|
[1]
|
Wei, L., Wang, Z., Jing, N., Lu, Y., Yang, J., Xiao, H., et al. (2022) Frontier Progress of the Combination of Modern Medicine and Traditional Chinese Medicine in the Treatment of Hepatocellular Carcinoma. Chinese Medicine, 17, Article No. 90. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhu, Z.H., Xu, X.T., Shen, C.J., et al. (2023) A Novel Sesquiterpene Lactone Fraction from Eupatorium chinense L. Suppresses Hepatocellular Carcinoma Growth by Triggering Ferritinophagy and Mitochondrial Damage. Phytomedicine, 112, Article 154671.
|
|
[3]
|
Liu, Z., Ma, H. and Lai, Z. (2023) The Role of Ferroptosis and Cuproptosis in Curcumin against Hepatocellular Carcinoma. Molecules, 28, Article 1623. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Asgharzadeh, F., Moradi Binabaj, M., Fanoudi, S., C. Cho, W., Yang, Y., Azarian, M., et al. (2024) Nanomedicine Strategies Utilizing Lipid-Based Nanoparticles for Liver Cancer Therapy: Exploring Signaling Pathways and Therapeutic Modalities. Advanced Pharmaceutical Bulletin, 14, 513-523. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
侯秋苑, 殷蕾. 理冲汤的药理作用及临床应用的研究进展[J]. 中外医疗, 2022, 41(29): 185-188+194.
|
|
[6]
|
鲍宁, 陈子超, 赵春芹, 等. 黄芪-莪术药对及其活性成分抗肝癌作用机制研究进展[J]. 中草药, 2023, 54(15): 5101-5111.
|
|
[7]
|
Ma, Y., Li, Y., Wu, T., Li, Y. and Wang, Q. (2023) Astragaloside IV Attenuates Programmed Death-Ligand 1-Mediated Immunosuppression during Liver Cancer Development via the miR-135b-5p/CNDP1 Axis. Cancers, 15, Article No. 5048. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wang, J. (2024) Traditional Chinese Medicine in Post-Resection Liver Cancer Therapy: A Meta-Analysis of Efficacy. American Journal of Translational Research, 16, 5763-5775. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sabaghan, S., Srivastava, R., Yadav, P., Kumari, M., Soni, R., Beri, S., et al. (2025) Exploring Ketones in Chrysopogon Zizanioides: A Computational Molecular Dynamic Approach to C-Met Modulation. Molecular Biotechnology. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Alomair, L., Mustafa, S., Jafri, M.S., Alharbi, W., Aljouie, A., Almsned, F., et al. (2022) Molecular Dynamics Simulations to Decipher the Role of Phosphorylation of SARS-CoV-2 Nonstructural Proteins (NSPS) in Viral Replication. Viruses, 14, Article 2436. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhang, Q. and Huang, X. (2021) The Modulatory Properties of astragalus Membranaceus Treatment on Endometrial Cancer: An Integrated Pharmacological Method. Peer J, 9, e11995. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Liu, H., Lian, L., Hou, L., Liu, C., Ren, J., Qiao, Y., et al. (2024) Herb Pair of Huangqi-Danggui Exerts Anti-Tumor Immunity to Breast Cancer by Upregulating PIK3R1. Animal Models and Experimental Medicine, 7, 234-258. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Feng, D.N., Fang, Z.X. and Zhang, P.Z. (2022) The Melanin Inhibitory Effect of Plants and Phytochemicals: A Systematic Review. Phytomedicine, 107, Article 154449.
|
|
[14]
|
Ul Hassan, M.H., Shahbaz, M., Imran, M., Momal, U., Naeem, H., Mujtaba, A., et al. (2025) Isoflavones: Promising Natural Agent for Cancer Prevention and Treatment. Food Science & Nutrition, 13, e70091. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ferriere, F., Aasi, N., Flouriot, G. and Pakdel, F. (2024) Exploring the Complex Mechanisms of Isoflavones: From Cell Bioavailability, to Cell Dynamics and Breast Cancer. Phytotherapy Research, 39, 957-979. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhan, K., Chen, S., Ji, L., Xu, L., Zhang, Y., Zhang, Q., et al. (2024) Network Pharmacology to Unveil the Mechanism of Astragali Radix in the Treatment of Lupus Nephritis via PI3K/AKT/mTOR Pathway. Scientific Reports, 14, Article No. 25983. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Peng, Z., Yisheng, S., Lei, S., et al. (2023) Effect of Isorhamnetin on Carbonic Anhydrase IX Expression and Tumorigenesis of Bladder Cancer by Activating PPARγ/PTEN/AKT Pathway. Tissue and Cell, 82, Article 102048.
|
|
[18]
|
Sarkar, S., Das, A.K., Bhattacharya, S., Gachhui, R. and Sil, P.C. (2023) Isorhamnetin Exerts Anti-Tumor Activity in DEN+CCL4-Induced HCC Mice. Medical Oncology, 40, Article 188. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Saadh, M.J., Ahmed, H.H., Chandra, M., Al-Hussainy, A.F., Hamid, J.A., Mishra, A., et al. (2025) Therapeutic Effects of Quercetin in Oral Cancer Therapy: A Systematic Review of Preclinical Evidence Focused on Oxidative Damage, Apoptosis and Anti-Metastasis. Cancer Cell International, 25, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, T. and Li, Y. (2023) Quercetin Acts as a Novel Anti-Cancer Drug to Suppress Cancer Aggressiveness and Cisplatin-Resistance in Nasopharyngeal Carcinoma (NPC) through Regulating the Yes-Associated Protein/Hippo Signaling Pathway. Immunobiology, 228, Article 152324. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, X., He, X., Lin, B., Li, L., Deng, Q., Wang, C., et al. (2024) Quercetin Limits Tumor Immune Escape through PDK1/CD47 Axis in Melanoma. The American Journal of Chinese Medicine, 52, 541-563. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ma, X.J., Zhang, X.Y., Wang, X., et al. (2023) The Role of Kaempferol in Gynaecological Malignancies: Progress and Perspectives. Frontiers in Pharmacology, 14, Article 1310416.
|
|
[23]
|
Qiao, X., Ye, L., Lu, J., Pan, C., Fei, Q., Zhu, Y., et al. (2023) Curcumin Analogues Exert Potent Inhibition on Human and Rat Gonadal 3β-Hydroxysteroid Dehydrogenases as Potential Therapeutic Agents: Structure-Activity Relationship and in Silico Docking. Journal of Enzyme Inhibition and Medicinal Chemistry, 38, Article 2205052. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Santos, L.D.S., Silva, V.R., de Castro, M.V.L., Dias, R.B., Valverde, L.D.F., Rocha, C.A.G., et al. (2023) New Ruthenium-Xanthoxylin Complex Eliminates Colorectal Cancer Stem Cells by Targeting the Heat Shock Protein 90 Chaperone. Cell Death & Disease, 14, Article 832. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, S., Cheng, H., Huang, Y., Li, M., Gao, D., Chen, H., et al. (2024) HSP90a Promotes the Resistance to Oxaliplatin in HCC through Regulating Idh1-Induced Cell Competition. Biochimica et Biophysica Acta—Molecular Cell Research, 1871, Article 119680. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Pecoraro, C., Scianò, F., Carbone, D., et al. (2024) Synthesis and Biological Evaluation of a New Class of Azole Urea Compounds as Akt Inhibitors with Promising Anticancer Activity in Pancreatic Cancer Models. Bioorganic Chemistry, 153, Article 107959.
|
|
[27]
|
Liu, B., Liu, R., Li, W., Mao, X., Li, Y., Huang, T., et al. (2022) XAF1 Prevents Hyperproduction of Type I Interferon Upon Viral Infection by Targeting IRF7. EMBO Reports, 24, e55387. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhou, Y., Wang, J., Chen, Y., Lin, W., Zhou, R., Zhao, L., et al. (2025) NRIR Promotes Immune Escape in Hepatocellular Cancer by Regulating IFNγ-Induced PD-L1 Expression. Journal of Advanced Research. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zou, Y.H., Zhang, H.Y., Bi, F., et al. (2022) Targeting the Key Cholesterol Biosynthesis Enzyme Squalene Monooxygenase for Cancer Therapy. Frontiers in Oncology, 12, Article 938502.
|
|
[30]
|
Man, K., Zhou, L., Yu, H., Lam, K., Cheng, W., Yu, J., et al. (2023) Spink1-Induced Tumor Plasticity Provides a Therapeutic Window for Chemotherapy in Hepatocellular Carcinoma. Nature Communications, 14, Article No. 7863. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Sasaki, M., Yamamoto, K., Ueda, T., Irokawa, H., Takeda, K., Sekine, R., et al. (2023) One-Carbon Metabolizing Enzyme ALDH1L1 Influences Mitochondrial Metabolism through 5-Aminoimidazole-4-Carboxamide Ribonucleotide Accumulation and Serine Depletion, Contributing to Tumor Suppression. Scientific Reports, 13, Article No. 13486. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Li, Y., Chen, Y., Zhang, Y., Fang, Y., Wu, L., Zhao, Y., et al. (2024) Integrating Multi-Omics Techniques and in Vitro Experiments Reveals That GLRX3 Regulates the Immune Microenvironment and Promotes Hepatocellular Carcinoma Cell Proliferation and Invasion through Iron Metabolism Pathways. Frontiers in Immunology, 15, Article 1496886. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhou, B.C., Yang, Y., Pang, X.M., et al. (2023) Quercetin Inhibits DNA Damage Responses to Induce Apoptosis via SIRT5/PI3K/AKT Pathway in Non-Small Cell Lung Cancer. Biomedicine & Pharmacotherapy, 165, Article 115071.
|
|
[34]
|
Wang, R., Deng, Z.Y., Zhu, Z.M., et al. (2023) Kaempferol Promotes Non-Small Cell Lung Cancer Cell Autophagy via Restricting Met Pathway. Phytomedicine, 121, Article 155090.
|
|
[35]
|
Li, Y., Dong, M., Qin, H., An, G., Cen, L., Deng, L., et al. (2025) Mulberrin Suppresses Gastric Cancer Progression and Enhances Chemosensitivity to Oxaliplatin through HSP90AA1/PI3K/AKT Axis. Phytomedicine, 139, Article 156441. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Piersma, S.R., Valles-Marti, A., Rolfs, F., Pham, T.V., Henneman, A.A. and Jiménez, C.R. (2022) Inferring Kinase Activity from Phosphoproteomic Data: Tool Comparison and Recent Applications. Mass Spectrometry Reviews, 43, 725-751. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhang, X., Xu, H., Bi, X., Hou, G., Liu, A., Zhao, Y., et al. (2021) SRC Acts as the Target of Matrine to Inhibit the Proliferation of Cancer Cells by Regulating Phosphorylation Signaling Pathways. Cell Death & Disease, 12, Article 931. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Fatma, M., Parveen, S. and Mir, S.S. (2025) Unraveling the Kinase Code: Role of Protein Kinase in Lung Cancer Pathogenesis and Therapeutic Strategies. Biochimica et Biophysica Acta—Reviews on Cancer, 1880, Article 189309. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Jiang, M., Zhang, K., Zhang, Z., Zeng, X., Huang, Z., Qin, P., et al. (2025) PI3k/AKT/mTOR Axis in Cancer: From Pathogenesis to Treatment. MedComm, 6, e70295. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Wilmerding, A., Bouteille, L., Caruso, N., Bidaut, G., Etchevers, H.C., Graba, Y., et al. (2022) Sustained Experimental Activation of FGF8/ERK in the Developing Chicken Spinal Cord Models Early Events in Erk-Mediated Tumorigenesis. Neoplasia, 24, 120-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yuan, J., Dong, X., Yap, J. and Hu, J. (2020) The MAPK and AMPK Signalings: Interplay and Implication in Targeted Cancer Therapy. Journal of Hematology & Oncology, 13, Article 113. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Yu, Y., Hu, H., Zhang, Y., Zhang, Z., Ying, S., Dong, S., et al. (2025) Hedyotis Chrysotricha Aqueous Extract Inhibits Hepatitis B Surface Antigen and Viral Replication via Hepatocyte Nuclear Factor 4α Regulation. Phytomedicine, 143, Article 156726. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Tu, S. and Qiu, Y.Q. (2023) Molecular Subtypes and Scoring Tools Related to Foxo Signaling Pathway for Assessing Hepatocellular Carcinoma Prognosis and Treatment Responsiveness. Frontiers in Pharmacology, 14, Article 1213506.
|
|
[44]
|
Zheng, J., Liu, W., Wang, X., Li, H., Wang, Z. and Ai, Z. (2025) Curcumin Enhances Anti-Tumor Immunity in Anaplastic Thyroid Carcinoma by Elevating CD8+ T Cell Function and Downregulating the Akt/mTORC1/STAT3/PD-L1 Axis. Pathology—Research and Practice, 269, Article 155898. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Jiang, H., Zhou, R., An, L., Guo, J., Hou, X., Tang, J., et al. (2023) Exploring the Role and Mechanism of Astragalus Membranaceus and Radix Paeoniae Rubra in Idiopathic Pulmonary Fibrosis through Network Pharmacology and Experimental Validation. Scientific Reports, 13, Article No. 10110. [Google Scholar] [CrossRef] [PubMed]
|