激响应型药物递送系统)

2. 环境监测与污染物去除(如金属离子检测与回收)

3. 人工光捕获系统构建

4. 结论和展望

总之,合理构建高性能发光超分子体系的关键,在于充分利用AIEgens与大环主体之间独特的协同效应。本综述系统总结了近年来基于大环导向组装策略、特别是以TPE和TPA为代表的AIE活性超分子结构的研究进展。无论是将AIEgen直接嵌入大环骨架,还是借助主客体作用构建AIE活性复合物,该类体系均展现出显著的发光增强效应、优越的构型可控性以及灵敏的外界刺激响应能力。作为典型AIEgens,TPE与TPE在荧光超分子系统中表现出明确的结构–性能关联:大环框架不仅可锁定其构象以促进辐射跃迁,还为主–客体识别、环境响应及外场调控等提供了多样化的发光调制路径。

展望未来,该领域仍需要在组装机制、动力学过程与光物理性质等方面开展深入系统的研究,以建立更完备的理论框架。关键发展方向包括:引入多刺激响应性以实现精准的时空调控,开发兼具生物相容性与刺激自适应性的新型功能材料。通过结合计算模拟、先进光谱学方法与模块化超分子设计策略,将有力推动高性能材料的研发,为传感、成像、光电子器件及智能软物质系统提供新材料基础。总体而言,聚集诱导发光(AIE)体系的持续创新将进一步拓展超分子光物理的研究边界,并为下一代发光材料与技术的突破奠定基础。

参考文献

[1] Gao, Z., Han, Y., Chen, S., Li, Z., Tong, H. and Wang, F. (2017) Photoresponsive Supramolecular Polymer Networks via Hydrogen Bond Assisted Molecular Tweezer/Guest Complexation. ACS Macro Letters, 6, 541-545. [Google Scholar] [CrossRef] [PubMed]
[2] Hart, L.R., Hunter, J.H., Nguyen, N.A., Harries, J.L., Greenland, B.W., Mackay, M.E., et al. (2014) Multivalency in Healable Supramolecular Polymers: The Effect of Supramolecular Cross-Link Density on the Mechanical Properties and Healing of Non-Covalent Polymer Networks. Polymer Chemistry, 5, 3680-3688. [Google Scholar] [CrossRef
[3] Wang, H., Ji, X., Li, Y., Li, Z., Tang, G. and Huang, F. (2018) An ATP/ATPase Responsive Supramolecular Fluorescent Hydrogel Constructed via Electrostatic Interactions between Poly(Sodium-P-Styrenesulfonate) and a Tetraphenylethene Derivative. Journal of Materials Chemistry B, 6, 2728-2733. [Google Scholar] [CrossRef] [PubMed]
[4] Chen, H., Zeng, X., Tham, H.P., Phua, S.Z.F., Cheng, W., Zeng, W., et al. (2019) NIR-Light-Activated Combination Therapy with a Precise Ratio of Photosensitizer and Prodrug Using a Host-Guest Strategy. Angewandte Chemie International Edition, 58, 7641-7646. [Google Scholar] [CrossRef] [PubMed]
[5] Yang, K., Wen, J., Chao, S., Liu, J., Yang, K., Pei, Y., et al. (2018) A Supramolecular Photosensitizer System Based on the Host-Guest Complexation between Water-Soluble Pillar[6]arene and Methylene Blue for Durable Photodynamic Therapy. Chemical Communications, 54, 5911-5914. [Google Scholar] [CrossRef] [PubMed]
[6] Yu, G., Zhao, X., Zhou, J., Mao, Z., Huang, X., Wang, Z., et al. (2018) Supramolecular Polymer-Based Nanomedicine: High Therapeutic Performance and Negligible Long-Term Immunotoxicity. Journal of the American Chemical Society, 140, 8005-8019. [Google Scholar] [CrossRef] [PubMed]
[7] Pedersen, C.J. (1967) Cyclic Polyethers and Their Complexes with Metal Salts. Journal of the American Chemical Society, 89, 2495-2496. [Google Scholar] [CrossRef
[8] Wu, Y., Aslani, S., Han, H., Tang, C., Wu, G., Li, X., et al. (2024) Mirror-Image Cyclodextrins. Nature Synthesis, 3, 698-706. [Google Scholar] [CrossRef
[9] Harada, A. (2001) Cyclodextrin-Based Molecular Machines. Accounts of Chemical Research, 34, 456-464. [Google Scholar] [CrossRef] [PubMed]
[10] Crini, G. (2014) Review: A History of Cyclodextrins. Chemical Reviews, 114, 10940-10975. [Google Scholar] [CrossRef] [PubMed]
[11] Ikeda, A. and Shinkai, S. (1997) Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. Chemical Reviews, 97, 1713-1734. [Google Scholar] [CrossRef] [PubMed]
[12] Freeman, W.A., Mock, W.L. and Shih, N.Y. (1981) Cucurbituril. Journal of the American Chemical Society, 103, 7367-7368. [Google Scholar] [CrossRef
[13] Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. and Nakamoto, Y. (2008) Para-Bridged Symmetrical Pillar[5]arenes: Their Lewis Acid Catalyzed Synthesis and Host-Guest Property. Journal of the American Chemical Society, 130, 5022-5023. [Google Scholar] [CrossRef] [PubMed]
[14] Cao, D., Kou, Y., Liang, J., Chen, Z., Wang, L. and Meier, H. (2009) A Facile and Efficient Preparation of Pillararenes and a Pillarquinone. Angewandte Chemie International Edition, 48, 9721-9723. [Google Scholar] [CrossRef] [PubMed]
[15] Jie, K., Zhou, Y., Li, E. and Huang, F. (2018) Nonporous Adaptive Crystals of Pillararenes. Accounts of Chemical Research, 51, 2064-2072. [Google Scholar] [CrossRef] [PubMed]
[16] Tashiro, S. and Shionoya, M. (2020) Novel Porous Crystals with Macrocycle-Based Well-Defined Molecular Recognition Sites. Accounts of Chemical Research, 53, 632-643. [Google Scholar] [CrossRef] [PubMed]
[17] Song, S., Zhang, H. and Liu, Y. (2024) Light-Controlled Macrocyclic Supramolecular Assemblies and Luminescent Behaviors. Accounts of Materials Research, 5, 1109-1120. [Google Scholar] [CrossRef
[18] Chen, J., Zhang, Y., Zhao, L., Zhang, Y., Chen, L., Ma, M., et al. (2021) Supramolecular Drug Delivery System from Macrocycle-Based Self-Assembled Amphiphiles for Effective Tumor Therapy. ACS Applied Materials & Interfaces, 13, 53564-53573. [Google Scholar] [CrossRef] [PubMed]
[19] Jiang, N., Wang, Y., Qin, A., Sun, J.Z. and Tang, B.Z. (2019) Effective Enhancement of the Emission Efficiency of Tetraphenylporphyrin in Solid State by Tetraphenylethene Modification. Chinese Chemical Letters, 30, 143-148. [Google Scholar] [CrossRef
[20] Wu, H., Chen, Z., Chi, W., Bindra, A.K., Gu, L., Qian, C., et al. (2019) Structural Engineering of Luminogens with High Emission Efficiency Both in Solution and in the Solid State. Angewandte Chemie International Edition, 58, 11419-11423. [Google Scholar] [CrossRef] [PubMed]
[21] Kim, T., Baek, E., Kim, H., Han, J., Lee, Y., Oh, H., et al. (2025) Tunable Emission Properties of Indolizine-Based Aggregation-Induced Emission Luminogens for White-Light Emission. JACS Au, 5, 3262-3274. [Google Scholar] [CrossRef] [PubMed]
[22] Tsai, W.-K., Wang, C.-I., Liao, C.-H., Yao, C.-N., et al. (2019) Molecular Design of Near-Infrared Fluorescent Pdots for Tumor Targeting: Aggregation-Induced Emission versus Anti-Aggregation-Caused Quenching. Chemical Science, 10, 198-207. [Google Scholar] [CrossRef] [PubMed]
[23] Fan, W., Li, Z., Chen, K., Wang, Z. and Yang, L. (2025) Aggregation-Induced Emission in Natural Product Research: Recent Advances and Future Perspectives. Coordination Chemistry Reviews, 542, Article 216843. [Google Scholar] [CrossRef
[24] Luo, J., Xie, Z., Lam, J.W.Y., Cheng, L., Tang, B.Z., Chen, H., et al. (2001) Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole. Chemical Communications, 2001, 1740-1741. [Google Scholar] [CrossRef] [PubMed]
[25] Huang, B., Chen, W.C., Li, Z., Zhang, J., et al. (2018) Manipulation of Molecular Aggregation States to Realize Polymorphism, AIE, MCL, and TADF in a Single Molecule. Angewandte Chemie International Edition, 57, 12473-12477. [Google Scholar] [CrossRef] [PubMed]
[26] Mei, J., Hong, Y., Lam, J.W.Y., Qin, A., Tang, Y. and Tang, B.Z. (2014) Aggregation-Induced Emission: The Whole Is More Brilliant than the Parts. Advanced Materials, 26, 5429-5479. [Google Scholar] [CrossRef] [PubMed]
[27] Leung, N.L.C., Xie, N., Yuan, W., Liu, Y., Wu, Q., Peng, Q., et al. (2014) Restriction of Intramolecular Motions: The General Mechanism behind Aggregation-Induced Emission. ChemistryA European Journal, 20, 15349-15353. [Google Scholar] [CrossRef] [PubMed]
[28] Li, Q. and Li, Z. (2017) The Strong Light-Emission Materials in the Aggregated State: What Happens from a Single Molecule to the Collective Group. Advanced Science, 4, Article 1600484. [Google Scholar] [CrossRef] [PubMed]
[29] Lou, X.Y. and Yang, Y.W. (2020) Aggregation-Induced Emission Systems Involving Supramolecular Assembly. Aggregate, 1, 19-30. [Google Scholar] [CrossRef
[30] Jiang, B.P., Guo, D.S., Liu, Y.C., Wang, K.P. and Liu, Y. (2014) Photomodulated Fluorescence of Supramolecular Assemblies of Sulfonatocalixarenes and Tetraphenylethene. ACS Nano, 8, 1609-1618. [Google Scholar] [CrossRef] [PubMed]
[31] Ni, J., Min, T., Li, Y., Zha, M., Zhang, P., Ho, C.L., et al. (2020) Planar Aiegens with Enhanced Solid-State Luminescence and ROS Generation for Multidrug-Resistant Bacteria Treatment. Angewandte Chemie International Edition, 59, 10179-10185. [Google Scholar] [CrossRef] [PubMed]
[32] Wang, L., Salguero, C., Lopez, S.A. and Li, J. (2024) Machine Learning Photodynamics Uncover Blocked Non-Radiative Mechanisms in Aggregation-Induced Emission. Chem, 10, 2295-2310. [Google Scholar] [CrossRef
[33] Guan, W.L., Chen, J.F., Liu, J., Shi, B., Yao, H., Zhang, Y., et al. (2024) Macrocycles-Assembled AIE Supramolecular Polymer Networks. Coordination Chemistry Reviews, 507, Article 215717. [Google Scholar] [CrossRef
[34] Tuo, W., Sun, Y., Lu, S., Li, X., Sun, Y. and Stang, P.J. (2020) Pillar[5]arene-Containing Metallacycles and Host-Guest Interaction Caused Aggregation-Induced Emission Enhancement Platforms. Journal of the American Chemical Society, 142, 16930-16934. [Google Scholar] [CrossRef] [PubMed]
[35] Hassanian-Moghaddam, D., Aboudzadeh, M.A. and Ahmadi, M. (2025) Strategies for Designing Luminescent Metallo-Supramolecular Polymer Networks. Coordination Chemistry Reviews, 540, Article 216796. [Google Scholar] [CrossRef
[36] Wang, Z., Nie, J., Qin, W., Hu, Q. and Tang, B.Z. (2016) Gelation Process Visualized by Aggregation-Induced Emission Fluorogens. Nature Communications, 7, Article No. 12033. [Google Scholar] [CrossRef] [PubMed]
[37] Gale, P.A. and Caltagirone, C. (2018) Fluorescent and Colorimetric Sensors for Anionic Species. Coordination Chemistry Reviews, 354, 2-27. [Google Scholar] [CrossRef
[38] Han, X., Han, Y. and Chen, C.F. (2025) Fluorescent Macrocyclic Arenes: Synthesis and Applications. Angewandte Chemie International Edition, 64, e202424276. [Google Scholar] [CrossRef] [PubMed]
[39] Wu, G. and Yang, Y.W. (2024) Macrocycle-Based Fluorochromic Systems. Cell Reports Physical Science, 5, Article 101873. [Google Scholar] [CrossRef
[40] Zhang, R., Xie, Y., Li, X., Wang, K. and Hu, X.Y. (2025) Supramolecular Artificial Light-Harvesting Systems Incorporating Aggregation-Induced Emissive Components: From Fabrication to Efficient Energy Conversion. Chemical Communications, 61, 6851-6863. [Google Scholar] [CrossRef] [PubMed]
[41] Feng, H.T., Yuan, Y.X., Xiong, J.B., et al. (2018) Macrocycles and Cages Based on Tetraphenylethylene with Aggregation-Induced Emission Effect. Chemical Society Reviews, 47, 7452-7476. [Google Scholar] [CrossRef] [PubMed]
[42] Han, B., Zhu, L., Wang, X., Bai, M. and Jiang, J. (2018) Conformation-Controlled Emission of AIE Luminogen: A Tetraphenylethene Embedded Pillar[5]arene Skeleton. Chemical Communications, 54, 837-840. [Google Scholar] [CrossRef] [PubMed]
[43] Tian, X., Zuo, M., Niu, P., Velmurugan, K., Wang, K., Zhao, Y., et al. (2021) Orthogonal Design of a Water-Soluble meso-Tetraphenylethene-Functionalized Pillar[5]arene with Aggregation-Induced Emission Property and Its Therapeutic Application. ACS Applied Materials & Interfaces, 13, 37466-37474. [Google Scholar] [CrossRef] [PubMed]
[44] Li, Q., Wu, Y., Cao, J., Liu, Y., Wang, Z., Zhu, H., et al. (2022) Pillararene-Induced Intramolecular Through-Space Charge Transfer and Single-Molecule White-Light Emission. Angewandte Chemie International Edition, 61, e202202381. [Google Scholar] [CrossRef] [PubMed]
[45] Fang, W., Zhang, J., Guo, M., Zhao, Y. and Sue, A.C.H. (2024) Triphenylamine[3]arenes: Streamlining Synthesis of a Versatile Macrocyclic Platform for Supramolecular Architectures and Functionalities. Angewandte Chemie International Edition, 63, e202409120. [Google Scholar] [CrossRef] [PubMed]
[46] Zhu, Y.-Q., Chen, Z., Chen, Z.-Y., et al. (2024) Discrete Macrocyclic Polymer Hosts‐Induced Cascade Luminescence Enhancement and Application in Bioimaging. ChemistryA European Journal, 30, e202402808. [Google Scholar] [CrossRef] [PubMed]
[47] Zhang, K., Lou, X., Wang, Y., Huan, W. and Yang, Y. (2025) Emission Enhancement Induced by the Supramolecular Assembly of Leggero Pillar[5]arenes for the Detection and Separation of Silver Ions. Chinese Chemical Letters, 36, Article 110464. [Google Scholar] [CrossRef
[48] Chen, T., Wang, J., Tang, R., Huang, Y., Zhao, Q. and Yao, Y. (2023) An Amphiphilic [2]biphenyl-Extended Pillar[6]arene: Synthesis, Controllable Self-Assembly in Water and Application in Cell-Imaging. Chinese Chemical Letters, 34, Article 108088. [Google Scholar] [CrossRef