分子内苯并呋喃衍生物合成研究进展
Research Progress on the Synthesis of Intramolecular Benzofuran Derivatives
摘要: 苯并呋喃是众多天然产物和药物分子的核心结构骨架,其高效、绿色的合成策略一直是有机合成领域的研究重点。分子内环化是构建此类杂环的高效方法,其路径可根据形成的关键化学键分为四种经典类型:O-C2键的形成(如邻炔基酚的羟烷氧基化)、Cβ-O键的形成(如邻卤苯乙炔的环化)、C2-C3键的形成(如分子内aldol缩合)以及C3-Cα键的形成(如Friedel-Crafts酰基化)。传统方法常依赖化学计量的氧化剂或强酸/碱,而近年来,随着绿色化学理念的深入,该领域涌现出许多创新技术,如过渡金属催化的C-H活化、无氧化剂环化以及光促进反应等。这些进展显著提升了合成的原子经济性和步骤效率,为复杂苯并呋喃衍生物的合成提供了更为精准和可持续的解决方案。
Abstract: Benzofuran is the core structural skeleton of many natural products and drug molecules, and its efficient and green synthesis strategy has always been a research focus in the field of organic synthesis. Intramolecular cyclization is an efficient method for constructing such heterocycles, and its pathways can be classified into four classic types based on the key chemical bonds formed: O-C2 bond formation (such as hydroxyalkoxylation of ortho alkynyl phenols), Cβ-O bond formation (such as cyclization of ortho halogenated phenylacetylene), C2-C3 bond formation (such as intramolecular aldol condensation), and C3-Cα bond formation (such as Friedel Crafts acylation). Traditional methods often rely on stoichiometric oxidants or strong acids/bases, but in recent years, with the deepening of green chemistry concepts, many innovative technologies have emerged in this field, such as transition metal catalyzed C-H activation, oxidant free cyclization, and photo promoted reactions. These advances have significantly improved the atomic economy and step efficiency of synthesis, providing more precise and sustainable solutions for the synthesis of complex benzofuran derivatives.
文章引用:吉江涛, 张轩. 分子内苯并呋喃衍生物合成研究进展[J]. 有机化学研究, 2025, 13(4): 335-347. https://doi.org/10.12677/jocr.2025.134033

1. 引言

苯并呋喃苯并呋喃衍生物是一类重要的杂环化合物,其核心结构由苯环与呋喃环稠合而成。存在1-苯并呋喃和2-苯并呋喃(异苯并呋喃)两种异构体(图1)。

Figure 1. 1-Benzofuran and 2-Benzofuran

1. 1-苯并呋喃和2-苯并呋喃

苯并呋喃是一类重要的含氧杂环化合物,这类化合物在医药、材料科学、农药及天然产物领域具有广泛的应用价值,在医药领域,苯并呋喃是许多天然产物和药物的核心结构,其衍生物具有广泛的生物活性,有抗氧化、镇痛、抗炎、抗菌、抗病毒、抗癌、抗阿尔茨海默病等活性。例如:Amurensin H (Viniferifuran)具有抗炎作用[1] [2]、Anigopreissin A具有抗HIV-1逆转录酶活性(可用于抗病毒药物) [3] [4]、PAA对人肝癌细胞增殖的抑制作用[5]、Amiodarone (胺碘酮)是一种抗心律失常药物[6]、BNC105是一种可用于肾癌和卵巢癌的临床候选药物[7]、Angelicin [8]是一种用于治疗皮肤病(牛皮癣)的药物,Coumestrol [9]是一种可以影响雌性激素活性的天然产物,以及从豆科植物山毛豆中分离得到具有抗过敏活性的4-乙基-5-(丙-1-烯-2-基)苯并呋喃等(图2)。

在材料领域1-苯并呋喃通常被用作OLED器件中的发光层或主体材料。通过化学修饰(例如与咔唑、三苯胺等基团连接),可以构建具有“给体–受体”(D-A)结构的分子。从而精确调控其发光颜色(从蓝光到红光),并提高荧光量子产率[10]。此外还可以作为染料敏化太阳能电池(DSSCs)和有机太阳能电池(OSCs)这类光电器件的光敏剂或给体材料的核心结构单元[11]。某些功能化的苯并呋喃衍生物具有对环境敏感的光物理性质(如荧光强度或波长随pH、粘度,或特定离子浓度变化而改变),因此被用于开发荧光探针[12]。在农业方面部分苯并呋喃衍生物具有杀虫、杀菌或除草活性[13],如Furanocoumarins (呋喃香豆素)可作为天然杀虫剂。

Figure 2. Benzofuran derivatives

2. 苯并呋喃衍生物

因此开发苯并呋喃及其衍生物的合成方法对有机化学、药物化学、材料科学、农学等具有重大的意义。

2. 苯并呋喃衍生物的合成

由于苯并呋喃及其衍生物具有结构多样性,其本身易于修饰,可构建成更加复杂的杂环体系如苯并呋喃并吡啶、苯并呋喃并吲哚等等,且苯并呋喃及其衍生物在多个领域都有着重要的作用,因此苯并呋喃及其衍生物持续成为合成化学家们的研究热点。在过去的几年中研究者们开发了许多苯并呋喃及其衍生物的合成方法,包括分子内环化和分子间环化策略,以及过渡金属催化和无金属催化的方法。本文对分子内环化策略进行了系统性总结。分子内环化是最常见的苯并呋喃合成方法,通常涉及C-O键或C-C键的形成,具体分为以下几种主要路径:O-C2键形成(路径A)、Cβ-O键形成(路径B)、C2-C3键形成(路径C)以及C3-Cα键形成(路径D) (图3)。

Figure 3. Strategies for intramolecular cyclization of benzofuran derivatives

3. 合成苯并呋喃衍生物的分子内环化策略

2.1. O-C2键形成(路径A)

O-C2键作为最后一个键的形成苯并呋喃及其衍生物是分子内环化策略最流行的方法(图4)。

Figure 4. The formation of O-C2 bond as the last bond in benzofuran and its derivatives

4. O-C2键作为最后一个键的形成苯并呋喃及其衍生物

2.1.1. 邻烯基酚的C-H活化

C-H官能化是与传统方法利用官能团变换的明显不同的方法[14]。2014年,北京大学贾彦兴教授课题组开发了一种前所未有的钯催化合成苯并呋喃的新方法[15],采用2-羟基苯乙烯和碘代苯参与的C-H活化/氧化串联反应。仔细观察整个反应过程后,发现苯并呋喃的生成是由Heck反应/氧化环化反应串联而成。利用这种方法,显著提高了合成decursivine及其类似物的总体效率(图5)。

Figure 5. Benzofuran derivatives formed by C-H activation of ortho vinyl phenols

5. 由邻烯基酚的C-H活化后形成苯并呋喃衍生物

虽然上述反应在化学计量氧的化剂氧化C-H官能化反应领域取得了重大进展,但在没有氧化剂和牺牲受体的情况下,由邻烯基酚一步转化为苯并呋喃所涉及的C-H氧化却几乎没有报道。而2016年,华东理工大学刘仁华教授报道了[16]一种由钯/碳(Pd/C,没有任何氧化剂)催化的环化反应,并提出了该方法在利用C(sp2)-H键作为潜在官能团构建C(sp2)-O键方面的应用前景,为绿色合成提供了新思路。在无金属催化领域,Mangaonka及团队在不使用贵金属Pd催化剂的情况下,采用三价碘即10 mol%二乙酰氧基碘苯作为催化剂,在间氯过氧苯甲酸存在下实现2-芳基苯并呋喃的高收率合成[17]

2.1.2. 邻炔基酚衍生物的环化

过渡金属催化炔烃的烷氧基化为从易得的邻炔基苯酚合成C2取代的苯并呋喃提供了一种可靠的方法[18]。2018年Sestelo报告了卤化铟催化炔基酚的氢烷氧基化反应,以高产率提供苯并呋喃。该反应具有专一的区域选择性,在1,2二氯乙烷中使用三碘化铟(5 mol%)作催化剂以高产率获得苯并呋喃衍生物。实验和计算研究表明一种基于铟(lll)-路易斯酸活化炔烃的机制,然后亲核加成苯酚并最终进行原脱金属,以获得相应的苯并呋喃[19]。此外,除了铟这种环化在Cu(l) [20]、Rh(l) [21]、Au [22]和pTsOH MW [23]也有效,可得到苯并呋喃衍生物(图6)。

2019年南开大学资伟伟教授。报道了铼催化炔烃的碳烷氧基化和碳胺化反应。该反应提供了一种在温和条件下合成C3取代的苯并呋喃和吲哚的有效途径[24]。机理研究表明,铼起到了π酸催化剂的作用,活化了炔烃,随后发生了电荷加速的[3, 3]-σ重排反应。类似的亲电Pt物种也可以对炔烃进行类似活化,这使得杂元素能够进行亲核攻击,从而导致反式烷氧基金属化[25]。该过程生成烯丙基阳离子,该阳离子与环的最亲核位置反应,生成产物并再生催化剂。这种方法,能够使稳定正电荷的其他集团R可能会以类似的方式转移。

此外,Ferreira团队发现使用铂催化通过分子内亲核加成,生成β-不饱和卡宾中间体。这些卡宾已被证明会发生环加成、氢迁移和乙烯亲核加成[26],其中β-二酮、酮酯和酮酰胺都成功地添加到铂卡宾中间体上以合成不同的稠环化合物。

Figure 6. Cyclization of ortho alkynylphenol derivatives to form benzofuran derivatives

6. 邻炔基酚衍生物的环化形成苯并呋喃衍生物

2.1.3. 邻烯丙基酚的环化

钯催化反应中的一例特殊的代表是钯/碳(Pd/C)催化。钯碳(Pd/C)具有一些独特的优势,如在空气中的稳定性,通过简单的过滤容易去除,且具有可持续性和相对低成本的商业可用性[27]。2019年,Kokotos及其同事开发了一种廉价且易于操作的合成苯并呋喃的策略,采用Pd/C作为催化剂。各种取代的烯丙基苯酚均能以优异的产率转化为所需的产物。此反应中Pd/C的再循环能多达五个循环,并保持相似的催化性能[28] (图7)。通过在DMA/H2O中使用PdCl2、NaOAc和O2的Wacker型分子内环化从含有邻烯丙基苯酚片段的天然产物和诺酮合成苯并呋喃支架[29]。该反应开发了一种可用的5-芳基苯基呋喃新木信号素的半合成方法,并进行了详细的结构修饰。

Figure 7. Cyclization of o-allyl phenol to form benzofuran derivatives

7. 邻烯丙基酚的环化形成苯并呋喃衍生物

2.2. Cβ-O键形成(路径B)

Cβ-O键作为最后一个键的形成苯并呋喃及其衍生物是分子内环化策略常见的方法(图8)。

Figure 8. The formation of Cβ-O bond as the last bond in benzofuran and its derivatives

8. Cβ-O键作为最后一个键的形成苯并呋喃及其衍生物

2.2.1. 由邻卤代苯乙炔合成

通常,2-取代苯并[b]呋喃的制备涉及使用2-卤代酚作为反应前体[30],由于前体的不稳定性以及合成前体所需的保护和脱保护步骤[7] [31],这使得苯并呋喃的合成非常麻烦。目前,由邻卤代苯炔羟基环化合成苯并呋喃衍生物的主流方法主要依赖于过渡金属催化反应,2014年,五邑大学孙宁教授报道了一种在较为温和条件下合成2取代苯并呋喃衍生物的合成方法[32]。该方法以邻氟苯炔为原料,在金属铜条件下发生水合/环化,生成苯并呋喃衍生物。Stradiotto及其同事使用钯催化体系,可在室温下在空气中高效实现由邻卤苯基炔烃的羟基化/环化合成苯并呋喃衍生物[33] (图9)。

Figure 9. Synthesis of benzofuran derivatives from orthohalogenated phenylacetylene

9. 由邻卤代苯乙炔合成苯并呋喃衍生物

2.2.2. 从邻卤代苄基酮合成

研究表明,铜催化体系[34]可高效实现邻溴苄基芳基酮的分子内环化反应,为苯并呋喃类化合物的合成提供了可靠途径。2009年Kotschy及其团队研究的钯催化体系展现出更优异的反应性能(图10),当采用1,3-双(2,6-二异丙基苯基)咪唑鎓四氟硼酸盐(IPr)作为Pd2(dba)3的配体,以Cs2CO3为碱,在邻二甲苯溶剂中,2-溴苄基苯基酮的转化率较高[35]。进一步研究发现,采用10 mol%的FeCl3或CuCl2作为催化剂,以Cs2CO3为碱,在DMF溶剂体系中,多种结构的2-溴苄基芳基酮转化为苯并呋喃衍生物[36]

在方法学创新方面,Sutherland团队开发一种高效一锅法合成策略。该方法以1-芳基或1-烷基酮为起始原料,通过铁(III)催化的区域选择性卤化反应和后续金属介导的O-芳基化反应,实现多取代苯并呋喃的便捷制备。该方法中铜催化剂的用量可降低至百万分之一(ppm)级别,仍能高效实现C-O环化[37]

此外,FeCl3催化的富电子芳基酮分子内环化反应通过直接氧化芳香C-O键形成,实现了侧链氧原子与苯环的有效连接,从而构建苯并呋喃骨架。机理研究表明,底物苯环上的烷氧基取代基作为关键导向基团,对环化反应的高效进行起着决定性作用[38]

Figure 10. Synthesis of benzofuran derivatives from ortho halogenated benzyl ketones

10. 从邻卤代苄基酮合成苯并呋喃衍生物

2.3. C2-C3键形成(路径C)

近年来,C2-C3键作为最后一个键的合成苯并呋喃及其衍生物的方法也得到了一定的发展(图11)。

Figure 11. The formation of C2-C3 bond as the last bond in benzofuran and its derivatives

11. C2-C3键作为最后一个键的形成苯并呋喃及其衍生物

2.3.1. 邻烷氧基苯基芳基酮的环化

苯并呋喃的传统合成方法是由邻酰基苯乙酸或酯在碱处理下的脱羰。2010年发展了一种新的苯并呋喃的合成方法是使用LiTMP进行苄基脱质子化,然后在相应芳基酮的碳阴离子和羰基之间进行分子内环化,随后在酸催化下进行脱水,合成苯并呋喃衍生物,这也为合成天然产物Malibatol A和Shoreaphenol的核心结构提供了一种新的方法(图12) [39]。此外,使用大位阻磷腈碱,通过邻苄氧基二苯甲酮的环化也可以高效的制备2,3-二芳基苯并呋喃[40]

Figure 12. Formation of benzofuran derivatives through cyclization of ortho alkoxyphenylaryl ketones

12. 通过邻烷氧基苯基芳基酮的环化形成苯并呋喃衍生物

此外,羰基化合物与非酸性亚甲基(如杂原子邻位亚甲基及烯丙位亚甲基)的缩合反应虽极具挑战性,但具有重要合成价值。李朝军教授报道一种光促简单、清洁且高产率的缩合方案,可实现非酸性亚甲基与羰基化合物的高效缩合。合成了具有广泛官能团兼容性的苯并呋喃类重要杂环化合物[41]

在C-H键官能化领域,将卡宾插入C-H键可以说是将C-H键直接转化为C-C键的最佳方法。有课题组受到Adrian Brook发现酰基硅烷经历热和光化学诱导的1,2硅-氧迁移的独特能力的启发[42],这种酰基硅烷的布鲁克重排可以被认为极性反转过程,其中酰基硅烷充当羰基阴离子等价物。因此,其通过热诱导的Brook重排产生了瞬时的双碳烯,其经历快速插入到相邻的C-H键中[43]。因此,该方法在微波辐射下合成了苯并呋喃衍生物。

2.3.2. 从邻炔基苯基乙烯基醚

2019年,曲阜师范大学魏伟教授开发了在无金属条件下,一种简单的I2O5介导的磺酰化苯并呋喃构建方法。该反应通过1,6-烯炔和芳基磺酰肼的氧化环化有效地实现,这为一系列磺酰化苯并呋喃提供了一种方法[44] (图13)。

在金属催化方面,新乡医学院张鹏波教授根据他们在二氟烷基卤代物和硼酸的过渡金属催化交叉偶联方面的专业知识,使用相同的底物在苯并呋喃上引入二氟烷基化取代基。开发了一种通过钯催化1,6-烯炔与二氟碘乙酸乙酯和芳基硼酸的芳基二氟烷基化合成二氟烷基苯并呋喃的新方法。该方法反应效率高、条件温和、底物范围广、官能团耐受性好。值得注意的是,此外,通过Fe(OTf)3催化的异构化过程获得最终的二氟烷基化苯并呋喃[45] (图13)。

Figure 13. Cyclization of ortho alkynyl phenyl benzyl ether to form benzofuran derivatives

13. 从邻炔基苯基乙烯基醚环化形成苯并呋喃衍生物

2.3.3. 从邻三唑–苯基苄基醚

Figure 14. Ring formation of benzofuran derivatives from o-triazole benzyl ether

14. 从邻三唑–苯基苄基醚环化形成苯并呋喃衍生物

最近,受广泛关注的N-磺酰基-1,2,3-三唑已成为形成金属卡宾的替代前体影响[46],中国科学院大学康强教授[47]和浙江大学陈万芝教授[48]的分别独立报道了由N-磺酰基-1,2,3-三唑生成的α-亚胺铑卡宾发生分子内sp3 C-H插入反应。前者报告了使用氧气作为氧化剂合成苯并呋喃,后者通过使用Pd/C使烯胺的烯丙基部分异构化,在氢气的存在下,烯胺部分异构化为胺衍生物。这两种方法都以良好到优异的收率制备多种苯并呋喃衍生物(图14)。

2.4. C3-Cα键形成(路径D)

C3-Cα键作为最后一个键的形成苯并呋喃及其衍生物是分子内环化策略的最后一种方法(图15)。

Figure 15. Formation of the final bond, the C3-Cα bond, and benzofuran and its derivatives

15. C3-Cα键作为最后一个键的形成苯并呋喃及其衍生物

2.4.1. Friedel-Crafts酰化

通过分子内傅克酰基化反应,实现了多取代苯并呋喃类化合物的合成。该方式以α-卤代芳基酮与酚盐经分子间O-烷基化制备的α-芳氧基芳基酮为前体。多个研究小组已开发出路易斯酸和过渡金属催化此类α-芳氧基芳基酮直接分子内环脱水的方法制备苯并呋喃衍生物:Kim及团队使用BCl3 [49]、对甲苯磺酸[50]或三氟甲磺酸铋[51]完成天然茋类化合物的全合成;也有课题组用三氯化铝或三氯化铁[52]四氯化钛[53]等成功构建2,3-二取代苯并呋喃类化合物(图16)。

Figure 16. Friedel-Crafts acylation to form benzofuran derivatives

16. Friedel-Crafts酰化形成苯并呋喃衍生物

2.4.2. 金属催化的C-H插入

2015年,国立中山大学林伯樵教授分别在室温至温和加热条件下,通过Rh(II)催化N-磺酰基-1,2,3-三唑的脱氮环化,开发了取代的3-甲基-2,3-二氢苯并呋喃和3-甲基苯并呋喃的选择性合成[54]。此外Hultin的小组报告了从简单廉价的苯酚、硼酸或其他有机硼试剂和三氯乙烯合成2-取代苯并呋喃。整个过程只需要两个合成步骤,关键步骤是法钯催化Suzuki-Miyaura偶联/分子内直接芳基化反应[55] [56]。王磊教授开发了一种通过直接氧化环化从市售酚和丙二醇酯合成苯并呋喃的方法。在Pd(OAc)2、PPh3作用下一锅法由酚类转化为苯并呋喃[57] (图17)。

Figure 17. Metal catalyzed C-H insertion to form benzofuran derivatives

17. 金属催化的C-H插入形成苯并呋喃衍生物

2.4.3. 邻碘苯基丙二烯醚的自由基环化反应

2019年,Walsh及其团队开发了一种温和且广泛适用的方法,通过独特的自由基环化级联机制构建复杂的苯并呋喃乙胺衍生物。2-氮杂烯丙基阴离子经单电子转移(SET)到2-碘芳基烯丙基醚的引发自由基环化,随后经分子间自由基–自由基偶联合成苯并呋喃衍生物[58] (图18)。该方法也可以扩展到构建更大的杂环。

Figure 18. Free radical cyclization of ortho iodophenylpropanedione ether to form benzofuran derivatives

18. 邻碘苯基丙二烯醚的自由基环化形成苯并呋喃衍生物

3. 总结

苯并呋喃及其衍生物是一类重要的杂环化合物,广泛存在于具有生物活性的天然产物和药物分子中。近年来,分子内环化策略因其高效性和步骤经济性,成为构建苯并呋喃骨架的主流方法之一。该策略主要通过预先设计的前体分子,在适当条件下通过形成关键化学键(如C-O键或C-C键)实现环化,从而高效地合成多取代苯并呋喃衍生物。

分子内环化路径可根据环化过程中形成的关键化学键分为几种类型。其中,O-C2键的形成(路线A),尤其以邻炔基酚的分子内羟烷氧基化反应为代表。除此外,邻烯基酚通过C-H活化/氧化环化反应,也可实现无需氧化剂的绿色合成。另一类重要策略是Cβ-O键的形成(路线B),是一类常见策略,从邻卤苯乙炔出发实现苯并呋喃的构建。类似地,通过苄基酮类化合物构建C-O键并环化。C2-C3键的形成(路线C)则通常涉及羰基与邻近碳原子的缩合反应。例如,邻烷氧基苯基芳基酮在强碱(如LiTMP或磷腈碱)作用下发生分子内aldol缩合,继而脱水生成苯并呋喃。紫外光促进的非酸性亚甲基与羰基的缩合反应也为该类策略提供了新途径。最后,C3-Cα键的形成(路线D)多通过分子内Friedel-Crafts酰基化反应实现,常用Lewis酸(如BBr3、AlCl3等)或过渡金属(如Rh)催化,适用于构建多取代苯并呋喃骨架。此外,Rh(II)催化的N-磺酰基-1,2,3-三唑衍生物的C-H插入反应,也为该类环化提供了新方法。

总体而言,分子内环化策略通过精确设计前体分子和选择合适催化剂,能够高效、高选择性地构建苯并呋喃骨架,尤其适用于复杂天然产物和药物分子的合成。近年来,随着C-H活化、绿色催化等新技术的发展,该领域仍在不断涌现出更加高效和可持续的合成方法。

NOTES

*通讯作者。

参考文献

[1] Li, Y., Yao, C., Bai, J., LIN, M. and Cheng, G. (2006) Anti-Inflammatory Effect of Amurensin H on Asthma-Like Reaction Induced by Allergen in Sensitized Mice. Acta Pharmacologica Sinica, 27, 735-740. [Google Scholar] [CrossRef] [PubMed]
[2] Ayoub, A.J., El-Achkar, G.A., Ghayad, S.E., Hariss, L., Haidar, R.H., Antar, L.M., et al. (2023) Fluorinated Benzofuran and Dihydrobenzofuran as Anti-Inflammatory and Potential Anticancer Agents. International Journal of Molecular Sciences, 24, Article 10399. [Google Scholar] [CrossRef] [PubMed]
[3] Brkljača, R., White, J.M. and Urban, S. (2015) Phytochemical Investigation of the Constituents Derived from the Australian Plant Macropidia fuliginosa. Journal of Natural Products, 78, 1600-1608. [Google Scholar] [CrossRef] [PubMed]
[4] Vo, D.D. and Elofsson, M. (2016) Total Synthesis of Viniferifuran, Resveratrol‐Piceatannol Hybrid, Anigopreissin a and Analogues—Investigation of Demethylation Strategies. Advanced Synthesis & Catalysis, 358, 4085-4092. [Google Scholar] [CrossRef] [PubMed]
[5] Convertini, P., Tramutola, F., Iacobazzi, V., Lupattelli, P., Chiummiento, L. and Infantino, V. (2015) Permethylated Anigopreissin a Inhibits Human Hepatoma Cell Proliferation by Mitochondria-Induced Apoptosis. Chemico-Biological Interactions, 237, 1-8. [Google Scholar] [CrossRef] [PubMed]
[6] Shimazu, S., Takahata, K., Katsuki, H., Tsunekawa, H., Tanigawa, A., Yoneda, F., et al. (2001) (−)-1-(Benzofuran-2-yl)-2-Propylaminopentane Enhances Locomotor Activity in Rats Due to Its Ability to Induce Dopamine Release. European Journal of Pharmacology, 421, 181-189. [Google Scholar] [CrossRef] [PubMed]
[7] Lavranos, T.C., Leske, A.F., Inglis, D.J., Brown, C.K., Bibby, D.C. and Kremmidiotis, G. (2012) Abstract 2774: Anti-Cancer Activity of the Tumor-Selective, Hypoxia-Inducing, Agent BNC105 in Platinum Resistant Ovarian Cancer. Cancer Research, 72, 2774-2774. [Google Scholar] [CrossRef
[8] Song, P. and Tapley, K.J. (1979) Photochemistry and Photobiology of Psoralens. Photochemistry and Photobiology, 29, 1177-1197. [Google Scholar] [CrossRef] [PubMed]
[9] Kim, J., Lee, S., Jang, M., Choi, H., Kim, J.H., Chen, H., et al. (2017) Coumestrol Epigenetically Suppresses Cancer Cell Proliferation: Coumestrol Is a Natural Haspin Kinase Inhibitor. International Journal of Molecular Sciences, 18, Article 2228. [Google Scholar] [CrossRef] [PubMed]
[10] Park, S., Lee, C., Kwon, H., Oh, S., Lee, K., Kang, S., et al. (2025) High-Efficiency Blue OLED Host Materials Based on New Anthracene-Dibenzofuran Derivatives. Journal of Luminescence, 280, Article 121106. [Google Scholar] [CrossRef
[11] Liu, X., Zhang, X., Han, M., Chen, J., Rahim, G., Liang, Y., et al. (2024) Revealing the Role of Solvent Additives in Morphology and Energy Loss in Benzodifuran Polymer-Based Non-Fullerene Organic Solar Cells. Journal of Materials Chemistry C, 12, 14613-14619. [Google Scholar] [CrossRef
[12] Darwish, I.A., Aljaber, K.A., Al-Hossaini, A.M. and Alsalhi, M.S. (2025) Evaluation of 4-Fluoro-7-Nitrobenzofurazan as a Dual-Function Chromogenic and Fluorogenic Probe for Tulathromycin and Its Innovative Utility for Development of Two Eco-Friendly and High-Through Microwell Assays for Analysis of Pharmaceutical Formulations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 325, Article 125079. [Google Scholar] [CrossRef] [PubMed]
[13] Araniti, F., Mancuso, R., Lupini, A., Sunseri, F., Abenavoli, M.R. and Gabriele, B. (2020) Benzofuran‐2‐Acetic Esters as a New Class of Natural‐Like Herbicides. Pest Management Science, 76, 395-404. [Google Scholar] [CrossRef] [PubMed]
[14] Li, B. and Shi, Z. (2012) From C(sp2)-H to C(sp3)-H: Systematic Studies on Transition Metal-Catalyzed Oxidative C-C Formation. Chemical Society Reviews, 41, 5588-5598. [Google Scholar] [CrossRef] [PubMed]
[15] Guo, L., Zhang, F., Hu, W., Li, L. and Jia, Y. (2014) Palladium-Catalyzed Synthesis of Benzofurans via C-H Activation/Oxidation Tandem Reaction and Its Application to the Synthesis of Decursivine and Serotobenine. Chemical Communications, 50, 3299-3302. [Google Scholar] [CrossRef] [PubMed]
[16] Yang, D., Zhu, Y., Yang, N., Jiang, Q. and Liu, R. (2016) One‐Step Synthesis of Substituted Benzofurans from Ortho‐ Alkenylphenols via Palladium‐Catalyzed C-H Functionalization. Advanced Synthesis & Catalysis, 358, 1731-1735. [Google Scholar] [CrossRef
[17] Singh, F. and Mangaonkar, S. (2018) Hypervalent Iodine(III)-Catalyzed Synthesis of 2-Arylbenzofurans. Synthesis, 50, 4940-4948. [Google Scholar] [CrossRef
[18] Miao, Y., Hu, Y., Yang, J., Liu, T., Sun, J. and Wang, X. (2019) Natural Source, Bioactivity and Synthesis of Benzofuran Derivatives. RSC Advances, 9, 27510-27540. [Google Scholar] [CrossRef] [PubMed]
[19] Alonso-Marañón, L., Martínez, M.M., Sarandeses, L.A., Gómez-Bengoa, E. and Pérez Sestelo, J. (2018) Indium(III)-Catalyzed Synthesis of Benzo[b]Furans by Intramolecular Hydroalkoxylation of Ortho-Alkynylphenols: Scope and Mechanistic Insights. The Journal of Organic Chemistry, 83, 7970-7980. [Google Scholar] [CrossRef] [PubMed]
[20] Rong, Z., Gao, K., Zhou, L., Lin, J. and Qian, G. (2019) Facile Synthesis of 2-Substituted Benzo[b]Furans and Indoles by Copper-Catalyzed Intramolecular Cyclization of 2-Alkynyl Phenols and Tosylanilines. RSC Advances, 9, 17975-17978. [Google Scholar] [CrossRef] [PubMed]
[21] Sarbajna, A., Pandey, P., Rahaman, S.M.W., Singh, K., Tyagi, A., Dixneuf, P.H., et al. (2017) A Triflamide‐Tethered N‐heterocyclic Carbene-Rhodium(I) Catalyst for Hydroalkoxylation Reactions: Ligand‐Promoted Nucleophilic Activation of Alcohols. ChemCatChem, 9, 1397-1401. [Google Scholar] [CrossRef
[22] Morozov, O.S., Lunchev, A.V., Bush, A.A., Tukov, A.A., Asachenko, A.F., Khrustalev, V.N., et al. (2014) Expanded‐ring N‐Heterocyclic Carbenes Efficiently Stabilize Gold(I) Cations, Leading to High Activity in Π‐Acid‐Catalyzed Cyclizations. ChemistryA European Journal, 20, 6162-6170. [Google Scholar] [CrossRef] [PubMed]
[23] Jacubert, M., Hamze, A., Provot, O., Peyrat, J., Brion, J. and Alami, M. (2009) P-Toluenesulfonic Acid-Mediated Cyclization of O-(1-Alkynyl)Anisoles or Thioanisoles: Synthesis of 2-Arylsubstituted Benzofurans and Benzothiophenes. Tetrahedron Letters, 50, 3588-3592. [Google Scholar] [CrossRef
[24] Rong, M., Qin, T. and Zi, W. (2019) Rhenium-Catalyzed Intramolecular Carboalkoxylation and Carboamination of Alkynes for the Synthesis of C3-Substituted Benzofurans and Indoles. Organic Letters, 21, 5421-5425. [Google Scholar] [CrossRef] [PubMed]
[25] Fürstner, A. and Davies, P.W. (2005) Heterocycles by PtCl2-Catalyzed Intramolecular Carboalkoxylation or Carboamination of Alkynes. Journal of the American Chemical Society, 127, 15024-15025. [Google Scholar] [CrossRef] [PubMed]
[26] Allegretti, P.A., Huynh, K., Ozumerzifon, T.J. and Ferreira, E.M. (2015) Lewis Acid Mediated Vinylogous Additions of Enol Nucleophiles into an Α,β-Unsaturated Platinum Carbene. Organic Letters, 18, 64-67. [Google Scholar] [CrossRef] [PubMed]
[27] Liu, X. and Astruc, D. (2018) Development of the Applications of Palladium on Charcoal in Organic Synthesis. Advanced Synthesis & Catalysis, 360, 3426-3459. [Google Scholar] [CrossRef
[28] Savvidou, A., IoannisTzaras, D., Koutoulogenis, G.S., Theodorou, A. and Kokotos, C.G. (2019) Synthesis of Benzofuran and Indole Derivatives Catalyzed by Palladium on Carbon. European Journal of Organic Chemistry, 2019, 3890-3897. [Google Scholar] [CrossRef
[29] Lin, D., Wang, L., Yan, Z., Ye, J., Hu, A., Liao, H., et al. (2018) Semi-Synthesis, Structural Modification and Biological Evaluation of 5-Arylbenzofuran Neolignans. RSC Advances, 8, 34331-34342. [Google Scholar] [CrossRef] [PubMed]
[30] Goyal, D., Kaur, A. and Goyal, B. (2018) Benzofuran and Indole: Promising Scaffolds for Drug Development in Alzheimer’s Disease. ChemMedChem, 13, 1275-1299. [Google Scholar] [CrossRef] [PubMed]
[31] Simonetti, S.O., Larghi, E.L., Bracca, A.B.J. and Kaufman, T.S. (2013) Angular Tricyclic Benzofurans and Related Natural Products of Fungal Origin. Isolation, Biological Activity and Synthesis. Natural Product Reports, 30, 941-969. [Google Scholar] [CrossRef] [PubMed]
[32] Li, Y., Cheng, L., Liu, X., Li, B. and Sun, N. (2014) Copper-Promoted Hydration and Annulation of 2-Fluorophenylacetylene Derivatives: From Alkynes to Benzo[b]Furans and Benzo[b]Thiophenes. Beilstein Journal of Organic Chemistry, 10, 2886-2891. [Google Scholar] [CrossRef] [PubMed]
[33] Lavery, C.B., Rotta‐Loria, N.L., McDonald, R. and Stradiotto, M. (2013) Pd2dba3/Bippyphos: A Robust Catalyst System for the Hydroxylation of Aryl Halides with Broad Substrate Scope. Advanced Synthesis & Catalysis, 355, 981-987. [Google Scholar] [CrossRef
[34] Cacchi, S., Fabrizi, G. and Goggiamani, A. (2011) Copper Catalysis in the Construction of Indole and Benzo[b]Furan Rings. Organic & Biomolecular Chemistry, 9, 641-652. [Google Scholar] [CrossRef] [PubMed]
[35] Kotschy, A. and Faragó, J. (2009) Synthesis of Benzo[b]Furans by Palladium-NHC Catalyzed Ring Closure of O-Bromobenzyl Ketones. Synthesis, 2009, 85-90. [Google Scholar] [CrossRef
[36] Bonnamour, J., Piedrafita, M. and Bolm, C. (2010) Iron and Copper Salts in the Synthesis of Benzo[b]Furans. Advanced Synthesis & Catalysis, 352, 1577-1581. [Google Scholar] [CrossRef
[37] Henry, M.C. and Sutherland, A. (2020) Synthesis of Benzo[b]Furans by Intramolecular C-O Bond Formation Using Iron and Copper Catalysis. Organic Letters, 22, 2766-2770. [Google Scholar] [CrossRef] [PubMed]
[38] Liang, Z., Hou, W., Du, Y., Zhang, Y., Pan, Y., Mao, D., et al. (2009) Oxidative Aromatic C-O Bond Formation: Synthesis of 3-Functionalized Benzo[b]Furans by FeCl3-Mediated Ring Closure of Α-Aryl Ketones. Organic Letters, 11, 4978-4981. [Google Scholar] [CrossRef] [PubMed]
[39] Chen, D.Y.-K., Kang, Q. and Wu, T.R. (2010) Modular Synthesis of Polyphenolic Benzofurans, and Application in the Total Synthesis of Malibatol a and Shoreaphenol. Molecules, 15, 5909-5927. [Google Scholar] [CrossRef] [PubMed]
[40] Kraus, G.A. and Gupta, V. (2009) A New Synthetic Strategy for the Synthesis of Bioactive Stilbene Dimers. a Direct Synthesis of Amurensin H. Tetrahedron Letters, 50, 7180-7183. [Google Scholar] [CrossRef
[41] Liu, W., Chen, N., Yang, X., Li, L. and Li, C. (2016) Dehydrative Condensation of Carbonyls with Non-Acidic Methylenes Enabled by Light: Synthesis of Benzofurans. Chemical Communications, 52, 13120-13123. [Google Scholar] [CrossRef] [PubMed]
[42] Shen, Z. and Dong, V.M. (2009) Benzofurans Prepared by C-H Bond Functionalization with Acylsilanes. Angewandte Chemie International Edition, 48, 784-786. [Google Scholar] [CrossRef] [PubMed]
[43] Brook, A.G. (1974) Molecular Rearrangements of Organosilicon Compounds. Accounts of Chemical Research, 7, 77-84. [Google Scholar] [CrossRef
[44] Wang, L., Zhang, Y., Zhang, M., Bao, P., Lv, X., Liu, H., et al. (2019) Metal-Free I2O5-Mediated Oxidative Synthesis of Sulfonylated Benzofurans through Cyclization Reaction of 1,6-Enynes and Arylsulfonylhydrazides. Tetrahedron Letters, 60, 1845-1848. [Google Scholar] [CrossRef
[45] Zhang, P., Wang, C., Cui, M., Du, M., Li, W., Jia, Z., et al. (2020) Synthesis of Difluoroalkylated Benzofuran, Benzothiophene, and Indole Derivatives via Palladium-Catalyzed Cascade Difluoroalkylation and Arylation of 1,6-Enynes. Organic Letters, 22, 1149-1154. [Google Scholar] [CrossRef] [PubMed]
[46] Davies, H.M.L. and Alford, J.S. (2014) Reactions of Metallocarbenes Derived from N-Sulfonyl-1,2,3-Triazoles. Chemical Society Reviews, 43, 5151. [Google Scholar] [CrossRef] [PubMed]
[47] Li, L., Xia, X., Wang, Y., Bora, P.P. and Kang, Q. (2015) Synthesis of Benzofurans via Tandem Rhodium‐Catalyzed C(sp3)-H Insertion and Copper‐Catalyzed Dehydrogenation. Advanced Synthesis & Catalysis, 357, 2089-2097. [Google Scholar] [CrossRef
[48] Ma, X., Wu, F., Yi, X., Wang, H. and Chen, W. (2015) One-Pot Synthesis of 2,3-Disubstituted Dihydrobenzofurans and Benzofurans via Rhodium-Catalyzed Intramolecular C-H Insertion Reaction. Chemical Communications, 51, 6862-6865. [Google Scholar] [CrossRef] [PubMed]
[49] Kim, K. and Kim, I. (2010) Total Synthesis of Diptoindonesin G via a Highly Efficient Domino Cyclodehydration/Intramolecular Friedel-Crafts Acylation/regioselective Demethylation Sequence. Organic Letters, 12, 5314-5317. [Google Scholar] [CrossRef] [PubMed]
[50] Lee, J.H., Kim, M. and Kim, I. (2014) Palladium-Catalyzed α-Arylation of Aryloxyketones for the Synthesis of 2,3-Disubstituted Benzofurans. The Journal of Organic Chemistry, 79, 6153-6163. [Google Scholar] [CrossRef] [PubMed]
[51] Kim, I. and Choi, J. (2009) A Versatile Approach to Oligostilbenoid Natural Products-Synthesis of Permethylated Analogues of Viniferifuran, Malibatol A, and Shoreaphenol. Organic & Biomolecular Chemistry, 7, 2788-2795. [Google Scholar] [CrossRef] [PubMed]
[52] Umareddy, P. and Arava, V.R. (2019) Facile Synthesis of 3-Aryl Benzofurans, 3-Aryl Benzothiophenes, 2-Aryl Indoles and Their Dimers. Synthetic Communications, 49, 2156-2167. [Google Scholar] [CrossRef
[53] Zhang, Q., Luo, J., Wang, B., Xiao, X., Gan, Z. and Tang, Q. (2019) Titanium Tetrachloride Promoted Cyclodehydration of Aryloxyketones: Facile Synthesis of Benzofurans and Naphthofurans with High Regioselectivity. Tetrahedron Letters, 60, 1337-1340. [Google Scholar] [CrossRef
[54] Tang, X., Zhang, Y., He, L., Wei, Y. and Shi, M. (2015) Intramolecular Annulation of Aromatic Rings with N-Sulfonyl 1,2,3-Triazoles: Divergent Synthesis of 3-Methylene-2,3-Dihydrobenzofurans and 3-Methylene-2,3-Dihydroindoles. Chemical Communications, 51, 133-136. [Google Scholar] [CrossRef] [PubMed]
[55] Geary, L.M. and Hultin, P.G. (2009) Modular Construction of 2-Substituted Benzo[b]Furans from 1,2-Dichlorovinyl Ethers. Organic Letters, 11, 5478-5481. [Google Scholar] [CrossRef] [PubMed]
[56] Geary, L.M. and Hultin, P.G. (2010) 2‐Substituted Benzo[b]Furans from (e)‐1,2‐Dichlorovinyl Ethers and Organoboron Reagents: Scope and Mechanistic Investigations into the One‐Pot Suzuki Coupling/Direct Arylation. European Journal of Organic Chemistry, 2010, 5563-5573. [Google Scholar] [CrossRef
[57] Li, C., Zhang, Y., Li, P. and Wang, L. (2011) Palladium-Catalyzed Oxidative Cyclization of 3-Phenoxyacrylates: An Approach to Construct Substituted Benzofurans from Phenols. The Journal of Organic Chemistry, 76, 4692-4696. [Google Scholar] [CrossRef] [PubMed]
[58] Deng, G., Li, M., Yu, K., Liu, C., Liu, Z., Duan, S., et al. (2019) Synthesis of Benzofuran Derivatives through Cascade Radical Cyclization/Intermolecular Coupling of 2‐Azaallyls. Angewandte Chemie International Edition, 58, 2826-2830. [Google Scholar] [CrossRef] [PubMed]