|
[1]
|
欧阳诗嘉. 推动“碳达峰、碳中和”: 坚持新发展理念, 做好“十四五”规划布局——专访国家发展和改革委员会能源研究所能源可持续发展研究中心主任康艳兵[EB/OL]. 2021-02-26. http://cn.chinadaily.com.cn/a/202102/26/ws6038dcf2a3101e7ce9741460.html, 2021-05-06.
|
|
[2]
|
Liu, Z., Deng, Z., He, G., Wang, H., Zhang, X., Lin, J., et al. (2021) Challenges and Opportunities for Carbon Neutrality in China. Nature Reviews Earth & Environment, 3, 141-155. [Google Scholar] [CrossRef]
|
|
[3]
|
Zheng, Y., Li, S., Huang, N., Li, X. and Xu, Q. (2024) Recent Advances in Metal-Organic Framework-Derived Materials for Electrocatalytic and Photocatalytic CO2 Reduction. Coordination Chemistry Reviews, 510, Article 215858. [Google Scholar] [CrossRef]
|
|
[4]
|
Fang, S., Rahaman, M., Bharti, J., Reisner, E., Robert, M., Ozin, G.A., et al. (2023) Photocatalytic CO2 Reduction. Nature Reviews Methods Primers, 3, Article 215858. [Google Scholar] [CrossRef]
|
|
[5]
|
Ran, J., Jaroniec, M. and Qiao, S. (2018) Cocatalysts in Semiconductor‐Based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities. Advanced Materials, 30, Article 1704649. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhang, J., Jiang, J., Lei, Y., Liu, H., Tang, X., Yi, H., et al. (2024) Photocatalytic CO2 Reduction Reaction: Influencing Factors, Reaction Pathways and Dominant Catalysts. Separation and Purification Technology, 328, Article 125056. [Google Scholar] [CrossRef]
|
|
[7]
|
Liu, Y., Sun, S., Ma, M., Pan, H., Gao, F. and Huang, X. (2024) Recent Advances in TiO2-Based Photocatalysts for CO2 Reduction to Methane. Journal of Environmental Chemical Engineering, 12, Article 114986. [Google Scholar] [CrossRef]
|
|
[8]
|
Wang, X., Blechert, S. and Antonietti, M. (2012) Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. ACS Catalysis, 2, 1596-1606. [Google Scholar] [CrossRef]
|
|
[9]
|
Schoedel, A., Ji, Z. and Yaghi, O.M. (2016) The Role of Metal-Organic Frameworks in a Carbon-Neutral Energy Cycle. Nature Energy, 1, Article No. 16034. [Google Scholar] [CrossRef]
|
|
[10]
|
Yang, J., Chen, Z., Zhang, L. and Zhang, Q. (2024) Covalent Organic Frameworks for Photocatalytic Reduction of Carbon Dioxide: A Review. ACS Nano, 18, 21804-21835. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, Q. and O’Hare, D. (2012) Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets. Chemical Reviews, 112, 4124-4155. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Arumugam, M., Subha, N., Sankar, A.R., Natarajan, T.S. and Yang, H. (2025) Layered Double Hydroxide Materials Based Next-Generation Photocatalytic System for CO2 Reduction and H2 Production Applications. FlatChem, 54, Article 100947. [Google Scholar] [CrossRef]
|
|
[13]
|
Wang, H., Sun, F., Qi, J., Zhang, D., Sun, H., Wang, Q., et al. (2022) Recent Progress on Layered Double Hydroxides: Comprehensive Regulation for Enhanced Oxygen Evolution Reaction. Materials Today Energy, 27, Article 101036. [Google Scholar] [CrossRef]
|
|
[14]
|
Wan, X., Song, Y., Zhou, H. and Shao, M. (2022) Layered Double Hydroxides for Oxygen Evolution Reaction Towards Efficient Hydrogen Generation. Energy Material Advances, 2022, Article ID: 9842610. [Google Scholar] [CrossRef]
|
|
[15]
|
Sun, P., Ma, R., Bai, X., Wang, K., Zhu, H. and Sasaki, T. (2017) Single-Layer Nanosheets with Exceptionally High and Anisotropic Hydroxyl Ion Conductivity. Science Advances, 3, e1602629. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
王力耕, 施炜, 姚萍, 等. 铜锌镁铝四元水滑石的微观结构及其姜-泰勒畸变[J]. 物理化学学报, 2012, 28(1): 58-64.
|
|
[17]
|
Zhao, Y., Chen, G., Bian, T., Zhou, C., Waterhouse, G.I.N., Wu, L., et al. (2015) Defect‐Rich Ultrathin ZnAl‐Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water. Advanced Materials, 27, 7824-7831. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tan, L., Xu, S., Wang, Z., Xu, Y., Wang, X., Hao, X., et al. (2019) Highly Selective Photoreduction of CO2 with Suppressing H2 Evolution over Monolayer Layered Double Hydroxide under Irradiation above 600 Nm. Angewandte Chemie International Edition, 58, 11860-11867. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhao, X., Zhang, C., Yu, X., Xie, X., Liu, L., Guo, J., et al. (2025) Vacant ZnAl-Layered Double Hydroxides Photocatalytic CO2 to CH4: A DFT Study. Molecular Catalysis, 586, Article 115426. [Google Scholar] [CrossRef]
|
|
[20]
|
Liang, F., Pan, W., Zhao, Z., Lin, D., Liu, L. and Song, F. (2025) Simulation of the Adhesion Force of Particles Based on JKR and DMT Models. Surfaces and Interfaces, 72, Article 107301. [Google Scholar] [CrossRef]
|
|
[21]
|
Dou, Y., Luo, C., Yin, B., Zhou, A., Qin, J., Li, C., et al. (2025) Inert Heteroatom Substitution to Modulate Dual‐Metal‐sites for Boosting Photoreduction of Diluted CO2. Advanced Functional Materials, 35, Article 2503764. [Google Scholar] [CrossRef]
|
|
[22]
|
Khan, A., Ansari, M.A. and Onaizi, S.A. (2025) Photocatalytic and Electrocatalytic Conversion of CO2 into Valuable Chemicals Using Layered Double Hydroxide-Based Materials: A Review. Surfaces and Interfaces, 72, Article 107297. [Google Scholar] [CrossRef]
|
|
[23]
|
Zhang, R., Zhang, Y., Wang, K., Wang, X. and Zhang, B. (2025) Preparation of Lantern-Shaped Cu/ZnFe-LDH Heterostructure and Its Photocatalytic CO2 Reduction Performance. Applied Surface Science, 703, Article 163435. [Google Scholar] [CrossRef]
|
|
[24]
|
Wei, J., Liang, T., Zhang, S., Yang, J., Li, Z., Li, Z., et al. (2023) Accelerated Interfacial Charges Migration on Z-Scheme CoAl-LDH/RGO/InVO4 Heterojunction for Photocatalytic Reduction of CO2. Separation and Purification Technology, 325, Article 124683. [Google Scholar] [CrossRef]
|
|
[25]
|
Cui, H., Li, S., Zhou, R., Wang, R., Zhao, Y., Li, M., et al. (2025) In Situ Design of Metal‐Phenolic Networks Coated Layered Double Hydroxides S‐Scheme Photothermal Nanoreactor for Highly Efficient CO2 Reduction. Advanced Functional Materials, 35, Article 2422347. [Google Scholar] [CrossRef]
|
|
[26]
|
Wang, X., Chen, J., Li, Y., Lu, J. and Zhang, W. (2025) The Inorganic Intergrowth Bulk Heterojunction for Plasmon-Enhanced Photocatalytic CO2 Reduction. Chemical Engineering Journal, 521, Article 167144. [Google Scholar] [CrossRef]
|
|
[27]
|
Guo, L., Li, R., Sun, C., Luo, X., Shi, Y., Yuan, H., et al. (2025) Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 41, Article 100002. [Google Scholar] [CrossRef]
|
|
[28]
|
Hao, Z., Tian, Z., Tian, X., Ma, L., Gao, Y., Shao, M., et al. (2024) Interlayer Anions Modulated ZnAl-Layered Double Hydroxides for Enhanced Photocatalytic CO2 Reduction. Journal of Alloys and Compounds, 995, Article 174828. [Google Scholar] [CrossRef]
|
|
[29]
|
Tan, L., Xu, S., Wang, Z., Hao, X., Li, T., Yan, H., et al. (2021) 600 Nm Induced Nearly 99% Selectivity of CH4 from CO2 Photoreduction Using Defect-Rich Monolayer Structures. Cell Reports Physical Science, 2, Article 100322. [Google Scholar] [CrossRef]
|
|
[30]
|
Wang, J., Ma, J., Zhang, Q., Chen, Y., Hong, L., Wang, B., et al. (2021) New Heterojunctions of Cn/TiO2 with Different Band Structure as Highly Efficient Catalysts for Artificial Photosynthesis. Applied Catalysis B: Environmental, 285, Article 119781. [Google Scholar] [CrossRef]
|
|
[31]
|
Xu, C., Zhang, M., Gao, Q., Li, T., Wang, S., Wang, Y., et al. (2025) Bifunctional Built‐in Electric Field across the Interface of Single Molecule and 2D Matrix Supramolecular Assembly for Highly Efficient and Selective Photocatalytic CO2 Reduction. Advanced Functional Materials, Article 2501067. [Google Scholar] [CrossRef]
|
|
[32]
|
Zhou, L., Xu, J., Wei, S., Liu, L., Zhou, Z. and Liu, X. (2024) Fabrication of NiFe-LDH/MoS2 2D/2D Material to Construct Direct Z-Scheme Heterojunction for Enhanced CO2 Photocatalytic Reduction under Visible Light Irradiation. Carbon Capture Science & Technology, 12, Article 100223. [Google Scholar] [CrossRef]
|
|
[33]
|
Yang, H., Hou, H., Yang, M., Zhu, Z., Fu, H., Zhang, D., et al. (2023) Engineering the S-Scheme Heterojunction between Nio Microrods and MgAl-LDH Nanoplates for Efficient and Selective Photoreduction of CO2 to CH4. Chemical Engineering Journal, 474, Article 145813. [Google Scholar] [CrossRef]
|
|
[34]
|
Li, C., Guo, R., Zhang, Z., Wu, T., Liu, Y., Zhou, Z., et al. (2023) Constructing Coal-LDO/MoO3-X S-Scheme Heterojunctions for Enhanced Photocatalytic CO2 Reduction. Journal of Colloid and Interface Science, 650, 983-993. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Tonda, S., Kumar, S., Bhardwaj, M., Yadav, P. and Ogale, S. (2018) G-C3N4 /NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO2 into Renewable Fuels. ACS Applied Materials & Interfaces, 10, 2667-2678. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zhao, X., Zhao, X., Ullah, I., Gao, L., Zhang, J. and Lu, J. (2020) The In-Situ Growth NiFe-Layered Double Hydroxides/g-C3n4 Nanocomposite 2D/2D Heterojunction for Enhanced Photocatalytic CO2 Reduction Performance. Catalysis Letters, 151, 1683-1692. [Google Scholar] [CrossRef]
|
|
[37]
|
Dong, Z., Su, S., Zhang, Z., Jiang, Y. and Xu, J. (2023) NiFe-Layered Double Hydroxides/Lead-Free Cs2AgBiBr6Perovskite 2D/2D Heterojunction for Photocatalytic CO2 Conversion. Inorganic Chemistry, 62, 1752-1761. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Wu, Y., Gong, Y., Liu, J., Chen, T., Liu, Q., Zhu, Y., et al. (2020) Constructing NiFe-LDH Wrapped Cu2O Nanocube Heterostructure Photocatalysts for Enhanced Photocatalytic Dye Degradation and CO2 Reduction via Z-Scheme Mechanism. Journal of Alloys and Compounds, 831, Article 154723. [Google Scholar] [CrossRef]
|
|
[39]
|
Molina-Muriel, M., Peng, Y., García, H. and Ribera, A. (2022) Increased Photocatalytic Activity and Selectivity Towards Methane of Trimetallic NiTiAl-LDH. Journal of Alloys and Compounds, 897, Article 163124. [Google Scholar] [CrossRef]
|
|
[40]
|
Luo, C., Li, Z., Deng, Y., Wang, L., Xu, E., Zhou, J., et al. (2024) Vacancy Modulation on Niti-Layered Double Hydroxides Towards Highly Selective CO2 Photoreduction. Applied Catalysis B: Environment and Energy, 355, Article 124156. [Google Scholar] [CrossRef]
|
|
[41]
|
Vennapoosa, C.S., Varangane, S., Gonuguntla, S., Abraham, B.M., Ahmadipour, M. and Pal, U. (2023) S-Scheme ZIF-67/CuFe-LDH Heterojunction for High-Performance Photocatalytic H2 Evolution and CO2 to MeOH Production. Inorganic Chemistry, 62, 16451-16463. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Prabagar, J.S., Tenzin, T., Sneha, Y., Divya, V., Anusha, H.S., Shahmoradi, B., et al. (2024) Novel NiFeAl Hybridized Layered Double Hydroxide Nanofibrous for Photocatalytic Degradation and CO2 Reduction. Materials Today Sustainability, 26, Article 100773. [Google Scholar] [CrossRef]
|
|
[43]
|
Vennapoosa, C.S., Tejavath, V., Prabhu, Y.T., Tiwari, A., Abraham, B.M., Upadhyayula, V.S., et al. (2023) Sulphur Vacancy-Rich PCdS/NiCoLDH Promotes Highly Selective and Efficient Photocatalytic CO2 Reduction to MeOH. Journal of CO2 Utilization, 67, Article 102332. [Google Scholar] [CrossRef]
|