|
[1]
|
Zhu, J., Wang, T., Chen, L. and Du, H. (2021) Virulence Factors in Hypervirulent Klebsiella pneumoniae. Frontiers in Microbiology, 12, Article 642484. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
卢智奇, 王淑颖. 2014-2018年中国某三级医院碳青霉烯类抗菌药物用量与耐碳青霉烯类肺炎克雷伯菌检出的相关性研究[J]. 中国抗生素杂志, 2024, 49(11): 1231-1237.
|
|
[3]
|
Pu, D., Zhao, J., Chang, K., Zhuo, X. and Cao, B. (2023) “Superbugs” with Hypervirulence and Carbapenem Resistance in Klebsiella pneumoniae: The Rise of Such Emerging Nosocomial Pathogens in China. Science Bulletin, 68, 2658-2670. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Liu, Y. (1986) Klebsiella pneumoniae Liver Abscess Associated with Septic Endophthalmitis. Archives of Internal Medicine, 146, 1913-1916. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Siu, L.K., Yeh, K., Lin, J., Fung, C. and Chang, F. (2012) Klebsiella pneumoniae Liver Abscess: A New Invasive Syndrome. The Lancet Infectious Diseases, 12, 881-887. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Mukherjee, S., Bhadury, P., Mitra, S., Naha, S., Saha, B., Dutta, S., et al. (2023) Hypervirulent Klebsiella pneumoniae Causing Neonatal Bloodstream Infections: Emergence of NDM-1-Producing Hypervirulent ST11-K2 and ST15-K54 Strains Possessing PLVPK-Associated Markers. Microbiology Spectrum, 11, e04121-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lin, Y., Lu, M., Tang, H., Liu, H., Chen, C., Liu, K., et al. (2011) Assessment of Hypermucoviscosity as a Virulence Factor for Experimental Klebsiella pneumoniae Infections: Comparative Virulence Analysis with Hypermucoviscosity-Negative Strain. BMC Microbiology, 11, Article No. 50. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Russo, T.A., Lebreton, F. and McGann, P.T. (2025) A Step Forward in Hypervirulent Klebsiella pneumoniae Diagnostics. Emerging Infectious Diseases, 31,1-3. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, L., Li, S., Wei, X., Lu, Z., Qin, X. and Li, M. (2023) Infection with Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae: Clinical, Virulence and Molecular Epidemiological Characteristics. Antimicrobial Resistance & Infection Control, 12, Article No. 124. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Liu, X., Xu, Q., Yang, X., Heng, H., Yang, C., Yang, G., et al. (2025) Capsular Polysaccharide Enables Klebsiella pneumoniae to Evade Phagocytosis by Blocking Host-Bacteria Interactions. mBio, 16, e03838-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zierke, L., Mourad, R., Kohler, T.P., Müsken, M. and Hammerschmidt, S. (2025) Influence of the Polysaccharide Capsule on Virulence and Fitness of Klebsiella pneumoniae. Frontiers in Microbiology, 16, Article 1450984. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ke, Y., Zeng, Z., Liu, J. and Ye, C. (2025) Capsular Polysaccharide as a Potential Target in Hypervirulent and Drug-Resistant Klebsiella pneumoniae Treatment. Infection and Drug Resistance, 18, 1253-1262. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Goh, K.J., Altuvia, Y., Argaman, L., Raz, Y., Bar, A., Lithgow, T., et al. (2024) RIL-Seq Reveals Extensive Involvement of Small RNAs in Virulence and Capsule Regulation in Hypervirulent Klebsiella pneumoniae. Nucleic Acids Research, 52, 9119-9138. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Choby, J.E., Howard‐Anderson, J. and Weiss, D.S. (2019) Hypervirulent Klebsiella pneumoniae—Clinical and Molecular Perspectives. Journal of Internal Medicine, 287, 283-300. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Russo, T.A. and Marr, C.M. (2019) Hypervirulent Klebsiella pneumoniae. Clinical Microbiology Reviews, 32, e00001-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Muner, J.J., de Oliveira, P.A.A., Baboghlian, J., Moura, S.C., de Andrade, A.G., de Oliveira, M.M., et al. (2024) The Transcriptional Regulator Fur Modulates the Expression of Uge, a Gene Essential for the Core Lipopolysaccharide Biosynthesis in Klebsiella pneumoniae. BMC Microbiology, 24, Article No. 279. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, L., Xu, X., Cheng, P., Yu, Z., Li, M., Yu, Z., et al. (2025) Klebsiella pneumoniae Derived Outer Membrane Vesicles Mediated Bacterial Virulence, Antibiotic Resistance, Host Immune Responses and Clinical Applications. Virulence, 16, Article ID: 2449722. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
聂子涵, 肖丽生, 赵西林, 等. 肺炎克雷伯菌毒力因子与耐药机制及其相互影响[J]. 中国抗生素杂志, 2025, 50(1): 6-14.
|
|
[19]
|
Chen, Y., Chang, H., Lai, Y., Pan, C., Tsai, S. and Peng, H. (2004) Sequencing and Analysis of the Large Virulence Plasmid pLVPK of Klebsiella pneumoniae CG43. Gene, 337, 189-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tang, H.L., Chiang, M.K., Liou, W.J., Chen, Y.T., Peng, H.L., Chiou, C.S., et al. (2010) Correlation between Klebsiella pneumoniae Carrying pLVPK-Derived Loci and Abscess Formation. European Journal of Clinical Microbiology & Infectious Diseases, 29, 689-698. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liu, C. and Guo, J. (2019) Hypervirulent Klebsiella pneumoniae (Hypermucoviscous and Aerobactin Positive) Infection over 6 Years in the Elderly in China: Antimicrobial Resistance Patterns, Molecular Epidemiology and Risk Factor. Annals of Clinical Microbiology and Antimicrobials, 18, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Rosen, D.A., Pinkner, J.S., Walker, J.N., Elam, J.S., Jones, J.M. and Hultgren, S.J. (2008) Molecular Variations in Klebsiella pneumoniae and Escherichia coli FimH Affect Function and Pathogenesis in the Urinary Tract. Infection and Immunity, 76, 3346-3356. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wang, H., Wilksch, J.J., Chen, L., Tan, J.W.H., Strugnell, R.A. and Gee, M.L. (2016) Influence of Fimbriae on Bacterial Adhesion and Viscoelasticity and Correlations of the Two Properties with Biofilm Formation. Langmuir, 33, 100-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
徐水宝, 杨思宇, 翁珊珊, 等. 高毒力肺炎克雷伯菌血清型、毒力基因分布及分子标志物探索[J]. 微生物与感染, 2019, 14(6): 338-344.
|
|
[25]
|
Wu, C., Huang, Y., Zhou, P., Gao, H., Wang, B., Zhao, H., et al. (2024) Emergence of Hypervirulent and Carbapenem-Resistant Klebsiella pneumoniae from 2014-2021 in Central and Eastern China: A Molecular, Biological, and Epidemiological Study. BMC Microbiology, 24, Article No. 465. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Shi, Q., Lan, P., Huang, D., Hua, X., Jiang, Y., Zhou, J., et al. (2018) Diversity of Virulence Level Phenotype of Hypervirulent Klebsiella pneumoniae from Different Sequence Type Lineage. BMC Microbiology, 18, Article No. 94. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ferreira, R.L., da Silva, B.C.M., Rezende, G.S., Nakamura-Silva, R., Pitondo-Silva, A., Campanini, E.B., et al. (2019) High Prevalence of Multidrug-Resistant Klebsiella pneumoniae Harboring Several Virulence and β-Lactamase Encoding Genes in a Brazilian Intensive Care Unit. Frontiers in Microbiology, 9,Article 3198. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhou, Y., Wu, C., Wang, B., Xu, Y., Zhao, H., Guo, Y., et al. (2023) Characterization Difference of Typical KL1, KL2 and ST11-KL64 Hypervirulent and Carbapenem-Resistant Klebsiella pneumoniae. Drug Resistance Updates, 67, Article ID: 100918. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hu, D., Chen, W., Zhang, Q., Li, M., Yang, Z., Wang, Y., et al. (2022) Prevalence of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae and Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae in China Determined via Mouse Lethality Tests. Frontiers in Cellular and Infection Microbiology, 12, Article 882210. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Han, Y., Wen, X., Zhao, W., Cao, X., Wen, J., Wang, J., et al. (2022) Epidemiological Characteristics and Molecular Evolution Mechanisms of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae. Frontiers in Microbiology, 13, Article 1003783. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Tang, B., Yang, A., Liu, P., Wang, Z., Jian, Z., Chen, X., et al. (2023) Outer Membrane Vesicles Transmitting blaNDM-1 Mediate the Emergence of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 67, e01444-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Khan, A.U., Maryam, L. and Zarrilli, R. (2017) Structure, Genetics and Worldwide Spread of New Delhi M等lo-β-Lactamase (NDM): A Threat to Public Health. BMC Microbiology, 17, Article No. 101. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wu, L., Guo, M., Ke, S., Lin, Y., Pang, Y., Nguyen, H.V., et al. (2020) Characterization of the Genetic Background of KPC-2-Producing Klebsiella pneumoniae with Insertion Elements Disrupting the ompK36 Porin Gene. Microbial Drug Resistance, 26, 1050-1057. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Car, H., Dobrić, M., Pospišil, M., Nađ, M., Luxner, J., Zarfel, G., et al. (2024) Comparison of Carbapenemases and Extended-Spectrum β-Lactamases and Resistance Phenotypes in Hospital-and Community-Acquired Isolates of Klebsiella pneumoniae from Croatia. Microorganisms, 12, Article 2224. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Tian, D., Liu, X., Chen, W., Zhou, Y., Hu, D., Wang, W., et al. (2022) Prevalence of Hypervirulent and Carbapenem-Resistant Klebsiella pneumoniae under Divergent Evolutionary Patterns. Emerging Microbes & Infections, 11, 1936-1949. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liao, Y., Gong, J., Yuan, X., Wang, X., Huang, Y. and Chen, X. (2024) Virulence Factors and Carbapenem-Resistance Mechanisms in Hypervirulent Klebsiella pneumoniae. Infection and Drug Resistance, 17, 1551-1559. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yang, X., Xie, M., Xu, Q., Ye, L., Yang, C., Dong, N., et al. (2022) Transmission of pLVPK-Like Virulence Plasmid in Klebsiella pneumoniae Mediated by an Incl1 Conjugative Helper Plasmid. iScience, 25, Article ID: 104428. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Du, P., Zhang, Y. and Chen, C. (2018) Emergence of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae. The Lancet Infectious Diseases, 18, 23-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Jiang, J., Wang, L., Hu, Y., Chen, X., Li, P., Zhang, J., et al. (2025) Global Emergence of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae Driven by an IncFIIk34 KPC-2 Plasmid. eBioMedicine, 113, Article ID: 105627. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Xia, Y., Zhou, P., Gao, H., Wu, X., Zhou, Y., Han, W., et al. (2025) Co-Production of KPC-2 and NDM-5 in a Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolate: Genetic Insights and Risks. Infection and Drug Resistance, 18, 3329-3341. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zhang, Y., Wang, X., Wang, S., Sun, S., Li, H., Chen, H., et al. (2021) Emergence of Colistin Resistance in Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae under the Pressure of Tigecycline. Frontiers in Microbiology, 12, Article 756580. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Huang, J., Yi, M., Yuan, Y., Xia, P., Yang, B., Liao, J., et al. (2022) Emergence of a Fatal ST11-KL64 Tigecycline-Resistant Hypervirulent Klebsiella pneumoniae Clone Cocarrying blaNDM and blaKPC in Plasmids. Microbiology Spectrum, 10, e02539-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Yu, F., Lv, J., Niu, S., Du, H., Tang, Y., Bonomo, R.A., et al. (2018) In Vitro Activity of Ceftazidime-Avibactam against Carbapenem-Resistant and Hypervirulent Klebsiella pneumoniae Isolates. Antimicrobial Agents and Chemotherapy, 62, e01031-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Xu, C., Dong, N., Chen, K., Yang, X., Zeng, P., Hou, C., et al. (2022) Bactericidal, Anti-Biofilm, and Anti-Virulence Activity of Vitamin C against Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae. iScience, 25, Article ID: 103894. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Fang, C., Dai, X., Xiang, L., Qiu, Y., Yin, M., Fu, Y., et al. (2023) Isolation and Characterization of Three Novel Lytic Phages against K54 Serotype Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae. Frontiers in Cellular and Infection Microbiology, 13, Article 1265011. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Du, Q., Xu, Q., Pan, F., Shi, Y., Yu, F., Zhang, T., et al. (2023) Association between Intestinal Colonization and Extraintestinal Infection with Carbapenem-Resistant Klebsiella pneumoniae in Children. Microbiology Spectrum, 11, e04088-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
缪兴全, 孟秀娟. 患者及医院环境CRE主动筛查及防控策略研究进展[J]. 中国感染控制杂志, 2022, 21(12): 1257-1263.
|
|
[48]
|
Wan, S., Zhou, A., Chen, R., Fang, S., Lu, J., Lv, N., et al. (2024) Metagenomics Next-Generation Sequencing (mNGS) Reveals Emerging Infection Induced by Klebsiella pneumoniaeniae. International Journal of Antimicrobial Agents, 63, Article ID: 107056. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Li, J., Tang, M., Liu, Z., Xia, F., Min, C., Hu, Y., et al. (2022) Molecular and Clinical Characterization of Hypervirulent Klebsiella pneumoniae Isolates from Individuals with Urinary Tract Infections. Frontiers in Cellular and Infection Microbiology, 12, Article 925440. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
孟秀娟, 吴安华. 如何应对多重耐药菌医院感染的严峻挑战[J]. 中国感染控制杂志, 2019, 18(3): 185-192.
|
|
[51]
|
Mohammed, R., Nader, S.M., Hamza, D.A. and Sabry, M.A. (2024) Occurrence of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae in Oysters in Egypt: A Significant Public Health Issue. Annals of Clinical Microbiology and Antimicrobials, 23, Article No. 53. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Mario, E., Hamza, D. and Abdel-Moein, K. (2023) Hypervirulent Klebsiella pneumoniae among Diarrheic Farm Animals: A Serious Public Health Concern. Comparative Immunology, Microbiology and Infectious Diseases, 102, Article ID: 102077. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Zou, H., Zhou, Z., Berglund, B., Zheng, B., Meng, M., Zhao, L., et al. (2023) Persistent Transmission of Carbapenem-Resistant, Hypervirulent Klebsiella pneumoniae between a Hospital and Urban Aquatic Environments. Water Research, 242, Article ID: 120263. [Google Scholar] [CrossRef] [PubMed]
|