趋化因子样受体1在代谢相关疾病中的研究进展
Progress on Chemokine-Like Receptor 1 in Metabolic Diseases
DOI: 10.12677/acm.2025.15123387, PDF, HTML, XML,    科研立项经费支持
作者: 龙 均, 王先耀, 字 颖:大理大学临床医学院,云南 大理;龙 艳:重庆市人民医院心血管内科,重庆;施荣杰*:大理大学第一附属医院消化内科,云南 大理
关键词: 趋化因子样受体1肥胖代谢综合征糖尿病动脉粥样硬化Chemokine-Like Receptor 1 Obesity Metabolic Syndrome Diabetes Atherosclerosis
摘要: 趋化因子样受体1 (CMKLR1)是一种由多种组织与细胞合成并分泌的重要脂肪因子,在免疫与代谢稳态调节中扮演关键角色。其表达水平升高会增加肥胖、糖尿病、脂肪肝等代谢性疾病的发生风险。本文系统综述CMKLR1在代谢性疾病中的作用机制与研究进展,并探讨其作为疾病防治新靶点的潜力。
Abstract: Chemokine-like receptor 1 (CMKLR1) is a critical adipokine produced and released by various tissues and cells. It plays a key role in regulating immune and metabolic homeostasis. Elevated expression levels of CMKLR1 are associated with an increased risk of metabolic diseases, including obesity, diabetes, and fatty liver. This article systematically reviews the mechanisms and research advancements of CMKLR1 in metabolic diseases and discusses its potential as a novel target for disease prevention and treatment.
文章引用:龙均, 龙艳, 王先耀, 字颖, 施荣杰. 趋化因子样受体1在代谢相关疾病中的研究进展[J]. 临床医学进展, 2025, 15(12): 117-124. https://doi.org/10.12677/acm.2025.15123387

1. 引言

近年来,随着经济的迅速增长,人们饮食习惯和生活方式的改变,导致代谢相关疾病的死亡率和发病率持续性攀升,给公共卫生系统和医疗资源带来了重大负担。此类疾病通常表现为内脏性肥胖、高血压、血脂异常和胰岛素抵抗。许多研究表明内脏性肥胖可引发促炎介质与抗炎脂肪因子比例失调,从而增加代谢异常与心血管疾病的风险,并导致糖尿病、高尿酸血症、骨质疏松、中风及冠心病等[1]。为此,世界卫生组织提出了“代谢综合征”的概念,将其核心特征定义为内脏性肥胖及相关代谢紊乱[2]

趋化素(Chemerin)是一种脂肪因子,由多种组织和细胞合成并分泌,包括脂肪组织、肝脏、脾脏、淋巴结以及免疫细胞等。研究证实,Chemerin与肥胖、胰岛素抵抗、代谢性疾病及炎症反应密切相关[3]。目前已明确Chemerin有三种天然受体:趋化因子样受体1 (CMKLR1,又称ChemR23)、趋化因子样受体2 (CCRL2)和G蛋白偶联受体1 (GPR1)。其中,只有CMKLR1被明确为介导Chemerin诱导免疫细胞炎症反应与趋化作用的主要受体。CMKLR1是一种具有七个跨膜结构域的G蛋白偶联受体,广泛表达于造血组织、脂肪细胞、内皮细胞以及特定的免疫细胞中,如树突状细胞、巨噬细胞和自然杀伤细胞等[4]。该受体参与体内多种病理生理过程的调控,涉及先天性免疫与适应性免疫。本文旨在阐明CMKLR1是连接代谢紊乱与慢性炎症的关键调控枢纽,其功能的复杂性及组织特异性使其成为极具潜力但也面临挑战的治疗靶点。

2. Chemerin/CMKLR1信号的生物学功能

Chemerin主要由脂肪细胞产生,通过CMKLR1调控脂肪生成与能量代谢,因而被视作一种脂肪细胞因子。它通过功能受体CMKLR1作为树突状细胞和自然杀伤细胞的趋化因子,并在多种组织细胞中调控细胞因子的产生,进而间接影响免疫细胞在微环境中的活化和招募[5]。CMKLR1及其配体Chemerin能够调控巨噬细胞、自然杀伤细胞和浆细胞样树突状细胞的募集与活化,参与动脉粥样硬化、类风湿关节炎及炎症性肠病等疾病的病理进程。

研究显示,Chemerin与CMKLR1是脂肪生成的关键调控因子。在人类和小鼠中,随着脂肪前体细胞逐渐成熟,两者的表达均呈上升趋势[6]。脂肪细胞的成熟会导致具有生物活性的Chemerin及CMKLR1分泌增加。值得注意的是,Chemerin可增强脂肪细胞中胰岛素刺激葡萄糖的摄取,这表明Chemerin能影响胰岛素的敏感性、葡萄糖摄取以及能量消耗[7]。临床观察发现,Chemerin/CMKLR1水平升高与肥胖及胰岛素抵抗相关[8]。此外,Chemerin/CMKLR1信号轴在炎症中表现出双重作用:一方面,Chemerin通过CMKLR1信号增强单核细胞(尤其是树突状细胞)的趋化性,发挥强效趋化剂功能,从而促进炎症发生;另一方面,CMKLR1信号也能缓解炎症,在炎症后期则可能诱导促消退通路以抑制炎症发生[9]

3. CMKLR1在特定代谢相关疾病中的作用机制与研究进展

3.1. 肥胖与胰岛素抵抗

肥胖已成为全球流行病,也是重要的公共卫生问题。在美国,肥胖已成为第二大可预防的死亡原因。据美国疾病控制与预防中心估计,2018年约40%的美国成年人患有肥胖症,且这一比例呈上升趋势。在营养过剩状态下,过量营养物质以脂质形式储存在脂肪组织中,导致肥胖发生。长期营养过剩时,游离脂肪酸会以异位脂肪形式沉积在不同器官,并诱发活性氧与促炎因子过量产生[10]。肥胖引发的慢性炎症在胰岛素抵抗形成过程中起着关键作用。胰岛素抵抗涉及多重危险因素,包括肥胖、糖耐量异常、酗酒、吸烟、高胆固醇血症、高甘油三酯血症、低高密度脂蛋白、高尿酸血症和高血压等。超过80%的肥胖个体在一生中的特定阶段会出现胰岛素抵抗。

近年来,过量体重和脂肪质量、胰岛素抵抗对多种疾病的重大影响日益明显,这些疾病范围从炎症性疾病、心血管疾病到癌症、生殖功能障碍以及代谢功能受阻等。虽然脂肪组织最初被视为单纯的能量储存器官,但现在被公认为一个活跃的内分泌器官,能表达多种信号分子,即所谓的脂肪细胞因子[11]

多项研究表明,在非糖尿病人群中,Chemerin与CMKLR1水平随体重指数(BMI)的升高而上升[12] [13]。体育锻炼(如高强度间歇训练)、减重手术以及低热量饮食均可降低其循环水平[14] [15],表明其水平升高更可能是高脂肪质量的结果而非原因。更重要的是,研究表明,肥胖不仅导致Chemerin、CMKLR1总水平升高,还提高了其生物活性形式的比例[16]。因此,过量的Chemerin、CMKLR1可能促进了肥胖相关的慢性低度炎症,最终引发多种合并症。

3.2. 糖尿病

糖尿病(DM)是以慢性高血糖为特征的代谢性疾病,其发病机制涉及胰岛素分泌缺陷和/或胰岛素抵抗。Chemerin被认为在肥胖和糖尿病的发病机制中起重要作用,作为一种趋化因子,脂肪细胞分泌的Chemerin与胰岛素抵抗相关[17]。研究发现,Chemerin表达下调会阻碍3T3-L1前脂肪细胞分化,降低糖脂稳态相关基因表达,并改变成熟脂肪细胞的代谢功能[18]。Chemerin在多种组织中均有表达,包括白色脂肪组织、肝脏和肺,Chemerin首先以无活性的前趋化素形式分泌,经激活后与CMKLR1结合从而发挥生物学功能。CMKLR1是一种偶联G蛋白,Chemerin与CMKLR1的相互作用会抑制环磷酸腺苷的产生,并促进磷脂酶C的激活、肌醇三磷酸的释放以及PI3K和MAPK通路的激活[5]。基因敲除研究证实,Chemerin或CMKLR1缺失会导致葡萄糖与脂质代谢相关基因表达异常,并且Chemerin还可通过ERK1/2通路诱导心肌细胞胰岛素抵抗[19]

循环中的Chemerin水平与炎症及代谢综合征相关。既往研究显示,妊娠期糖尿病患者的Chemerin水平显著高于健康人群,且与HOMA-IR呈正相关[20]。然而,新近研究发现糖尿病前期患者血清Chemerin水平低于2型糖尿病患者,且在胰源型糖尿病中与HOMA-IR呈负相关[17]。这些发现提示,Chemerin的功能及其潜在机制在胰源型糖尿病中可能有所不同,它可能通过缓解胰岛素抵抗发挥保护作用,从而影响胰源型糖尿病的发病机制,进而揭示了胰源型糖尿病中一种潜在的新型分子机制和治疗策略。该研究与既往2型糖尿病和妊娠期糖尿病的相关研究结果不同,表明不同类型糖尿病背后的分子机制可能存在差异。此外,Chemerin亦与糖尿病并发症相关。研究显示1型和2型糖尿病患者眼底病变严重程度均与Chemerin水平相关,且在糖尿病视网膜病变患者中,Chemerin与CMKLR1均呈上升趋势,二者呈正相关[21]-[24]3. 代谢相关性脂肪性肝病

代谢相关性脂肪性肝病(MAFLD)已成为全球最常见的慢性肝病,MAFLD患者更容易发展成肝硬化和肝细胞癌。已知MAFLD是肝脏的一种慢性炎症状态,并被认为是代谢综合征的组成部分,与胰岛素抵抗、糖尿病和肥胖密切相关。Chemerin/CMKLR1参与不同的病理生理过程,调节脂肪生成和胰岛素的敏感性[17],并在代谢健康中起重要作用。多项研究揭示CMKLR1在MAFLD发病及代谢过程中发挥重要作用。Rebekka Pohl等学者报道,在人类MAFLD中,肝组织中Chemerin mRNA表达水平降低[25]。Huang C等学者发现CMKLR1缺失会导致葡萄糖代谢失衡[26]。近期前瞻性研究表明,在MAFLD小鼠体内Chemerin水平显著降低,补充Chemerin后可改善小鼠体内的炎症因子、血清转氨酶及血糖水平,并缓解肝脂肪变性与胰岛素抵抗[27]。然而,该研究也发现Chemerin治疗虽然降低了肝脏的甘油三酯,却使血清甘油三酯升高,这可能与肝脂蛋白输出增强及极低密度脂蛋白清除不足有关。Chemerin在MAFLD中的保护效应包括改善肝功能指标、降低炎症因子、激活JAK2-STAT3通路、减轻氧化应激、恢复自噬及改善肝脏病理,表明Chemerin对MAFLD的改善作用需依赖于其受体CMKLR1,即Chemerin/CMKLR1信号轴共同发挥缓解MAFLD的作用。值得注意的是,尽管Chemerin在MAFLD中具有诸多益处,但其潜在的不良反应亦不容忽视,因为高甘油三酯血症是某些自身免疫性疾病或心血管系统疾病的风险因素[28]。因此,在Chemerin治疗中需密切监测并干预血脂的变化。

3.3. 动脉粥样硬化

动脉粥样硬化(AS)是一种由低密度脂蛋白与白细胞在内皮下聚集引发的慢性炎症性疾病,是全球主要死亡原因之一。临床上,动脉粥样硬化长期影响人类健康生活,仍是重大公共卫生挑战。病变多发生在血流紊乱的易损区域,该处内皮细胞功能异常,介导白细胞滚动、黏附与跨内皮迁移,促进斑块形成与发展。内皮细胞通常覆盖血管腔,通过感知并响应物理、化学和生物刺激来维持血管完整性和稳态。当暴露于血流紊乱时,这些细胞发生显著表型改变,导致内皮通透性增加、细胞因子释放及白细胞黏附增强。单核细胞作为浸润内皮下层的主要细胞,分化为巨噬细胞后通过摄取胆固醇沉积转化为泡沫细胞,形成脂肪条纹,最终发展成易破裂的复杂脆弱斑块,可能引发心肌梗死和脑卒中等[29]

Chemerin通过CMKLR1发挥作用,促进巨噬细胞等免疫细胞向斑块募集,并调控其功能。临床研究显示,循环中Chemerin、CMKLR1水平与动脉粥样硬化的严重程度呈正相关[30]。Chemerin可促进载脂蛋白E基因在小鼠动脉粥样硬化的进展,并刺激内皮细胞增殖、迁移与血管新生[31]。这些结果提示,Chemerin/CMKLR1信号通路可能在动脉粥样硬化的发展中起关键作用。该通路通过调控细胞增殖与迁移,参与免疫应答、内膜增生、高血压及心肌梗死等过程[32]。Chemerin/CMKLR1信号通路在钙离子动员、PI3K和MAPK通路的激活以及β-抑制蛋白1和β-抑制蛋白2的募集方面发挥关键作用。研究表明,Chemerin/CMKLR1信号通路对血管平滑肌细胞(VSMCs)增殖与迁移起正向调控作用。脂质运铁蛋白-2 (LCN2)作为该信号的下游靶点,并通过p38/MAPK和Wnt/β-连环蛋白信号通路介导CMKLR1促进VSMCs增殖与迁移的作用[33]。此外,CMKLR1的高表达与不稳定斑块显著相关[30]

3.4. CMKLR1与多囊卵巢综合征(PCOS)

多囊卵巢综合征(PCOS)是育龄期女性最常见的内分泌与代谢紊乱疾病,患病率约15% [34]。其临床特征包括高雄激素血症、排卵障碍及多囊卵巢形态等。胰岛素抵抗、肥胖与糖尿病均可增加PCOS风险。肥胖还会加剧PCOS患者的胰岛素抵抗,导致糖耐量异常,进一步增加糖尿病与代谢综合征的发生风险。此外,黄体生成素、雄激素与皮质醇等激素失衡会促进患者体内慢性低度炎症的发生。研究显示,PCOS患者存在炎症标志物水平异常[35]

已有研究表明,Chemerin参与女性生殖调控,作为代谢功能、类固醇生成与卵巢生殖功能的调节因子[36]。Chemerin及其受体CMKLR1对PCOS病情严重程度具有重要影响。研究发现,PCOS患者卵巢组织、黄体化颗粒细胞与脂肪组织中的Chemerin表达显著高于正常人群[37]。与健康人群相比,PCOS女性黄体化颗粒细胞中CMKLR1的表达也上调[38]。多项文献报道,PCOS患者血液样本和卵泡液中的Chemerin水平均显著高于健康女性[39]-[41]

目前认为,CMKLR1在炎症与葡萄糖代谢中的双重作用可能是PCOS患者(尤其是肥胖患者)发生胰岛素抵抗的潜在原因[42]。卵泡液中Chemerin及CMKLR1浓度高于血浆水平,提示其在卵巢与全身层面的调控机制不同,可能通过卵巢局部的旁分泌/自分泌方式参与调节[36]。CMKLR1可能阻滞卵母细胞减数分裂进程,并抑制卵巢细胞类固醇合成能力。因此,Chemerin/CMKLR1的信号通路表达失调可能与排卵功能障碍和卵泡发育停滞有关[39]。生理水平的Chemerin对促进卵泡生长及维持卵巢组织免疫稳态具有重要作用,但在高雄激素环境(如PCOS)下,其过量产生会诱导表达CMKLR1的单核细胞从循环系统迁移至卵巢。在此过程中,单核细胞被富含Chemerin的卵巢组织吸引并分化为巨噬细胞,随后引发细胞凋亡(尤其以颗粒细胞为主) [43]。此外,PCOS颗粒细胞的胰岛素敏感性降低,影响葡萄糖摄取过程。Chemerin水平升高进一步加剧PCOS患者的胰岛素抵抗,导致卵巢类固醇生成异常与无排卵。

慢性炎症已被认为是PCOS的主要病因或后果之一,PCOS患者循环与卵巢局部炎症因子/细胞的变化支持这一观点[44]。Lima等人通过建立PCOS小鼠模型发现,高雄激素血症导致的卵巢Chemerin升高似乎通过招募CMKLR1阳性的巨噬细胞影响卵巢免疫微环境[43]。这项研究从卵巢层面建立了PCOS的免疫学视角,将卵巢来源的Chemerin与炎症联系起来。

综上,高血清Chemerin、CMKLR1水平与多种疾病相关,可能参与PCOS多种临床表现的形成。检测血清或卵泡液中的Chemerin、CMKLR1对PCOS的疾病进展和患者妊娠结局具有潜在的诊断价值。

4. CMKLR1的靶向治疗

目前研究表明,Chemerin/CMKLR1信号轴在炎症及代谢相关性疾病之间存在功能联系,抑制该信号轴可能通过抑制炎症反应成为管理代谢相关性疾病的有效策略。目前已开发出三类CMKLR1的靶向治疗策略,包括多肽类(C15)、纳米抗体类(CA4910和CA5183)以及小分子化合物类(CCX832和α-NETA) [45]。其中,α-NETA和CCX832不仅能够降低血浆葡萄糖及胰岛素水平,还能减少胰岛素抵抗指数[46] [47]。此外,有研究表明α-NETA可抑制肝脏与脂肪组织的脂质沉积,并参与全身代谢和认知功能的调控[48]。代表药物α-NETA最初被认为是乙酰胆碱转移酶抑制剂,直至2014年才被首次报道为CMKLR1新型小分子拮抗剂[49]。体外实验显示,它可抑制CMKLR1阳性细胞的迁移,并阻断趋化因子样蛋白刺激下β-arrestin2与CMKLR1的结合;体内实验表明,α-NETA长期静脉或肌肉注射给药耐受性良好,能显著延迟临床自身免疫性脑脊髓炎的发病时间,并限制中枢神经系统内白细胞的聚集[49]。目前,由于α-NETA具有穿透血脑屏障的能力,已成为治疗CMKLR1介导的神经炎症性疾病(如子痫前期)、神经母细胞瘤、肾透明细胞癌等肿瘤的潜在药物[50]-[52],并推动了第二代化合物的研发[53]

5. 靶向CMKLR1的挑战

尽管CMKLR1靶向药物在临床研究中显示出广阔的治疗前景,在代谢性疾病、肿瘤、冠心病等领域具有巨大的潜在应用价值,但由于其内在生物学复杂性,Chemerin/CMKLR1信号轴在炎症反应中表现出双重作用,这为药物的研发与使用带来了显著挑战。目前临床上针对CMKLR1双重作用的药物研发仍显不足,未来需要进一步研究此类药物,并加强现有药物的临床应用。此外,还需进一步探讨全身给药与局部给药的疗效对比,以及不良反应的变化情况。

6. 总结与展望

CMKLR1作为一种广泛表达于脂肪组织、肝脏与免疫细胞等部位的脂肪因子,是免疫与代谢调控的关键桥梁,在代谢性疾病发展中起核心作用。该受体参与肥胖、糖代谢紊乱等过程,并具有促炎与抗炎双重活性。因此,基于Chemerin/CMKLR1信号通路开发治疗肥胖和2型糖尿病等代谢性疾病的新型疗法具有巨大潜力。目前已有三类针对CMKLR1的治疗策略,但尚未在临床上广泛应用。未来需深入探索CMKLR1及其拮抗剂对葡萄糖稳态、胰岛素分泌与认知功能的影响机制,以克服其临床转化障碍。基础研究与临床应用的深度融合有望为代谢性疾病患者带来新的治疗希望。

基金项目

云南省教育厅科学研究基金项目资助(编号:2025Y1165)。

NOTES

*通讯作者。

参考文献

[1] Guerra, J.V.S., Dias, M.M.G., Brilhante, A.J.V.C., Terra, M.F., García-Arévalo, M. and Figueira, A.C.M. (2021) Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases. Nutrients, 13, Article 2830. [Google Scholar] [CrossRef] [PubMed]
[2] Fahed, G., Aoun, L., Bou Zerdan, M., Allam, S., Bou Zerdan, M., Bouferraa, Y., et al. (2022) Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. International Journal of Molecular Sciences, 23, Article 786. [Google Scholar] [CrossRef] [PubMed]
[3] Xie, Y., Huang, Y., Ling, X., Qin, H., Wang, M. and Luo, B. (2020) Chemerin/CMKLR1 Axis Promotes Inflammation and Pyroptosis by Activating NLRP3 Inflammasome in Diabetic Cardiomyopathy Rat. Frontiers in Physiology, 11, Article ID: 381. [Google Scholar] [CrossRef] [PubMed]
[4] Zhang, X., Weiß, T., Cheng, M.H., Chen, S., Ambrosius, C.K., Czerniak, A.S., et al. (2023) Structural Basis of G Protein-Coupled Receptor CMKLR1 Activation and Signaling Induced by a Chemerin-Derived Agonist. PLOS Biology, 21, e3002188. [Google Scholar] [CrossRef] [PubMed]
[5] Lin, Y., Xiao, L., Cai, Q., Zhu, C., Li, S., Li, B., et al. (2021) The Chemerin-CMKLR1 Axis Limits Thermogenesis by Controlling a Beige Adipocyte/IL-33/Type 2 Innate Immunity Circuit. Science Immunology, 6, eabg9698. [Google Scholar] [CrossRef] [PubMed]
[6] Zhao, Z., Liu, S., Qian, B., Zhou, L., Shi, J., Liu, J., et al. (2024) CMKLR1 Senses Chemerin/Resolvin E1 to Control Adipose Thermogenesis and Modulate Metabolic Homeostasis. Fundamental Research, 4, 575-588. [Google Scholar] [CrossRef] [PubMed]
[7] Zhao, L., Zhou, J., Abbasi, F., Fathzadeh, M., Knowles, J.W., Leung, L.L.K., et al. (2024) Chemerin in Participants with or without Insulin Resistance and Diabetes. Biomedicines, 12, Article 924. [Google Scholar] [CrossRef] [PubMed]
[8] Xie, Y. and Liu, L. (2022) Role of Chemerin/CHemR23 Axis as an Emerging Therapeutic Perspective on Obesity-Related Vascular Dysfunction. Journal of Translational Medicine, 20, Article No. 141. [Google Scholar] [CrossRef] [PubMed]
[9] Su, X., Cheng, Y., Zhang, G. and Wang, B. (2021) Chemerin in Inflammatory Diseases. Clinica Chimica Acta, 517, 41-47. [Google Scholar] [CrossRef] [PubMed]
[10] Salaga, M., Bartoszek, A., Binienda, A., Krajewska, J.B., Fabisiak, A., Mosińska, P., et al. (2021) Activation of Free Fatty Acid Receptor 4 Affects Intestinal Inflammation and Improves Colon Permeability in Mice. Nutrients, 13, Article 2716. [Google Scholar] [CrossRef] [PubMed]
[11] Wang, G., Muñoz-Rojas, A.R., Spallanzani, R.G., Franklin, R.A., Benoist, C. and Mathis, D. (2024) Adipose-Tissue Treg Cells Restrain Differentiation of Stromal Adipocyte Precursors to Promote Insulin Sensitivity and Metabolic Homeostasis. Immunity, 57, 1345-1359.e5. [Google Scholar] [CrossRef] [PubMed]
[12] Hammad, M.M., Channanath, A.M., Abu-Farha, M., Rahman, A., Al Khairi, I., Cherian, P., et al. (2023) Adolescent Obesity and ANGPTL8: Correlations with High Sensitivity C-Reactive Protein, Leptin, and Chemerin. Frontiers in Endocrinology, 14, Article ID: 1314211. [Google Scholar] [CrossRef] [PubMed]
[13] R, A., P, R., VM, V. and SN, M.S. (2024) Circulating Chemerin Levels in Obese and Non-Obese Individuals and Its Association with Obesity in Metabolic Dysfunction-Associated Fatty Liver Disease. Cureus, 16, e68105. [Google Scholar] [CrossRef] [PubMed]
[14] Schmid, A., Roderfeld, M., Karrasch, T., Roeb, E. and Schäffler, A. (2023) Serum Chemerin Is Decreased by Roux-En-Y Gastric Bypass and Low Calorie-Formula Diet in Obese Individuals. Biomedicines, 12, Article 33. [Google Scholar] [CrossRef] [PubMed]
[15] Supriya, R., Shishvan, S.R., Kefayati, M., Abednatanzi, H., Razi, O., Bagheri, R., et al. (2023) Astaxanthin Supplementation Augments the Benefits of Crossfit Workouts on Semaphorin 3C and Other Adipokines in Males with Obesity. Nutrients, 15, Article 4803. [Google Scholar] [CrossRef] [PubMed]
[16] Haberl, E.M., Pohl, R., Rein-Fischboeck, L., Feder, S., Eisinger, K., Krautbauer, S., et al. (2018) Ex Vivo Analysis of Serum Chemerin Activity in Murine Models of Obesity. Cytokine, 104, 42-45. [Google Scholar] [CrossRef] [PubMed]
[17] Tu, J., Yang, Y., Zhang, J., Lu, G., Ke, L., Tong, Z., et al. (2020) Regulatory Effect of Chemerin and Therapeutic Efficacy of Chemerin-9 in Pancreatogenic Diabetes Mellitus. Molecular Medicine Reports, 21, 981-988. [Google Scholar] [CrossRef] [PubMed]
[18] Sáinz, N., Fernández-Galilea, M., Costa, A.G.V., Prieto-Hontoria, P.L., Barraco, G.M. and Moreno-Aliaga, M.J. (2020) N-3 Polyunsaturated Fatty Acids Regulate Chemerin in Cultured Adipocytes: Role of GPR120 and Derived Lipid Mediators. Food & Function, 11, 9057-9066. [Google Scholar] [CrossRef] [PubMed]
[19] Zhang, R., Liu, S., Guo, B., Chang, L. and Li, Y. (2014) Chemerin Induces Insulin Resistance in Rat Cardiomyocytes in Part through the ERK1/2 Signaling Pathway. Pharmacology, 94, 259-264. [Google Scholar] [CrossRef] [PubMed]
[20] Wang, D., Wang, H., Li, M. and Zhao, R. (2022) Chemerin Levels and Its Genetic Variants Are Associated with Gestational Diabetes Mellitus: A Hospital-Based Study in a Chinese Cohort. Gene, 807, Article 145888. [Google Scholar] [CrossRef] [PubMed]
[21] Jun, L., Lin-Lin, S. and Hui, S. (2021) Chemerin Promotes Microangiopathy in Diabetic Retinopathy via Activation of ChemR23 in Rat Primary Microvascular Endothelial Cells. Molecular Vision, 27, 575-587.
[22] Wang, L., Zhang, Y., Guo, Y., Ding, W., Chang, A., Wei, J., et al. (2021) Chemerin/CMKLR1 Axis Promotes the Progression of Proliferative Diabetic Retinopathy. International Journal of Endocrinology, 2021, Article ID: 4468625. [Google Scholar] [CrossRef] [PubMed]
[23] Elmahdy, A.G., Ibrahim, M.M., Salama, O.H., Ziada, H., Ali, M.M., Elmohaseb, G.F., et al. (2022) Association of the Serum Chemerin Level with the Development of Diabetic Retinopathy in Patients with Type 1 Diabetes Mellitus. Medical hypothesis discovery and innovation in ophthalmology, 11, 171-178. [Google Scholar] [CrossRef] [PubMed]
[24] Yasir, M., Senthilkumar, G.P., Jayashree, K., Ramesh Babu, K., Vadivelan, M. and Palanivel, C. (2022) Association of Serum Omentin-1, Apelin and Chemerin Concentrations with the Presence and Severity of Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients. Archives of Physiology and Biochemistry, 128, 313-320. [Google Scholar] [CrossRef] [PubMed]
[25] Pohl, R., Haberl, E.M., Rein‐Fischboeck, L., Zimny, S., Neumann, M., Aslanidis, C., et al. (2017) Hepatic Chemerin mRNA Expression Is Reduced in Human Nonalcoholic Steatohepatitis. European Journal of Clinical Investigation, 47, 7-18. [Google Scholar] [CrossRef] [PubMed]
[26] Huang, C., Wang, M., Ren, L., Xiang, L., Chen, J., Li, M., et al. (2016) CMKLR1 Deficiency Influences Glucose Tolerance and Thermogenesis in Mice on High Fat Diet. Biochemical and Biophysical Research Communications, 473, 435-441. [Google Scholar] [CrossRef] [PubMed]
[27] An, X., Liu, J., Li, Y., Dou, Z., Li, N., Suo, Y., et al. (2021) Chemerin/CMKLR1 Ameliorates Nonalcoholic Steatohepatitis by Promoting Autophagy and Alleviating Oxidative Stress through the JAK2-STAT3 Pathway. Peptides, 135, Article 170422. [Google Scholar] [CrossRef] [PubMed]
[28] Toth, P.P., Fazio, S., Wong, N.D., Hull, M. and Nichols, G.A. (2020) Risk of Cardiovascular Events in Patients with Hypertriglyceridaemia: A Review of Real‐World Evidence. Diabetes, Obesity and Metabolism, 22, 279-289. [Google Scholar] [CrossRef] [PubMed]
[29] Chinetti-Gbaguidi, G., Colin, S. and Staels, B. (2015) Macrophage Subsets in Atherosclerosis. Nature Reviews Cardiology, 12, 10-17. [Google Scholar] [CrossRef] [PubMed]
[30] Yanofsky, R., Sancho, C., Gasbarrino, K., Zheng, H., Doonan, R.J., Jaunet, F., et al. (2021) Expression of Resistin, Chemerin, and Chemerin’s Receptor in the Unstable Carotid Atherosclerotic Plaque. Stroke, 52, 2537-2546. [Google Scholar] [CrossRef] [PubMed]
[31] Liu, H., Xiong, W., Luo, Y., Chen, H., He, Y., Cao, Y., et al. (2019) Adipokine Chemerin Stimulates Progression of Atherosclerosis in ApoE/− Mice. BioMed Research International, 2019, Article ID: 7157865. [Google Scholar] [CrossRef] [PubMed]
[32] Goralski, K.B., Jackson, A.E., McKeown, B.T. and Sinal, C.J. (2019) More than an Adipokine: The Complex Roles of Chemerin Signaling in Cancer. International Journal of Molecular Sciences, 20, Article 4778. [Google Scholar] [CrossRef] [PubMed]
[33] He, Y., Wang, R., Zhang, P., Yan, J., Gong, N., Li, Y., et al. (2021) Curcumin Inhibits the Proliferation and Migration of Vascular Smooth Muscle Cells by Targeting the Chemerin/CMKLR1/LCN2 Axis. Aging, 13, 13859-13875. [Google Scholar] [CrossRef] [PubMed]
[34] Stener-Victorin, E. and Deng, Q. (2021) Epigenetic Inheritance of Polycystic Ovary Syndrome—Challenges and Opportunities for Treatment. Nature Reviews Endocrinology, 17, 521-533. [Google Scholar] [CrossRef] [PubMed]
[35] Lansdown, A. and Rees, D.A. (2012) The Sympathetic Nervous System in Polycystic Ovary Syndrome: A Novel Therapeutic Target? Clinical Endocrinology, 77, 791-801. [Google Scholar] [CrossRef] [PubMed]
[36] Singh, A., Choubey, M., Bora, P. and Krishna, A. (2018) Adiponectin and Chemerin: Contrary Adipokines in Regulating Reproduction and Metabolic Disorders. Reproductive Sciences, 25, 1462-1473. [Google Scholar] [CrossRef] [PubMed]
[37] Mansoori, A., Amoochi‐Foroushani, G., Zilaee, M., Hosseini, S.A. and Azhdari, M. (2022) Serum and Follicular Fluid Chemerin and Chemerin mRNA Expression in Women with Polycystic Ovary Syndrome: Systematic Review and Meta‐Analysis. Endocrinology, Diabetes & Metabolism, 5, e00307. [Google Scholar] [CrossRef] [PubMed]
[38] Estienne, A., Mellouk, N., Bongrani, A., Plotton, I., Langer, I., Ramé, C., et al. (2021) Involvement of Chemerin and CMKLR1 in the Progesterone Decrease by PCOS Granulosa Cells. Reproduction, 162, 427-436. [Google Scholar] [CrossRef] [PubMed]
[39] Lin, K., Sun, X., Wang, X., Wang, H. and Chen, X. (2021) Circulating Adipokine Levels in Nonobese Women with Polycystic Ovary Syndrome and in Nonobese Control Women: A Systematic Review and Meta-Analysis. Frontiers in Endocrinology, 11, Article ID: 537809. [Google Scholar] [CrossRef] [PubMed]
[40] Mehrabani, S., Arab, A., Karimi, E., Nouri, M. and Mansourian, M. (2021) Blood Circulating Levels of Adipokines in Polycystic Ovary Syndrome Patients: A Systematic Review and Meta-Analysis. Reproductive Sciences, 28, 3032-3050. [Google Scholar] [CrossRef] [PubMed]
[41] Wang, X., Zhang, Q., Zhang, L., Wei, W., Liu, L., Li, B., et al. (2022) Circulating Chemerin Levels in Women with Polycystic Ovary Syndrome: A Meta-Analysis. Gynecological Endocrinology, 38, 22-27. [Google Scholar] [CrossRef] [PubMed]
[42] Yen, H., Chang, Y., Yee, F. and Huang, Y. (2021) Metformin Therapy for Acne in Patients with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. American Journal of Clinical Dermatology, 22, 11-23. [Google Scholar] [CrossRef] [PubMed]
[43] Lima, P.D.A., Nivet, A., Wang, Q., Chen, Y., Leader, A., Cheung, A., et al. (2018) Polycystic Ovary Syndrome: Possible Involvement of Androgen-Induced, Chemerin-Mediated Ovarian Recruitment of Monocytes/Macrophages. Biology of Reproduction, 99, 838-852. [Google Scholar] [CrossRef] [PubMed]
[44] Zhai, Y. and Pang, Y. (2022) Systemic and Ovarian Inflammation in Women with Polycystic Ovary Syndrome. Journal of Reproductive Immunology, 151, Article 103628. [Google Scholar] [CrossRef] [PubMed]
[45] Kennedy, A.J. and Davenport, A.P. (2018) International Union of Basic and Clinical Pharmacology CIII: Chemerin Receptors CMKLR1 (Chemerin1) and GPR1 (Chemerin2) Nomenclature, Pharmacology, and Function. Pharmacological Reviews, 70, 174-196. [Google Scholar] [CrossRef] [PubMed]
[46] Neves, K.B., Nguyen Dinh Cat, A., Alves-Lopes, R., Harvey, K.Y., Costa, R.M.D., Lobato, N.S., et al. (2018) Chemerin Receptor Blockade Improves Vascular Function in Diabetic Obese Mice via Redox-Sensitive and Akt-Dependent Pathways. American Journal of Physiology-Heart and Circulatory Physiology, 315, H1851-H1860. [Google Scholar] [CrossRef] [PubMed]
[47] Peng, Z., Wang, X., Zhu, Q., Wang, H., Li, B., Pang, X., et al. (2023) CMKLR1 Antagonist Alpha-Neta Protects against Diabetic Nephropathy in Mice. Kidney and Blood Pressure Research, 48, 405-413. [Google Scholar] [CrossRef] [PubMed]
[48] Yun, H., Dumbell, R., Hanna, K., Bowen, J., McLean, S.L., Kantamneni, S., et al. (2022) The Chemerin-CMKLR1 Axis Is Functionally Important for Central Regulation of Energy Homeostasis. Frontiers in Physiology, 13, Article ID: 897105. [Google Scholar] [CrossRef] [PubMed]
[49] Graham, K.L., Zhang, J.V., Lewén, S., Burke, T.M., Dang, T., Zoudilova, M., et al. (2014) A Novel CMKLR1 Small Molecule Antagonist Suppresses CNS Autoimmune Inflammatory Disease. PLOS ONE, 9, e112925. [Google Scholar] [CrossRef] [PubMed]
[50] Ji, Z., Jiang, H., Xie, Y., Wei, Q., Yin, X., Ye, J., et al. (2022) Chemerin Promotes the Pathogenesis of Preeclampsia by Activating CMKLR1/p-Akt/CEBPɑ Axis and Inducing M1 Macrophage Polarization. Cell Biology and Toxicology, 38, 611-628. [Google Scholar] [CrossRef] [PubMed]
[51] Tümmler, C., Snapkov, I., Wickström, M., Moens, U., Ljungblad, L., Maria Elfman, L.H., et al. (2017) Inhibition of Chemerin/CMKLR1 Axis in Neuroblastoma Cells Reduces Clonogenicity and Cell Viability in Vitro and Impairs Tumor Growth in Vivo. Oncotarget, 8, 95135-95151. [Google Scholar] [CrossRef] [PubMed]
[52] Wang, D., Mahmud, I., Thakur, V.S., Tan, S.K., Isom, D.G., Lombard, D.B., et al. (2024) GPR1 and CMKLR1 Control Lipid Metabolism to Support the Development of Clear Cell Renal Cell Carcinoma. Cancer Research, 84, 2141-2154. [Google Scholar] [CrossRef] [PubMed]
[53] Kumar, V., LaJevic, M., Pandrala, M., Jacobo, S.A., Malhotra, S.V. and Zabel, B.A. (2019) Novel CMKLR1 Inhibitors for Application in Demyelinating Disease. Scientific Reports, 9, Article No. 7178. [Google Scholar] [CrossRef] [PubMed]