天然产物克服非小细胞肺癌EGFR-TKIs耐药的研究进展
Research Progress on Natural Products Overcoming EGFR-TKIs Resistance in Non-Small Cell Lung Cancer
摘要: 非小细胞肺癌(Non-Small Cell Lung Cancer, NSCLC)是肺癌最主要的病理类型,并且常常携带表皮生长因子受体(Epidermal Growth Factor Receptor, EGFR)突变,因此,EGFR酪氨酸激酶抑制剂(EGFR-Tyrosine Kinase Inhibitor, EGFR-TKIs)被广泛应用于临床,并且取得了显著的疗效。然而,随着治疗的进行,获得性耐药性逐渐显现。近年来,天然产物在增强EGFR-TKIs疗效和逆转获得性耐药方面的研究逐渐增多,成为攻克这类难题的潜在方向。
Abstract: Non-small cell lung cancer (NSCLC) is the most predominant pathological type of lung cancer and frequently harbors epidermal growth factor receptor (EGFR) mutations. As a result, EGFR tyrosine kinase inhibitors (EGFR-TKIs) have been widely used in clinical practice, demonstrating significant therapeutic efficacy. However, acquired resistance gradually emerges with prolonged treatment. In recent years, natural products have gained increasing attention for their potential to enhance the efficacy of EGFR-TKIs and reverse acquired resistance, offering a promising strategy to overcome this challenge.
文章引用:宋起凤, 蒋树龙. 天然产物克服非小细胞肺癌EGFR-TKIs耐药的研究进展[J]. 临床个性化医学, 2025, 4(6): 65-71. https://doi.org/10.12677/jcpm.2025.46478

1. 引言

根据2022年全球癌症统计数据,肺癌再次位居全球恶性肿瘤发病率和死亡率首位,其中非小细胞肺癌约占所有肺癌病例的85% [1]。值得注意的是,EGFR基因突变是非小细胞肺癌的主要驱动因素之一,这使得EGFR靶向治疗成为重要的治疗措施。目前,EGFR-TKIs已发展至第三代,其中奥希替尼作为代表性药物,因其显著的临床疗效已成为EGFR敏感突变(如L858R点突变或19号外显子缺失)患者的一线标准治疗选择[2]。然而,靶向治疗获得性耐药的出现严重制约了临床疗效。近年来,天然产物因其多靶点调控特性和良好的生物安全性,在逆转EGFR-TKIs耐药领域展现出独特优势。该综述系统回顾了天然产物克服EGFR-TKIs耐药的最新研究进展,旨在为开发新型联合治疗策略提供理论依据。

2. 耐药机制

非小细胞肺癌患者在接受EGFR酪氨酸激酶抑制剂治疗一段时间后,肿瘤细胞逐渐对药物失去敏感性。耐药机制有EGFR突变、MET扩增、下游信号通路异常激活、表型转化、肿瘤微环境重塑、肿瘤干细胞富集等,其中主要的是EGFR突变、MET扩增[3]

2.1. EGFR突变

EGFR是EGFR-TKIs的作用靶点,通过抑制下游信号通路从而抑制肿瘤细胞生长。吉非替尼、厄洛替尼、阿法替尼等第一代和第二代EGFR-TKIs显著延长了具有Ex19del和L858R突变的晚期非小细胞肺癌患者的无进展生存期及总生存期。但随着治疗的进行,在接受第一代或第二代EGFR-TKIs的患者中,50%~60%会发生T790M突变[4]。T790M突变通过在药物与突变型EGFR蛋白结合时造成空间阻碍而导致耐药。第三代EGFR-TKIs奥西替尼通过与ATP口袋中的C797残基形成共价键来克服T790M引发的耐药,但在接受奥西替尼二线治疗的患者中,会出现T790M突变丢失,会导致早期耐药与较差的生存率[5]。在AURA 3试验中,有49%的患者出现了T790M丢失[6]。除了T790M突变丢失,在奥西替尼的治疗时,还会出现C797突变。C797残基的突变会阻碍奥西替尼与突变型EGFR的结合,导致耐药的产生。研究发现C797S突变在奥西替尼的二线治疗中更常见,在AURA 3试验中,有15%的疾病进展患者检测到C797突变[6],而在FLAURA试验中,7%的接受一线奥西替尼治疗的进展患者同样检测到该突变[7]。这些发现强调了在治疗过程中监测EGFR突变的重大意义,以便及时调整治疗策略。

2.2. MET扩增

MET是一种位于细胞表面的受体酪氨酸激酶(RPTK),其专属配体为肝细胞生长因子(HGF)。当HGF与MET蛋白结合后,会激活多个下游信号通路包括EGFR下游的PI3K/AKT、JAK/STAT3与RAS/MAPK/ERK等。MET扩增通常发生在局灶性或区域基因复制的情况下,通过断裂–融合–桥接等机制产生[8]。在MET扩增的检测中,荧光原位杂交(FISH)优于第二代测序,通常采用MET基因拷贝数与第7号染色体着丝粒(CEP7)的比率(MET/CEP7) ≥ 2.0,且每个细胞的MET信号 ≥ 5个作为FISH确定MET扩增的标准[9]。在治疗过程中,疾病进展可归因于MET扩增的发生。一项研究表明,在接受奥希替尼一线治疗的患者中,MET扩增的发生率为14% [10]。一项基于第二代测序(NGS)液体活检的回顾性研究显示,MET扩增在一线奥希替尼耐药的患者中最为常见[11]

3. 天然产物的作用机制

天然产物主要来源于植物、动物和微生物,具有丰富的化学成分和生物活性,能够通过多种机制对抗癌症。既往的研究发现天然产物中的多种活性成分,如黄酮类、生物碱、多糖、醌类、萜类、木脂素类、香豆素类、皂苷类和酚酸类,显示出对EGFR-TKIs耐药性的潜在作用,通过多种机制缓解EGFR-TKIs的耐药性。

3.1. 针对EGFR突变及异常激活

EGFR基因耐药突变及野生型EGFR的异常激活会导致耐药,天然产物可通过直接抑制EGFR激酶活性或促进其降解来克服耐药。例如,白桦脂酸能有效靶向野生型EGFR,通过与ATP结合口袋相互作用抑制其活性,并阻断EGFR-AKT-mTOR信号通路,在体内外实验中均能增强EGFR-TKIs疗效并抑制肿瘤生长[12]。桑酸通过抑制EGFR的磷酸化,抑制EGFR/STAT3信号通路的激活,诱导携带L858R/T790M突变EGFR的厄洛替尼耐药细胞凋亡[13]。该研究仅限于细胞实验,缺乏体内数据支持,其作用机制和特异性需在更多模型中验证。槲皮素通过抑制葡萄糖-6-磷酸脱氢酶活性,降低NADPH水平,促进氧化型EGFR T790M降解,延迟耐药发生[14]。但槲皮生物利用度低可能限制其疗效,需结构优化或递送系统改善。葫芦素B和姜黄素分别通过溶酶体和蛋白酶体途径促进EGFR降解,姜黄素还通过抑制转录因子Sp1降低EGFR表达[15] [16]。两者均有多靶点特性,但姜黄素低溶解性和稳定性问题突出,葫芦素B的毒性较强,需谨慎评估治疗窗口。靶向EGFR的天然产物主要通过直接结合抑制或促进降解发挥作用,但多数研究仍处于临床前阶段,缺乏特异性强、药代动力学性质优良的候选分子。

3.2. 针对MET旁路激活

MET在肿瘤的血管生成、侵袭和转移中发挥重要作用。MET的14号突变、扩增和蛋白过表达均可导致EGFR-TKIs耐药。研究表明,木犀草素与奥希替尼联合使用能够抑制HGF的分泌,下调MET表达及磷酸化,阻断AKT通路活化[17]。研究展示了体外和动物数据,但木犀草素作用较广泛,对MET的选择性不足,可能带来脱靶效应。鬼臼毒素能够直接竞争性结合c-MET的ATP位点,抑制激酶活性并诱导凋亡[18]。强效但毒性较大,治疗指数低,结构修饰或低剂量联合用药可能是发展方向。白鲜碱通过抑制c-MET的磷酸化,调节PI3K/AKT/mTOR及MAPK通路,增强EGFR-TKIs耐药肺癌细胞对于吉非替尼和奥希替尼的敏感性[19]。小檗碱作为一种天然存在的MET抑制剂,能够与非磷酸化MET的激酶结构域结合,在体内及体外实验中均增强了奥西替尼的疗效[20]。靶向MET的天然产物以激酶抑制为主,但缺乏高选择性抑制剂,且部分产物毒性较大,未来需探索结构优化或纳米递送系统提高靶向性。

3.3. 针对下游信号通路异常激活

3.3.1. 抑制磷脂酰肌醇-3-羟激酶(Phosphatidylinositol 3-Hydroxy Kinase, PI3K)/蛋白激酶B (Proteinkinase B,PKB,又称AKT)通路

PI3K/AKT通路是细胞内重要的信号转导通路。该通路的激活始于PI3K酶的激活,它通过刺激细胞合成3,4,5-三磷酸磷脂酰肌醇(PIP3),进而促进AKT的磷酸化和激活。活化的AKT能够调节多种下游效应因子,包括影响细胞周期、凋亡和自噬相关蛋白的表达,从而在细胞的生长和存活中发挥关键作用。研究显示,PI3K/AKT信号通路的异常激活与多种癌症的发展密切相关,抑制该通路的活性可以提高肿瘤细胞对治疗的敏感性,有助于克服肿瘤耐药性[21]。巴黎皂苷能够诱导吉非替尼耐药肺癌细胞的凋亡,且其作用机制与抑制PI3K和磷酸化AKT蛋白的表达,下调抗凋亡蛋白Bcl-2及上调促凋亡蛋白Bax、caspase-3和caspase-9的表达有关[22]。从安华黑茶分离得到的没食子酸衍生物与吉非替尼联用可降低p-PI3K、p-AKT和p-mTOR的水平,通过抑制PI3K/mTOR信号通路来增强癌细胞对吉非替尼的敏感性[23]。黄芩素和阿美替尼两种药物的联合应用通过下调p-PI3K和p-AKT的蛋白表达,显著减弱了细胞增殖、触发细胞凋亡,并且抑制裸鼠的肿瘤生长,而不会对其他组织和器官产生不良反应[24]。尽管PI3K/AKT通路调控广泛,天然产物抑制其信号转导时存在潜在毒性风险,但黄芩素与阿美替尼联用所展现的良好安全性特征,突显了其重要的转化研究价值。

3.3.2. 抑制Janus激酶(Janus Kinase, JAK)/信号转导及转录激活因子3 (Signal Transduction and Activator of Transcription 3, STAT3)通路

STAT3是STAT蛋白家族的重要成员,在细胞增殖、分化、凋亡以及免疫调节等过程中发挥关键作用。STAT3的激活通常由细胞因子、激素或生长因子等刺激引发,主要通过JAK激酶或SRC家族激酶介导的酪氨酸磷酸化实现,磷酸化后的STAT3形成同源或异源二聚体,转位至细胞核内,作为转录因子调控多种靶基因的表达,包括与细胞生存、增殖、凋亡抑制以及血管生成相关的基因。抑制EGFR信号传导会诱导STAT3代偿性激活,而激活的STAT3则调节肿瘤生长,使癌细胞能够在靶向治疗的压力下存活,研究发现多种天然产物可以通过抑制该通路发挥作用。例如,苦参碱能够降低H1975细胞中IL-6的mRNA和蛋白水平,同时降低磷酸化JAK1和磷酸化STAT3的水平,通过抑制IL-6/JAK1/STAT3信号通路的活化,增强阿法替尼对携带T790M突变的H1975细胞的敏感性[25]。三叶黄酮类化合物与吉非替尼联合使用显著降低了PC-9R (吉非替尼耐药细胞)中STAT3和ERK的磷酸化水平,并减少了Bcl2和Mcl-1的表达,通过抑制STAT3和ERK信号通路促进吉非替尼耐药肺癌细胞的凋亡[26]。没食子酸抑制EGFR-TKIs耐药细胞的Src磷酸化,通过抑制Src-STAT3介导的信号通路活化,降低了促癌基因的表达,从而诱导细胞凋亡和细胞周期阻滞,没食子酸的安全性较高,其对TKI具有高度选择性,对正常人支气管上皮细胞没有毒性[27]。吉非替尼治疗后,野生型EGFR NSCLC细胞中丙酮酸激酶2 (PKM2)的表达上升。在肿瘤细胞中,PKM2作为蛋白激酶磷酸化STAT3。紫草素与吉非替尼联合治疗时,抑制了PKM2、STAT3、p-STAT3和cyclin D1的表达,从而增强了野生型EGFR NSCLC细胞对吉非替尼的敏感性,但紫草素与吉非替尼合用严重的不良反应,使小鼠体重减轻甚至死亡[28]。柴胡皂苷D联合吉非替尼可通过下调p-STAT3的表达,增强肺癌细胞对吉非替尼的敏感性[29]。羽扇豆醇可以抑制STAT3的核转位和转录活性,下调STAT3靶基因的表达,从而诱导细胞凋亡[30]。各种天然产物在靶向STAT3通路上展现出多样化的作用机制和令人鼓舞的临床前潜力,但紫草素的联合应用的严重毒性警示我们需严格评估其治疗窗口和安全性。相比之下,没食子酸高度的选择性和低毒性,增加了其临床应用的可行性。

3.3.3. 抑制促分裂原活化的蛋白激酶(Mitogen-Activated Protein Kinase, MAPK)通路

MAPK通路是调控细胞增殖、分化和存活的关键信号通路,包含ERK通路、JNK通路和p38通路。ERK通路主要促进细胞增殖,其异常激活与多种癌症的发展密切相关。JNK通路在应激和凋亡中发挥重要作用,可能在不同肿瘤环境下影响肿瘤细胞的生存。p38通路则与炎症反应和细胞周期调控相关,参与肿瘤进展。研究表明,MAPK通路的异常激活与EGFR-TKIs的耐药性的发展有关[21]。例如,香葱素能够抑制MEK1和AKT1/2的激酶活性,从而抑制下游ERK-RSK2和GSK3β信号转导,逆转了奥西替尼耐药,但遗憾的是,并不能抑制p-MEK和p-AKT蛋白低表达肿瘤的生长[31]。具栖冬青苷能够显著降低A549/GR细胞中ERK1/2、p38和JNK的磷酸化水平,抑制上皮间质转化相关蛋白的表达,从而恢复对吉非替尼的敏感性并减轻上皮间质转化的生物学特性[32]。没食子酸与EGFR-TKIs联用可以激活AMPK通路,同时抑制ERK/MAPK和AKT/mTOR通路,导致EGFR-TKIs耐药细胞周期停滞和凋亡[33]。有研究发现,白藜芦醇衍生物TMS (反式3,5,4-三甲氧基二苯乙烯)可通过miR-345靶向MAPK1调控MAPK/c-Fos通路,同时通过miR-498靶向PIK3R1调控AKT/Bcl-2通路,双通路协同作用显著增强吉非替尼诱导的细胞凋亡并克服耐药[34]。在体外和体内研究中,巴黎皂苷I通过下调长非编码RNA MALAT1和灭活STAT3信号通路,抑制吉非替尼耐药NSCLC细胞的活性并诱导细胞凋亡[35]。这些研究表明,靶向干预MAPK通路可以通过阻滞细胞周期、促进凋亡、抑制迁移等多种途径克服耐药,但香葱素对p-MEK和p-AKT低表达肿瘤无效,提示未来研究需依据不同耐药亚型精准选择干预措施。

4. 相关临床试验

一项回顾性研究分析显示,在晚期NSCLC患者中,EGFR-TKIs与人参皂苷Rg3联用组的中位PFS显著长于EGFR-TKIs单用组(12.4个月vs 9.9个月,P = 0.017)。EGFR-TKIs加人参皂苷Rg3组的ORR显著高于单用EGFR-TKIs组(59.6% vs 41.7%, P = 0.049)。但中位OS没有延长趋势(25.4个月vs 21.4个月,P = 0.258)。两组在副作用方面没有显著差异[36]β-榄香素是一种从姜黄中提取的天然植物药物,可以抑制Ras/Mapk信号传导和阻滞细胞周期,可以用于治疗包括NSCLC在内的多种肿瘤。一项临床研究评估β-榄香烯与EGFR-TKIs联合治疗对具有EGFR-TKIs耐药性的晚期非小细胞肺癌的疗效,但结果尚未公布[37]

5. 总结与展望

EGFR-TKIs耐药是非小细胞肺癌治疗面临的重要挑战。临床前研究表明,天然产物可通过多种机制逆转EGFR-TKI耐药。然而,目前尚缺乏相关的大规模临床研究证据支持。随着对EGFR-TKIs耐药机制及天然产物作用机制的深入研究,以及相关临床试验的逐步开展,天然产物有望成为克服EGFR-TKIs耐药的有效策略,从而为EGFR-TKIs耐药患者提供新的治疗希望。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
[2] Makarem, M. and Jänne, P.A. (2024) Top Advances of the Year: Targeted Therapy for Lung Cancer. Cancer, 130, 3239-3250. [Google Scholar] [CrossRef] [PubMed]
[3] Kim, J., Park, S., Ku, B.M. and Ahn, M. (2025) Updates on the Treatment of Epidermal Growth Factor Receptor‐Mutant Non-Small Cell Lung Cancer. Cancer, 131, e35778. [Google Scholar] [CrossRef] [PubMed]
[4] Tan, C., Kumarakulasinghe, N.B., Huang, Y., Ang, Y.L.E., Choo, J.R., Goh, B., et al. (2018) Third Generation EGFR TKIs: Current Data and Future Directions. Molecular Cancer, 17, Article No. 29. [Google Scholar] [CrossRef] [PubMed]
[5] Lee, K., Kim, D., Yoon, S., Lee, D.H. and Kim, S. (2021) Exploring the Resistance Mechanisms of Second-Line Osimertinib and Their Prognostic Implications Using Next-Generation Sequencing in Patients with Non-Small-Cell Lung Cancer. European Journal of Cancer, 148, 202-210. [Google Scholar] [CrossRef] [PubMed]
[6] Papadimitrakopoulou, V.A., Wu, Y., Han, J., Ahn, M., Ramalingam, S.S., John, T., et al. (2018) Analysis of Resistance Mechanisms to Osimertinib in Patients with EGFR T790M Advanced NSCLC from the AURA3 Study. Annals of Oncology, 29, viii741. [Google Scholar] [CrossRef
[7] Ramalingam, S.S., Cheng, Y., Zhou, C., Ohe, Y., Imamura, F., Cho, B.C., et al. (2018) Mechanisms of Acquired Resistance to First-Line Osimertinib: Preliminary Data from the Phase III FLAURA Study. Annals of Oncology, 29, viii740. [Google Scholar] [CrossRef
[8] Hellman, A., Zlotorynski, E., Scherer, S.W., Cheung, J., Vincent, J.B., Smith, D.I., et al. (2002) A Role for Common Fragile Site Induction in Amplification of Human Oncogenes. Cancer Cell, 1, 89-97. [Google Scholar] [CrossRef] [PubMed]
[9] Coleman, N., Hong, L., Zhang, J., Heymach, J., Hong, D. and Le, X. (2021) Beyond Epidermal Growth Factor Receptor: MET Amplification as a General Resistance Driver to Targeted Therapy in Oncogene-Driven Non-Small-Cell Lung Cancer. ESMO Open, 6, Article ID: 100319. [Google Scholar] [CrossRef] [PubMed]
[10] Choudhury, N.J., Marra, A., Sui, J.S.Y., Flynn, J., Yang, S., Falcon, C.J., et al. (2023) Molecular Biomarkers of Disease Outcomes and Mechanisms of Acquired Resistance to First-Line Osimertinib in Advanced EGFR-Mutant Lung Cancers. Journal of Thoracic Oncology, 18, 463-475. [Google Scholar] [CrossRef] [PubMed]
[11] Fuchs, V., Roisman, L., Kian, W., Daniel, L., Dudnik, J., Nechushtan, H., et al. (2021) The Impact of Osimertinib’ Line on Clonal Evolution in EGFRm NSCLC through NGS-Based Liquid Biopsy and Overcoming Strategies for Resistance. Lung Cancer, 153, 126-133. [Google Scholar] [CrossRef] [PubMed]
[12] Wang, H., Du, X., Liu, W., Zhang, C., Li, Y., Hou, J., et al. (2024) Combination of Betulinic Acid and EGFR-TKIs Exerts Synergistic Anti-Tumor Effects against Wild-Type EGFR NSCLC by Inducing Autophagy-Related Cell Death via EGFR Signaling Pathway. Respiratory Research, 25, Article No. 215. [Google Scholar] [CrossRef] [PubMed]
[13] Park, H., Min, T., Chi, G., Choi, Y. and Park, S. (2018) Induction of Apoptosis by Morusin in Human Non-Small Cell Lung Cancer Cells by Suppression of EGFR/STAT3 Activation. Biochemical and Biophysical Research Communications, 505, 194-200. [Google Scholar] [CrossRef] [PubMed]
[14] Ge, Z., Xu, M., Ge, Y., Huang, G., Chen, D., Ye, X., et al. (2023) Inhibiting G6PD by Quercetin Promotes Degradation of EGFR T790M Mutation. Cell Reports, 42, Article ID: 113417. [Google Scholar] [CrossRef] [PubMed]
[15] Liu, P., Xiang, Y., Liu, X., Zhang, T., Yang, R., Chen, S., et al. (2019) Cucurbitacin B Induces the Lysosomal Degradation of EGFR and Suppresses the CIP2A/PP2A/AKT Signaling Axis in Gefitinib-Resistant Non-Small Cell Lung Cancer. Molecules, 24, Article 647. [Google Scholar] [CrossRef] [PubMed]
[16] Chen, P., Huang, H., Wang, Y., Jin, J., Long, W., Chen, K., et al. (2019) Curcumin Overcome Primary Gefitinib Resistance in Non-Small-Cell Lung Cancer Cells through Inducing Autophagy-Related Cell Death. Journal of Experimental & Clinical Cancer Research, 38, Article No. 254. [Google Scholar] [CrossRef] [PubMed]
[17] Huang, G.D., Liu, X.N., Jiang, T., et al. (2023) Luteolin Overcomes Acquired Resistance to Osimertinib in Non-Small Cell Lung Cancer Cells by Targeting the HGF-MET-AKT Pathway. American Journal of Cancer Research, 13, 4145-4162.
[18] Kim, H.S., Oh, H., Kwak, A., Kim, E., Lee, M., Seo, J., et al. (2021) Deoxypodophyllotoxin Inhibits Cell Growth and Induces Apoptosis by Blocking EGFR and MET in Gefitinib-Resistant Non-Small Cell Lung Cancer. Journal of Microbiology and Biotechnology, 31, 559-569. [Google Scholar] [CrossRef] [PubMed]
[19] Yu, J., Zhang, L., Peng, J., Ward, R., Hao, P., Wang, J., et al. (2022) Dictamnine, a Novel C-Met Inhibitor, Suppresses the Proliferation of Lung Cancer Cells by Downregulating the PI3K/AKT/mTOR and MAPK Signaling Pathways. Biochemical Pharmacology, 195, Article ID: 114864. [Google Scholar] [CrossRef] [PubMed]
[20] Chen, Z., Vallega, K.A., Chen, H., Zhou, J., Ramalingam, S.S. and Sun, S. (2022) The Natural Product Berberine Synergizes with Osimertinib Preferentially against Met-Amplified Osimertinib-Resistant Lung Cancer via Direct MET Inhibition. Pharmacological Research, 175, Article ID: 105998. [Google Scholar] [CrossRef] [PubMed]
[21] Tian, X., Gu, T., Lee, M. and Dong, Z. (2022) Challenge and Countermeasures for EGFR Targeted Therapy in Non-Small Cell Lung Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1877, Article ID: 188645. [Google Scholar] [CrossRef] [PubMed]
[22] Zhu, X., Jiang, H., Li, J., Xu, J. and Fei, Z. (2016) Anticancer Effects of Paris Saponins by Apoptosis and PI3K/AKT Pathway in Gefitinib-Resistant Non-Small Cell Lung Cancer. Medical Science Monitor, 22, 1435-1441. [Google Scholar] [CrossRef] [PubMed]
[23] Liu, J., Zhong, T., Yi, P., Fan, C., Zhang, Z., Liang, G., et al. (2020) A New Epigallocatechin Gallate Derivative Isolated from Anhua Dark Tea Sensitizes the Chemosensitivity of Gefitinib via the Suppression of PI3K/mTOR and Epithelial-Mesenchymal Transition. Fitoterapia, 143, Article ID: 104590. [Google Scholar] [CrossRef] [PubMed]
[24] Chen, T., Zhang, P., Cong, X., Wang, Y., Li, S., Wang, H., et al. (2024) Synergistic Antitumor Activity of Baicalein Combined with Almonertinib in Almonertinib-Resistant Non-Small Cell Lung Cancer Cells through the Reactive Oxygen Species-Mediated PI3K/AKT Pathway. Frontiers in Pharmacology, 15, Article 1405521. [Google Scholar] [CrossRef] [PubMed]
[25] Chen, S., Zhang, Z. and Zhang, J. (2017) Matrine Increases the Inhibitory Effects of Afatinib on H1975 Cells via the IL-6/JAK1/STAT3 Signaling Pathway. Molecular Medicine Reports, 16, 2733-2739. [Google Scholar] [CrossRef] [PubMed]
[26] Wu, Z., Xu, B., Yu, Z., He, Q., Hu, Z., Zhou, S., et al. (2020) Trifolium Flavonoids Overcome Gefitinib Resistance of Non‐Small‐Cell Lung Cancer Cell by Suppressing ERK and STAT3 Signaling Pathways. BioMed Research International, 2020, Article ID: 2491304. [Google Scholar] [CrossRef] [PubMed]
[27] Phan, A.N.H., Hua, T.N.M., Kim, M., Vo, V.T.A., Choi, J., Kim, H., et al. (2016) Gallic Acid Inhibition of Src-Stat3 Signaling Overcomes Acquired Resistance to EGF Receptor Tyrosine Kinase Inhibitors in Advanced Non-Small Cell Lung Cancer. Oncotarget, 7, 54702-54713. [Google Scholar] [CrossRef] [PubMed]
[28] Tang, J., Ren, Y., Zhao, J., Long, F., Chen, J. and Jiang, Z. (2018) Shikonin Enhances Sensitization of Gefitinib against Wild-Type EGFR Non-Small Cell Lung Cancer via Inhibition PKM2/stat3/cyclinD1 Signal Pathway. Life Sciences, 204, 71-77. [Google Scholar] [CrossRef] [PubMed]
[29] Tang, J., Long, F., Zhao, J., Hang, J., Ren, Y., Chen, J., et al. (2019) The Effects and Mechanisms by Which Saikosaponin-D Enhances the Sensitivity of Human Non-Small Cell Lung Cancer Cells to Gefitinib. Journal of Cancer, 10, 6666-6672. [Google Scholar] [CrossRef] [PubMed]
[30] Min, T., Park, H., Ha, K., Chi, G., Choi, Y. and Park, S. (2019) Suppression of EGFR/STAT3 Activity by Lupeol Contributes to the Induction of the Apoptosis of Human Non-Small Cell Lung Cancer Cells. International Journal of Oncology, 55, 320-330. [Google Scholar] [CrossRef] [PubMed]
[31] Tian, X., Wang, R., Gu, T., Ma, F., Laster, K.V., Li, X., et al. (2022) Costunolide Is a Dual Inhibitor of MEK1 and AKT1/2 That Overcomes Osimertinib Resistance in Lung Cancer. Molecular Cancer, 21, Article No. 193. [Google Scholar] [CrossRef] [PubMed]
[32] Fan, Q., Liang, X., Xu, Z., Li, S., Han, S., Xiao, Y., et al. (2023) Pedunculoside Inhibits Epithelial-Mesenchymal Transition and Overcomes Gefitinib-Resistant Non-Small Cell Lung Cancer through Regulating MAPK and Nrf2 Pathways. Phytomedicine, 116, Article ID: 154884. [Google Scholar] [CrossRef] [PubMed]
[33] Zhou, Y., Huang, S., Guo, Y., Ran, M., Shan, W., Chen, W., et al. (2023) Epigallocatechin Gallate Circumvents Drug‐induced Resistance in Non‐Small‐Cell Lung Cancer by Modulating Glucose Metabolism and AMPK/AKT/MAPK Axis. Phytotherapy Research, 37, 5837-5853. [Google Scholar] [CrossRef] [PubMed]
[34] Lu, M., Liu, B., Xiong, H., Wu, F., Hu, C. and Liu, P. (2019) Trans‐3, 5, 4’‐Trimethoxystilbene Reduced Gefitinib Resistance in NSCLCs via Suppressing MAPK/AKT/Bcl‐2 Pathway by Upregulation of miR‐345 and miR‐498. Journal of Cellular and Molecular Medicine, 23, 2431-2441. [Google Scholar] [CrossRef] [PubMed]
[35] Yang, Q., Chen, W., Xu, Y., Lv, X., Zhang, M. and Jiang, H. (2018) Polyphyllin I Modulates MALAT1/STAT3 Signaling to Induce Apoptosis in Gefitinib-Resistant Non-Small Cell Lung Cancer. Toxicology and Applied Pharmacology, 356, 1-7. [Google Scholar] [CrossRef] [PubMed]
[36] Li, Y., Wang, Y., Niu, K., Chen, X., Xia, L., Lu, D., et al. (2016) Clinical Benefit from EGFR-TKI plus Ginsenoside Rg3 in Patients with Advanced Non-Small Cell Lung Cancer Harboring EGFR Active Mutation. Oncotarget, 7, 70535-70545. [Google Scholar] [CrossRef] [PubMed]
[37] China Medical University (2017) β-Elemene Combine with EGFR-TKI for Advanced EGFR-TKI-Resistant NSCLC [Clinical Trial Registration].
https://clinicaltrials.gov/ct2/show/NCT03123484