基于慢性低度炎症探讨多囊卵巢综合征发病机制
Exploring the Pathogenesis of Polycystic Ovary Syndrome Based on Chronic Low-Grade Inflammation
DOI: 10.12677/acm.2025.15123389, PDF, HTML, XML,   
作者: 秦 臻:黑龙江中医药大学研究生院,黑龙江 哈尔滨;张跃辉*:黑龙江中医药大学附属第一医院妇科一科,黑龙江 哈尔滨
关键词: 多囊卵巢综合征慢性低度炎症铁死亡肠道菌群表观遗传修饰Polycystic Ovary Syndrome Chronic Low-Grade Inflammation Ferroptosis Gut Microbiota Epigenetic Modification
摘要: 多囊卵巢综合征(PCOS)是影响女性一生的生殖内分泌疾病,以胰岛素抵抗(IR)和高雄激素血症(HA)为主要内分泌特征。慢性低度炎症(CLGI)被定义为特定免疫原长期、低剂量刺激引发的非特异性、可持续存在的低度炎症状态。多数PCOS患者伴有CLGI,其已成为与PCOS发展相关的独立因素。PCOS发病原因不明,其病理机制较为复杂,近年来铁死亡、肠道菌群失衡、表观遗传修饰在PCOS中与CLGI密切相关受到广泛关注。本文基于CLGI,总结并分析IR、HA、铁死亡、肠道菌群失衡和表观遗传修饰在PCOS发生发展中的作用,以期为后续研究提供参考。
Abstract: Polycystic Ovary Syndrome (PCOS) is a reproductive endocrine disorder that affects women throughout their lives, characterized primarily by insulin resistance (IR) and hyperandrogenism (HA) as its main endocrine features. Chronic Low-Grade Inflammation (CLGI) is defined as a non-specific, sustained low-grade inflammatory state triggered by long-term, low-dose stimulation from specific immune agents. Most PCOS patients present with CLGI, which has been identified as an independent factor associated with the development of PCOS. The etiology of PCOS remains unclear, and its pathological mechanisms are complex. In recent years, ferroptosis, gut microbiota imbalance, and epigenetic modifications have garnered widespread research interest in PCOS and are closely linked to CLGI in the condition. Based on the concept of CLGI, this article summarizes and analyzes the roles of IR, HA, ferroptosis, gut microbiota imbalance, and epigenetic modifications in the onset and progression of PCOS, with the aim of providing references for future research.
文章引用:秦臻, 张跃辉. 基于慢性低度炎症探讨多囊卵巢综合征发病机制[J]. 临床医学进展, 2025, 15(12): 132-142. https://doi.org/10.12677/acm.2025.15123389

1. 引言

多囊卵巢综合征(polycystic ovary syndrome, PCOS)是一种高度流行的生殖内分泌疾病,本病全球发病率约18%,以胰岛素抵抗(insulin resistance, IR)和高雄激素血症(hyperandrogenism, HA)为主要内分泌特征,易出现2型糖尿病(type 2 diabetes mellitus, T2DM)、心血管疾病、子宫内膜癌等远期并发症[1]-[3]。目前普遍认为PCOS是一种全身慢性低度炎症(chronic low-grade inflammation, CLGI)性疾病,以相关炎症标志物轻度增加为特征[4]。Margioris等人[5]提出,高敏C反应蛋白(c-reactive protein, CRP)是临床上反映炎症状态的最佳标志物,其中,CRP水平介于1至3 mg/L之间提示临床上具有明显的CLGI。Kelly等人[6]首次提出PCOS患者存在CLGI,随后Xiong等人[7]的研究进一步揭示了PCOS患者外周血和卵巢均存在CLGI,表现为血清CRP、肿瘤坏死因子-α (tumor necrosis factor-α, TNF-α)以及白细胞介素-6 (interleukin-6, IL-6)等轻度升高,免疫组化显示PCOS女性卵巢组织存在大量炎性细胞浸润。随着相关研究的深入展开,目前与PCOS中CLGI相关标志物还包括白介素家族IL-1、IL‐1β、IL-18和IL-29,NOD样受体热蛋白结构域相关蛋白3 (NOD-like receptor thermal protein domain associated protein 3, NLRP3) [8]和平均血小板体积(mean platelet volume, MPV) [9]等;相关信号通路包括磷脂酰肌醇3-激酶(phosphatidylinositol-3-kinase, PI3K)-AKT [10]、Toll样受体4 (toll-like receptor4, TLR4)-核因子-κB (nuclear factor kappa-B, NF-κB) [11]、AKT-信号转导与转录激活因子3 (signal transducer and activator of transcription 3, STAT3) [12]等。

此前多数观点认为,PCOS肥胖特别是腹部肥胖,是诱发CLGI的主要因素[13]-[16]。最近的一项研究表明[17],CLGI是影响PCOS的独立因素,且不依赖于超重/肥胖。进一步证实了CLGI相关炎症标志物与PCOS发病机制的相关性[18] [19]。IR和HA作为PCOS最主要的内分泌特征,与CLGI的发生密切相关。随着研究不断深入,肠道菌群失衡、铁死亡以及表观遗传修饰在PCOS中的作用得到广泛研究,但尚未有综述基于CLGI状态探讨上述病理因素与PCOS的关系。因此本文将结合最新研究进展,以CLGI为核心,分别探讨其与IR、HA、铁死亡、肠道菌群失调和表观遗传修饰的关系,为后续研究提供参考。

2. CLGI相关病理因素在PCOS发病机制中的作用

2.1. CLGI与IR在PCOS发病机制中的作用

IR是PCOS的核心代谢特征,占PCOS表型的60%~90% [20]。PCOS常合并肥胖,IR作为PCOS的关键因素,可独立于肥胖,但会随着肥胖程度而加重[21]。研究表明,与非PCOS肥胖女孩相比,患有PCOS合并肥胖的青春期女孩的外周胰岛素敏感性降低约50%,同时合并肝脏IR和代偿性高胰岛素血症(hyperinsulinemia, HI),并产生类似成人糖尿病的代谢特征,增加罹患T2DM风险[22] [23]。此外,代偿性HI通过刺激卵巢产生过量雄激素,进一步加重PCOS [21]

PCOS中CLGI可促进IR。研究表明,PCOS患者外周血单核细胞TLR4 mRNA和蛋白表达升高,且TLR4 mRNA表达与胰岛素抵抗指数(homeostatic model assessment of insulin resistance, HOMA-IR)呈正相关[24]。此外,与健康女性相比,PCOS女性TNF-α浓度升高[25]。TNF-α通过减少胰岛素受体底物-1 (insulin receptor substrate, IRS-1)分子的丝氨酸磷酸化来减少细胞内INS信号传导途径,降低葡萄糖转运蛋白4 (glucose transporter 4, GLUT4)的表达,丝氨酸磷酸化可能抑制常规受体信号传导,并引起胰岛素介导的PI3K激活减弱[26]-[28]。TNF-α水平升高可增加与外周组织中胰岛素信号传导损伤的级联有关的p70核糖体S6激酶(p70 S6 kinase, p70S6K)、细胞外信号调节激酶1/2 (extracellular signal-regulated kinase-1/2, ERK-1/2)、c-Jun氨基末端激酶(c-Jun NH(2)-terminal kinase, JNK)磷酸化水平[29]。PCOS患者多伴有腹型肥胖的特征,TNF-α水平随着游离脂肪酸(free fatty acids, FFA)的过度释放而增加,并通过抑制脂蛋白脂肪酶并启动脂肪细胞中脂质分子的分解,导致FFA水平增加[27] [30]。由于脂肪组织的积累,导致脂肪细胞肥大和增生,并释放单核细胞趋化蛋白-1 (monocyte chemoattractant protein-1, MCP-1)等炎性细胞因子和趋化因子,吸引大量骨髓来源的单核细胞进入脂肪组织,随后分化为巨噬细胞,并持续释放促炎细胞因子,导致肥胖与CLGI的恶性循环[31] [32]。此外,Zeb等人的横断面研究表明[33],与PCOS非IR患者相比,PCOS-IR女性IL-6水平显著升高。IL-6可通过诱导细胞因子信号转导抑制因子-3 (suppressor of cytokine signaling-3, SOCS-3)激活,其本身通过与STAT3相互作用以调节炎症程度,还可与胰岛素样生长因子1受体(insulin-like growth factor 1 receptor, IGF-1R)以及IRS-1/2相互作用,使中间体的蛋白酶体降解,抑制胰岛素信号传导,并增加对诱发IR的循环因子(如FFA、TNF-α)的易感性[34] [35]。IL-6常导致胰岛素的生物效应受损,胰岛素靶细胞内促炎症通路的慢性激活可导致肥胖相关IR的发生,而IL-6随着肥胖的程度而增加,除此之外还会抑制需胰岛素进行有氧葡萄糖代谢的肌肉中胰岛素信号传导的正常功能[34] [36] [37]

其他CLGI相关指标如IL-29通过减少GLUT4表达,下调AKT信号,上调脂肪细胞中IL-1β、IL-1和MCP-1的表达并降低葡萄糖摄取和胰岛素敏感性[38]。IL-8通过抑制脂肪细胞中胰岛素诱导的AKT磷酸化产生IR [39]。NLRP3/IL-1β信号通路激活可降低PCOS大鼠肝脏胰岛素敏感性,诱发CLGI的同时促进IR的产生,而靶向NLRP3的治疗有助于抑制炎症发生,并改善IR [40] [41]。此外,PCOS-IR与CLGI在PCOS的发生发展中起协同增效作用,胰岛素相关信号通路如IRS/PI3K/AKT/GLUT的下调可进一步增加炎症水平[42]。这种相互作用进一步加剧了青少年肥胖PCOS女孩肝脏脂肪变性和硬化[43]

综上,CLGI相关标志物主要通过减少IRS丝氨酸磷酸化,抑制信号转导,降低萄糖转运蛋白的表达,导致胰岛素的生物效应受损,促进IR的发生。

2.2. CLGI与HA在PCOS发病机制中的作用

HA是指女性因雄激素分泌过多或对雄激素敏感性增加而出现的临床症状和体征,以痤疮、多毛等为主要临床表现。目前普遍认为,HA是引起PCOS发生的主要因素,与IR协同促进PCOS的发生发展[44]-[47]。过高的雄激素水平促进内脏脂肪沉积,引起IR和HI,进一步刺激卵巢和肾上腺产生雄激素的同时,减少肝脏产生性激素结合球蛋白(sex hormone binding globulin, SHBG),导致游离睾酮(testosterone, T)水平增加,促进HA [48]-[50]。有研究表明[51] [52],长期的雄激素过量刺激可影响线粒体功能,导致细胞凋亡与自噬失衡,促进IR的同时引起非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD),并可作为NAFLD特别是非肥胖型NAFLD的独立危险因素。此外,HA可抑制脂肪分解和促进皮下脂肪积累导致肥胖,高浓度T通过在脂肪组织中转化为雌酮以增加雌二醇(estradiol, E2)水平,进而影响卵泡生长,同时增加黄体生成素(luteinizing hormone, LH)/促卵泡激素(follicle-stimulating hormone, FSH)比率,导致排卵功能障碍[53]。上述研究共同说明了HA在PCOS及其相关疾病发生发展中的重要作用。

CLGI与HA关系密切,HA通过诱导生殖器官和内脏脂肪组织中的免疫细胞发生组织特异性改变,引起PCOS中CLGI标志物表达水平升高、生育能力的下降和代谢相关疾病的发生,而靶向干预HA可减轻CLGI,改善脂质代谢,从而减少脂肪堆积[54]-[58]。HA介导巨噬细胞迁移因子(migration inhibitory factor, MIF)激活卵巢NF-κB信号通路,引起IL-1β、IL-6及NF-κB等CLGI相关分子表达水平上调,而MIF抗体可逆转这一过程,改善CLGI及相关指标表达水平和卵巢形态[59]。内质网应激(endoplasmic reticulum stress, ERS)是因细胞内外环境改变,引起多个信号转导级联反应激活,未折叠或错误折叠的蛋白质大量堆积,导致ER稳态受到破坏的细胞状态[60] [61]。ERS被认为是调节卵泡微环境的关键调节因子,与HA相关CLGI标志物如NLRP3的激活相关。HA激活ERS并产生活性氧(reactive oxygen species, ROS),从而激活并调节肌醇需求酶1α (inositol-requiring enzyme-1α, IRE1α)-硫氧还蛋白互作蛋白(thioredoxin-interacting protein, TXNIP)/ROS-NLRP3信号通路,从而进一步提高炎症水平[62]。体内外研究证实,HA激活卵巢ERS,上调NLRP3、NF-κB和IL-1β表达水平,引起卵巢微环境炎症并诱导卵巢GCs细胞焦亡,而ERS抑制剂牛磺熊去氧胆酸(tauroursodeoxycholic acid, TUDCA)干预可下调CLGI相关指标表达水平,减轻细胞焦亡[63]。HA还可通过激活NLRP3上调纤维化因子表达水平,导致卵巢间质细胞纤维化[64]。最近有研究证实,HA还可通过上调核Yes相关蛋白(yes-associated protein, YAP)、激活线粒体通透性转换孔(mitochondrial permeability transition pore, mPTP)/环状GMP-AMP合成酶(cyclic GMP-AMP synthase, cGAC)/干扰素基因刺激因子(stimulator of interferon genes, STING)通路以触发线粒体DNA (mitochondrial DNA, mtDNA)释放从而参与卵巢炎症,引起卵泡损伤,破坏卵巢功能[65] [66]。此外,Luyckx等人的研究发现[67],产前雄激素化联合青春期前高脂饮食可导致PCOS小鼠出现子宫/胎盘功能障碍和炎症。

综上,HA作为PCOS的主要病理因素,通过激活NF-κB等信号通路,上调CLGI相关指标表达水平,并可激活ERS进一步加剧炎症状态。雄激素主要与核雄激素受体(androgen receptor, AR)结合发挥作用,但目前尚未明确PCOS患者/动物模型中CLGI状态是否由过量雄激素结合AR所介导,后续应开展相关研究明确这一病理机制。

2.3. CLGI与铁死亡在PCOS发病机制中的作用

铁参与机体多项生理过程,是维持内环境稳定的重要元素。铁死亡是一种以铁过载和脂质过氧化为特征的新型程序性细胞死亡,在多种生理病理过程中发挥重要作用[68] [69]。体内外研究证实,PCOS存在铁死亡异常激活,表现为PCOS妊娠大鼠子宫/胎盘铁死亡抑制蛋白表达水平下调、相关基因异常调控、铁沉积及线粒体皱缩等铁死亡特征性表现,导致妊娠丢失增加[70]-[72];人卵巢GCs系KGN细胞经睾酮处理后表现为脂滴积聚、ROS和丙二醛(malondialdehyde, MDA)水平升高,以及铁死亡抑制蛋白谷胱甘肽过氧化物酶4 (glutathione peroxidase 4, GPX4)水平下降,从而导致细胞活力下降[73]

铁死亡与CLGI在PCOS中相互促进。一方面,发生铁死亡的细胞可释放内源性危险信号触发炎性反应蛋白–如高迁移率族蛋白box 1 (high-mobility group box 1, HMGB1)至细胞外,并被免疫细胞(如巨噬细胞)上TLR识别,从而激活NF-κB信号通路,诱导炎性标志物TNF-α、IL-6等的产生[74]。此外,PCOS血清、卵泡液、卵巢等均发现脂质过氧化产物如4-羟基壬烯醛(4-Hydroxynonenal, 4-HNE)和MDA表达水平升高,二者为强促炎信号,可激活免疫细胞并诱导NLRP3产生,释放IL-1β和IL-18,促进细胞焦亡的产生[75] [76]。另一方面,高水平的TNF-α、IL-6等可促进转铁蛋白受体(transferrin receptor, TFR)表达,增加细胞内铁摄入,并激活NADPH氧化酶1 (NADPH oxidase 1, NOX1),导致ROS水平上升,诱导线粒体损伤及脂质过氧化,导致GPX4失活,最终触发铁死亡[77]

因此,基于上述特性,靶向炎症信号通路如NF-κB,可缓解CLGI,并抑制铁死亡异常激活,从而发挥协同作用,最终改善PCOS相关症状[78]。相关研究证实,具有抗炎、抗氧化等特性的药物如中药单体黄芩素可抑制PCOS妊娠胎盘和卵巢铁死亡,促进胎盘发育,改善妊娠结局,并显著提高血清性激素水平,恢复卵巢结构,改善卵巢功能障碍[79]。银纳米颗粒联合齐留通可发挥较强的抗炎、抗氧化及免疫抑制作用,降低PCOS-IR大鼠卵巢铁死亡标志物(Panx1、TLR4和Fe+2)和炎症介质(TNF-α、IL-6、NFκB)表达水平,以及调节血清激素表达水平,恢复卵巢功能的同时,还可抑制凋亡水平,进一步缓解PCOS炎症和铁死亡[80]。此外,一些抗氧化剂如瑞巴派特还可发挥神经保护作用,通过上调抗氧化剂抗炎级联反应关键调节因子去乙酰化酶1 (sirtuin 1, SIRT1)抑制相关氧化、神经炎症和铁死亡通路,有效改善PCOS大鼠抑郁样行为[81]

综上,铁死亡与CLGI二者在PCOS发病中相互促进,主要在PCOS妊娠相关疾病如早期妊娠丢失及PCOS相关情绪障碍疾病中发挥重要作用。但现有研究指出铁死亡相关标志物在PCOS妊娠子宫和胎盘中变化程度存在差异,具体分子机制有待进一步研究明确,这将对靶向药物的开发提供参考[70]-[72]

2.4. CLGI与肠道菌群在PCOS发病机制中的作用

肠道菌群的多样性与稳态平衡对维持人体健康至关重要。肠道菌群失调与PCOS相关,其可通过增加肠粘膜通透性,激活MCP-1/IL-2通路,释放TNF-α、IL-6等促炎因子,引起机体形成内毒素血症,诱发CLGI,并导致HA和IR表型的出现,其他相关机制还包括引起氧化应激等[82]。随着研究不断深入,最近有观点指出肠道菌群通过产生神经递质、免疫调节和代谢相关信号维持“肠–脑轴”功能,从而对代谢和生殖系统健康发挥调控作用,而这也诠释了PCOS女性常合并焦虑、抑郁等情绪障碍的原因,而一些神经药物对肠道菌群功能、微生物稳态具有调控作用,故基于此开展靶向药物的研发,可通过调控肠-脑轴功能,改善PCOS糖脂代谢紊乱、炎症和情绪障碍[83] [84]。最新研究表明,PCOS患者肠道菌群紊乱可导致色氨酸代谢物3-羟基邻氨基苯甲酸(3-hydroxyanthranilic acid, 3-HAA)水平下降,进而导致烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NAD+) 合成受阻,从而激活cGAS-STING炎症信号通路,引起卵巢GCs铁死亡,导致卵巢功能障碍,诱导PCOS表型出现[85]。此外,肠道菌群分解膳食黄酮产生的代谢物3,4-二羟基苯乙酸(3,4-dihydroxyphenylacetic acid, DHPAA)通过抑制BMP信号通路,下调抗缪勒管激素(anti-Müllerian hormone, AMH)水平,维持排卵功能正常。PCOS患者由于肠道菌群紊乱,体内DHPAA含量下降,动物实验证实补充DHPAA可改善PCOS小鼠生殖表型,表明DHPAA水平与PCOS发生有关,并可成为潜在治疗靶点[86]

2.5. CLGI与RNA甲基化修饰在PCOS发病机制中的作用

最近,表观遗传修饰与人类疾病的关系引起广泛关注,以RNA甲基化为代表的表观遗传修饰在女性生殖系统中发挥重要作用[87]。N6-甲基腺苷(N6‐Methyladenosine, m6A) RNA甲基化修饰是一种在真核生物中普遍存在且动态可逆的表观遗传修饰,受甲基转移酶、去甲基转移酶和结合蛋白的共同调控,广泛分布于哺乳动物的许多组织中[88]。m6A甲基化修饰以mRNA为主,也可存在于其他非编码RNA中,主要调控RNA剪接、翻译等过程,维持RNA稳定,影响子宫功能、卵巢发育、卵母细胞成熟及胚胎发育等过程[87] [89] [90]

PCOS中存在与调节CLGI相关的甲基化差异修饰[91]。Qiu等人运用生物信息学分析方法,在公共数据库中筛选与PCOS相关差异表达基因和甲基化调控因子,并结合体内外实验,明确PRDM6为PCOS发病机制中关键的甲基化调控因子,与缓解炎症、卵巢功能障碍和异常GCs增殖等方面具有治疗相关性[92]。Wang等人发现PCOS卵巢GCs炎症和葡萄糖代谢失调受m6A甲基转移酶METTL3-CD36轴调控[93]。体内外研究证实,敲低METTL3以抑制m6A修饰或给予CD36抑制剂SSO可显著下调CD36水平,从而降低NLRP3、IL-1β和IL-18表达水平,抑制CLGI,并有助于改善葡萄糖摄取受损。此外,Liu等人的研究采用16S RNA测序及质谱方法发现[94],肥胖型PCOS女性血清丁酸水平降低,与链球菌科增加和毛螺菌科减少相关,证实特定肠道菌群及代谢物与PCOS的相关性。随后研究发现PCOS卵巢GCs炎症与METTL3介导的FOSL2-m6A甲基化调控呈负相关,补充丁酸可抑制METTL3可降低FOSL2的m6A甲基化水平和mRNA表达水平,同时下调NLRP3、IL-6和TNF-α表达水平,改善卵巢功能并抑制CLGI。

综上,PCOS中存在的与CLGI相关的甲基化差异修饰可影响糖脂代谢水平及肠道菌群平衡等参与PCOS发病。但现有研究较少,缺少探究CLGI其他标志物如NLRP3、IL-6等甲基化修饰水平与PCOS发病机制的直接关联,未来研究应进一步明确。

3. 结论

PCOS发病机制较为复杂,CLGI作为本病的主要生化特征,可与IR、HA、铁死亡、肠道菌群平衡以及表观遗传修饰等相互影响,并促进PCOS的发展。但不同病理机制间并非相互独立。如Peng等人的研究发现[95],二甲双胍通过调节SIRT3/AMPK/mTOR信号通路关键分子表达水平,从而抑制卵巢铁死亡,纠正糖脂代谢紊乱,最终改善PCOS-IR。表明PCOS的发生可能还存在“炎症–铁死亡–IR”调控途径,未来开发靶向疗法时不应拘泥于单一病理机制,应从多维度考量。此外,未来应开展更多基于人的临床样本的基础研究,进一步验证动物/细胞水平发现的病理机制,从而为PCOS及相关疾病的治疗提供更为精准的治疗策略。

NOTES

*通讯作者。

参考文献

[1] Shetty, C., Rizvi, S.M.H.A., Sharaf, J., Williams, K.D., Tariq, M., Acharekar, M.V., et al. (2023) Risk of Gynecological Cancers in Women with Polycystic Ovary Syndrome and the Pathophysiology of Association. Cureus, 15, e37266. [Google Scholar] [CrossRef] [PubMed]
[2] Su, P., Chen, C. and Sun, Y. (2025) Physiopathology of Polycystic Ovary Syndrome in Endocrinology, Metabolism and Inflammation. Journal of Ovarian Research, 18, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
[3] Joham, A.E., Norman, R.J., Stener-Victorin, E., Legro, R.S., Franks, S., Moran, L.J., et al. (2022) Polycystic Ovary Syndrome. The Lancet Diabetes & Endocrinology, 10, 668-680. [Google Scholar] [CrossRef] [PubMed]
[4] Wendland, N., Opydo-Szymaczek, J., Formanowicz, D., Blacha, A., Jarząbek-Bielecka, G. and Mizgier, M. (2021) Association between Metabolic and Hormonal Profile, Proinflammatory Cytokines in Saliva and Gingival Health in Adolescent Females with Polycystic Ovary Syndrome. BMC Oral Health, 21, Article No. 193. [Google Scholar] [CrossRef] [PubMed]
[5] Margioris, A.N., Dermitzaki, E., Venihaki, M. and Tsatsanis, C. (2013) Chronic Low-Grade Inflammation. In: Calder, P.C. and Ya-qoob, P., Eds., Diet, Immunity and Inflammation, Elsevier, 105-120. [Google Scholar] [CrossRef
[6] Kelly, C.C.J., Lyall, H., Petrie, J.R., Gould, G.W., Connell, J.M.C. and Sattar, N. (2001) Low Grade Chronic Inflammation in Women with Polycystic Ovarian Syndrome. The Journal of Clinical Endocrinology & Metabolism, 86, 2453-2455. [Google Scholar] [CrossRef] [PubMed]
[7] Xiong, Y., Liang, X., Yang, X., Li, Y. and Wei, L. (2011) Low-Grade Chronic Inflammation in the Peripheral Blood and Ovaries of Women with Polycystic Ovarian Syndrome. European Journal of Obstetrics & Gynecology and Reproductive Biology, 159, 148-150. [Google Scholar] [CrossRef] [PubMed]
[8] Samadi Nasab, F., Babei, H., Nayebzadeh, M., Sadati, E., Zahiri, Z., Esfidani, T., et al. (2025) NLRP3 Inflammasome Activation in PCOS: A Novel Target for Managing Insulin Resistance and Metabolic Dysregulation. Tissue and Cell, 97, Article 103097. [Google Scholar] [CrossRef] [PubMed]
[9] Yin, Q., Liu, Y., Zhang, G., Cao, Y. and Zheng, J. (2025) Reduced Mean Platelet Volume (MPV) as an Inflammatory Marker in Chinese Women with Polycystic Ovary Syndrome: A Case-Control Study. BMC Womens Health, 25, Article No. 484. [Google Scholar] [CrossRef
[10] Yang, D., Wang, Y., Zheng, Y., Dai, F., Liu, S., Yuan, M., et al. (2021) Silencing of LncRNA UCA1 Inhibited the Pathological Progression in PCOS Mice through the Regulation of PI3K/AKT Signaling Pathway. Journal of Ovarian Research, 14, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
[11] Chang, Z., Deng, G., Shao, Y., Xu, D., Zhao, Y., Sun, Y., et al. (2021) Shaoyao-Gancao Decoction Ameliorates the Inflammation State in Polycystic Ovary Syndrome Rats via Remodeling Gut Microbiota and Suppressing the TLR4/NF-κB Pathway. Frontiers in Pharmacology, 12, Article ID: 670054. [Google Scholar] [CrossRef] [PubMed]
[12] Zhuang, Z., Pan, X., Zhao, K., Gao, W., Liu, J., Deng, T., et al. (2019) The Effect of Interleukin-6 (IL-6), Interleukin-11 (IL-11), Signal Transducer and Activator of Transcription 3 (STAT3), and AKT Signaling on Adipocyte Proliferation in a Rat Model of Polycystic Ovary Syndrome. Medical Science Monitor, 25, 7218-7227. [Google Scholar] [CrossRef] [PubMed]
[13] Kawai, T., Autieri, M.V. and Scalia, R. (2021) Adipose Tissue Inflammation and Metabolic Dysfunction in Obesity. American Journal of Physiology-Cell Physiology, 320, C375-C391. [Google Scholar] [CrossRef] [PubMed]
[14] Li, H., Meng, Y., He, S., Tan, X., Zhang, Y., Zhang, X., et al. (2022) Macrophages, Chronic Inflammation, and Insulin Resistance. Cells, 11, Article 3001. [Google Scholar] [CrossRef] [PubMed]
[15] Jurczewska, J., Ostrowska, J., Chełchowska, M., Panczyk, M., Rudnicka, E., Kucharski, M., et al. (2023) Abdominal Obesity in Women with Polycystic Ovary Syndrome and Its Relationship with Diet, Physical Activity and Insulin Resistance: A Pilot Study. Nutrients, 15, Article 3652. [Google Scholar] [CrossRef] [PubMed]
[16] Shirvanizadeh, F., Eidi, A., Hafezi, M. and Eftekhari-Yazdi, P. (2023) Abdominal Obesity May Play a Significant Role in Exacerbation of Inflammation in Polycystic Ovary Syndrome Patients. JBRA Assisted Reproduction, 27, 682-688. [Google Scholar] [CrossRef] [PubMed]
[17] Vasyukova, E., Zaikova, E., Kalinina, O., Gorelova, I., Pyanova, I., Bogatyreva, E., et al. (2023) Inflammatory and Anti-Inflammatory Parameters in PCOS Patients Depending on Body Mass Index: A Case-Control Study. Biomedicines, 11, Article 2791. [Google Scholar] [CrossRef] [PubMed]
[18] Abraham Gnanadass, S., Divakar Prabhu, Y. and Valsala Gopalakrishnan, A. (2021) Association of Metabolic and Inflammatory Markers with Polycystic Ovarian Syndrome (PCOS): An Update. Archives of Gynecology and Obstetrics, 303, 631-643. [Google Scholar] [CrossRef] [PubMed]
[19] Chen, H., Zhang, Y., Li, S., Tao, Y., Gao, R., Xu, W., et al. (2021) The Association between Genetically Predicted Systemic Inflammatory Regulators and Polycystic Ovary Syndrome: A Mendelian Randomization Study. Frontiers in Endocrinology, 12, Article ID: 731569. [Google Scholar] [CrossRef] [PubMed]
[20] Tosi, F., Bonora, E. and Moghetti, P. (2017) Insulin Resistance in a Large Cohort of Women with Polycystic Ovary Syndrome: A Comparison between Euglycaemic-Hyperinsulinaemic Clamp and Surrogate Indexes. Human Reproduction, 32, 2515-2521. [Google Scholar] [CrossRef] [PubMed]
[21] Calcaterra, V., Verduci, E., Cena, H., Magenes, V.C., Todisco, C.F., Tenuta, E., et al. (2021) Polycystic Ovary Syndrome in Insulin-Resistant Adolescents with Obesity: The Role of Nutrition Therapy and Food Supplements as a Strategy to Protect Fertility. Nutrients, 13, Article 1848. [Google Scholar] [CrossRef] [PubMed]
[22] Cree-Green, M., Carreau, A., Rahat, H., Garcia-Reyes, Y., Bergman, B.C., Pyle, L., et al. (2019) Amino Acid and Fatty Acid Metabolomic Profile during Fasting and Hyperinsulinemia in Girls with Polycystic Ovarian Syndrome. American Journal of Physiology-Endocrinology and Metabolism, 316, E707-E718. [Google Scholar] [CrossRef] [PubMed]
[23] Lewy, V.D., Danadian, K., Witchel, S.F. and Arslanian, S. (2001) Early Metabolic Abnormalities in Adolescent Girls with Polycystic Ovarian Syndrome. The Journal of Pediatrics, 138, 38-44. [Google Scholar] [CrossRef] [PubMed]
[24] 王亚妹, 谢宝国. 多囊卵巢综合征患者外周血单核细胞TLR4表达及其与胰岛素抵抗指数的相关性[J]. 山东医药, 2023, 63(21): 68-70.
[25] Thathapudi, S., Kodati, V., Erukkambattu, J., Katragadda, A., Addepally, U. and Hasan, Q. (2014) Tumor Necrosis Factor-Alpha and Polycystic Ovarian Syndrome: A Clinical, Biochemical, and Molecular Genetic Study. Genetic Testing and Molecular Biomarkers, 18, 605-609. [Google Scholar] [CrossRef] [PubMed]
[26] Acosta-Martinez, M. and Cabail, M.Z. (2022) The PI3K/Akt Pathway in Meta-Inflammation. International Journal of Molecular Sciences, 23, Article 15330. [Google Scholar] [CrossRef] [PubMed]
[27] Minokoshi, Y., Kahn, C.R. and Kahn, B.B. (2003) Tissue-Specific Ablation of the GLUT4 Glucose Transporter or the Insulin Receptor Challenges Assumptions about Insulin Action and Glucose Homeostasis. Journal of Biological Chemistry, 278, 33609-33612. [Google Scholar] [CrossRef] [PubMed]
[28] Akash, M.S.H., Rehman, K. and Liaqat, A. (2018) Tumor Necrosis Factor‐Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. Journal of Cellular Biochemistry, 119, 105-110. [Google Scholar] [CrossRef] [PubMed]
[29] Plomgaard, P., Bouzakri, K., Krogh-Madsen, R., Mittendorfer, B., Zierath, J.R. and Pedersen, B.K. (2005) Tumor Necrosis Factor-Α Induces Skeletal Muscle Insulin Resistance in Healthy Human Subjects via Inhibition of Akt Substrate 160 Phosphorylation. Diabetes, 54, 2939-2945. [Google Scholar] [CrossRef] [PubMed]
[30] Matulewicz, N. and Karczewska-Kupczewska, M. (2016) Insulin Resistance and Chronic Inflammation. Postepy Hi-gieny i Medycyny Doswiadczalnej, 70, 1245-1258.
[31] Weisberg, S.P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R.L. and Ferrante, A.W. (2003) Obesity Is Associated with Macrophage Accumulation in Adipose Tissue. Journal of Clinical Investigation, 112, 1796-1808. [Google Scholar] [CrossRef] [PubMed]
[32] Murano, I., Barbatelli, G., Parisani, V., Latini, C., Muzzonigro, G., Castellucci, M., et al. (2008) Dead Adipocytes, Detected as Crown-Like Structures, Are Prevalent in Visceral Fat Depots of Genetically Obese Mice. Journal of Lipid Research, 49, 1562-1568. [Google Scholar] [CrossRef] [PubMed]
[33] Zeb, S., Gul, R., Ashraf, et al. (2025) Comparative Analysis of Interleukin-6 Levels in Polycystic Ovary Syndrome (PCOS) Patients with and without Insulin Resistance. Cureus,17, e81878. [Google Scholar] [CrossRef] [PubMed]
[34] Rehman, K., Akash, M.S.H., Liaqat, A., Kamal, S., Qadir, M.I. and Rasul, A. (2017) Role of Interleukin-6 in Development of Insulin Resistance and Type 2 Diabetes Mellitus. Critical Reviews in Eukaryotic Gene Expression, 27, 229-236. [Google Scholar] [CrossRef] [PubMed]
[35] Dey, B.R., Furlanetto, R.W. and Nissley, P. (2000) Suppressor of Cytokine Signaling (SOCS)-3 Protein Interacts with the Insulin-Like Growth Factor-I Receptor. Biochemical and Biophysical Research Communications, 278, 38-43. [Google Scholar] [CrossRef] [PubMed]
[36] Olefsky, J.M. and Glass, C.K. (2010) Macrophages, Inflammation, and Insulin Resistance. Annual Review of Physiology, 72, 219-246. [Google Scholar] [CrossRef] [PubMed]
[37] Weiss, R., Dziura, J., Burgert, T.S., Tamborlane, W.V., Taksali, S.E., Yeckel, C.W., et al. (2004) Obesity and the Metabolic Syndrome in Children and Adolescents. New England Journal of Medicine, 350, 2362-2374. [Google Scholar] [CrossRef] [PubMed]
[38] Lin, T., Chiu, C., Kuan, C., Chen, F., Shen, Y., Wu, C., et al. (2020) IL-29 Promoted Obesity-Induced Inflammation and Insulin Resistance. Cellular & Molecular Immunology, 17, 369-379. [Google Scholar] [CrossRef] [PubMed]
[39] Kobashi, C., Asamizu, S., Ishiki, M., Iwata, M., Usui, I., Yamazaki, K., et al. (2009) Inhibitory Effect of IL-8 on Insulin Action in Human Adipocytes via MAP Kinase Pathway. Journal of Inflammation, 6, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
[40] Veličković, N., Mićić, B., Teofilović, A., Milovanovic, M., Jovanović, M., Djordjevic, A., et al. (2024) Overfeeding in the Early Postnatal Period Aggravates Inflammation and Hepatic Insulin Sensitivity in the 5α-Dihydrotestosterone-Induced Animal Model of PCOS. Frontiers in Endocrinology, 15, Article ID: 1402905. [Google Scholar] [CrossRef] [PubMed]
[41] Wang, J., Huang, Z., Cao, Z., Luo, Y., Liu, Y., Cao, H., et al. (2024) Loureirin B Reduces Insulin Resistance and Chronic Inflammation in a Rat Model of Polycystic Ovary Syndrome by Upregulating GPR120 and Activating the LKB1/AMPK Signaling Pathway. International Journal of Molecular Sciences, 25, Article 11146. [Google Scholar] [CrossRef] [PubMed]
[42] Li, H., Zhang, G., Guo, Y., Deng, J., Fischer, H., Craig, L.B., et al. (2021) Autoimmune Activation of the GNRH Receptor Induces Insulin Resistance Independent of Obesity in a Female Rat Model. Physiological Reports, 8, e14672. [Google Scholar] [CrossRef] [PubMed]
[43] Vajravelu, M.E., Shahid, N., Chebli, M., Stauffer, T., Squires, J.E., Tadros, S., et al. (2025) Hepatic Steatosis and Stiffness in Adolescent Obesity Are Linked to Androgenemia, Insulin Sensitivity, and Inflammation. Hormone Research in Paediatrics, 1-20. [Google Scholar] [CrossRef] [PubMed]
[44] Li, A., Zhang, L., Jiang, J., et al. (2017) Follicular Hyperandrogenism and Insulin Resistance in Polycystic Ovary Syndrome Patients with Normal Circulating Testosterone Levels. Journal of Biomedical Research, 32, 208-214.
[45] Wang, K., Li, Y. and Chen, Y. (2023) Androgen Excess: A Hallmark of Polycystic Ovary Syndrome. Frontiers in Endocrinology, 14, Article ID: 1273542. [Google Scholar] [CrossRef] [PubMed]
[46] Yadav, V. and Sharma, Y. (2023) Hyperandrogenism. Indian Journal of Pediatrics, 90, 1018-1024. [Google Scholar] [CrossRef] [PubMed]
[47] Zhao, W., Li, Z., Cai, B., Zhou, C. and Mai, Q. (2024) Impact of Dehydroepiandrosterone Sulfate and Free Androgen Index on Pregnancy and Neonatal Outcomes in PCOS Patients. Reproductive Biology and Endocrinology, 22, Article No. 43. [Google Scholar] [CrossRef] [PubMed]
[48] Ye, W., Xie, T., Song, Y. and Zhou, L. (2021) The Role of Androgen and Its Related Signals in PCOS. Journal of Cellular and Molecular Medicine, 25, 1825-1837. [Google Scholar] [CrossRef] [PubMed]
[49] Lonardo, M.S., Cacciapuoti, N., Guida, B., Di Lorenzo, M., Chiurazzi, M., Damiano, S., et al. (2024) Hypothalamic-ovarian Axis and Adiposity Relationship in Polycystic Ovary Syndrome: Physiopathology and Therapeutic Options for the Management of Metabolic and Inflammatory Aspects. Current Obesity Reports, 13, 51-70. [Google Scholar] [CrossRef] [PubMed]
[50] Sun, M., Wu, Y., Yuan, C., Lyu, J., Zhao, X., Ruan, Y.C., et al. (2023) Androgen-Induced Upregulation of CFTR in Pancreatic β-Cell Contributes to Hyperinsulinemia in PCOS Model. Endocrine, 83, 242-250. [Google Scholar] [CrossRef] [PubMed]
[51] Harsha Varma, S., Tirupati, S., Pradeep, T.V.S., Sarathi, V. and Kumar, D. (2019) Insulin Resistance and Hyperandrogenemia Independently Predict Nonalcoholic Fatty Liver Disease in Women with Polycystic Ovary Syndrome. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 1065-1069. [Google Scholar] [CrossRef] [PubMed]
[52] Cui, P., Hu, W., Ma, T., Hu, M., Tong, X., Zhang, F., et al. (2021) Long-Term Androgen Excess Induces Insulin Resistance and Non-Alcoholic Fatty Liver Disease in PCOS-Like Rats. The Journal of Steroid Biochemistry and Molecular Biology, 208, Article 105829. [Google Scholar] [CrossRef] [PubMed]
[53] Li, Y., Chen, C., Ma, Y., Xiao, J., Luo, G., Li, Y., et al. (2019) Multi-System Reproductive Metabolic Disorder: Significance for the Pathogenesis and Therapy of Polycystic Ovary Syndrome (PCOS). Life Sciences, 228, 167-175. [Google Scholar] [CrossRef] [PubMed]
[54] Krishnan, A., Muthusami, S., Periyasamy, L., Stanley, J.A., Gopalakrishnan, V. and Ramachandran, I. (2020) Effect of DHT-Induced Hyperandrogenism on the Pro-Inflammatory Cytokines in a Rat Model of Polycystic Ovary Morphology. Medicina, 56, Article 100. [Google Scholar] [CrossRef] [PubMed]
[55] Rudnicka, E., Kunicki, M., Suchta, K., Machura, P., Grymowicz, M. and Smolarczyk, R. (2020) Inflammatory Markers in Women with Polycystic Ovary Syndrome. BioMed Research International, 2020, Article ID: 4092470. [Google Scholar] [CrossRef] [PubMed]
[56] Shabbir, S., Khurram, E., Moorthi, V.S., Eissa, Y.T.H., Kamal, M.A. and Butler, A.E. (2023) The Interplay between Androgens and the Immune Response in Polycystic Ovary Syndrome. Journal of Translational Medicine, 21, Article No. 259. [Google Scholar] [CrossRef] [PubMed]
[57] Torstensson, S., Ascani, A., Risal, S., Lu, H., Zhao, A., Espinosa, A., et al. (2024) Androgens Modulate the Immune Profile in a Mouse Model of Polycystic Ovary Syndrome. Advanced Science, 11, e2401772. [Google Scholar] [CrossRef] [PubMed]
[58] Areloegbe, S.E., Peter, M.U., Oyeleke, M.B. and Olaniyi, K.S. (2022) Low-Dose Spironolactone Ameliorates Adipose Tissue Inflammation and Apoptosis in Letrozole-Induced PCOS Rat Model. BMC Endocrine Disorders, 22, Article No. 224. [Google Scholar] [CrossRef] [PubMed]
[59] He, Z., Wang, Y., Zhuan, L., Li, Y., Tang, Z., Wu, Z., et al. (2021) MIF-Mediated NF-κB Signaling Pathway Regulates the Pathogenesis of Polycystic Ovary Syndrome in Rats. Cytokine, 146, Article 155632. [Google Scholar] [CrossRef] [PubMed]
[60] Harada, M., Takahashi, N., Azhary, J.M., Kunitomi, C., Fujii, T. and Osuga, Y. (2021) Endoplasmic Reticulum Stress: A Key Regulator of the Follicular Microenvironment in the Ovary. Molecular Human Reproduction, 27, gaaa088. [Google Scholar] [CrossRef] [PubMed]
[61] Siddiqua, A., Malik, A. and Iqbal, U. (2025) Modulating Endoplasmic Reticulum Stress and NLRP3 Inflammasome in Polycystic Ovary Syndrome: A Review of Natural and Synthetic Compounds. Inflammopharmacology, 33, 4519-4533. [Google Scholar] [CrossRef] [PubMed]
[62] Weng, Y., Zhang, Y., Wang, D., Wang, R., Xiang, Z., Shen, S., et al. (2023) Exercise-Induced Irisin Improves Follicular Dysfunction by Inhibiting IRE1α-TXNIP/ROS-NLRP3 Pathway in PCOS. Journal of Ovarian Research, 16, Article No. 151. [Google Scholar] [CrossRef] [PubMed]
[63] Xiang, Y., Wang, H., Ding, H., Xu, T., Liu, X., Huang, Z., et al. (2023) Hyperandrogenism Drives Ovarian Inflammation and Pyroptosis: A Possible Pathogenesis of PCOS Follicular Dysplasia. International Immunopharmacology, 125, Article 111141. [Google Scholar] [CrossRef] [PubMed]
[64] Wang, D., Weng, Y., Zhang, Y., Wang, R., Wang, T., Zhou, J., et al. (2020) Exposure to Hyperandrogen Drives Ovarian Dysfunction and Fibrosis by Activating the NLRP3 Inflammasome in Mice. Science of The Total Environment, 745, Article 141049. [Google Scholar] [CrossRef] [PubMed]
[65] Xu, T., Xiang, Y., Huang, Z., Zhu, Q., Wu, H., Cai, J., et al. (2025) Hyperandrogenism-Mediated YAP Activation Drives Ovarian Inflammation and Pyroptosis in PCOS: Implications for Follicular Dysfunction. Journal of Ovarian Research, 18, Article No. 170. [Google Scholar] [CrossRef] [PubMed]
[66] Cai, J., Zhu, Q., Xiang, Y., Weng, L., Liang, N., Hong, X., et al. (2025) Hyperandrogenism Triggers mtDNA Release to Participate in Ovarian Inflammation via mPTP/cGAS/STING in PCOS. iScience, 28, Article 112391. [Google Scholar] [CrossRef] [PubMed]
[67] Luyckx, L., Myllykangas, M., Saarela, U., Virtanen, N., Hurskainen, E., Savolainen, A., et al. (2025) Prenatally Androgenized PCOS Mice Have Ovary-Independent Uterine Dysfunction and Placental Inflammation Aggravated by High-Fat Diet. Science Advances, 11, eadu3699. [Google Scholar] [CrossRef] [PubMed]
[68] Chen, X., Yu, C., Kang, R. and Tang, D. (2020) Iron Metabolism in Ferroptosis. Frontiers in Cell and Developmental Biology, 8, Article ID: 590226. [Google Scholar] [CrossRef] [PubMed]
[69] Bayır, H., Anthonymuthu, T.S., Tyurina, Y.Y., Patel, S.J., Amoscato, A.A., Lamade, A.M., et al. (2020) Achieving Life through Death: Redox Biology of Lipid Peroxidation in Ferroptosis. Cell Chemical Biology, 27, 387-408. [Google Scholar] [CrossRef] [PubMed]
[70] Hu, M., Zhang, Y., Ma, S., Li, J., Wang, X., Liang, M., et al. (2021) Suppression of Uterine and Placental Ferroptosis by N-Acetylcysteine in a Rat Model of Polycystic Ovary Syndrome. Molecular Human Reproduction, 27, 247-263. [Google Scholar] [CrossRef] [PubMed]
[71] Zhang, Y., Hu, M., Jia, W., Liu, G., Zhang, J., Wang, B., et al. (2020) Hyperandrogenism and Insulin Resistance Modulate Gravid Uterine and Placental Ferroptosis in PCOS-Like Rats. Journal of Endocrinology, 246, 247-263. [Google Scholar] [CrossRef] [PubMed]
[72] Xu, Q., Zhu, C., Li, L., Li, J., An, Z. and Tang, C. (2025) The Role of Ferroptosis in Women’s Health and Diseases. MedComm, 6, e70296. [Google Scholar] [CrossRef] [PubMed]
[73] 李远成, 李荔. 多囊卵巢综合征高雄激素介导二酰基甘油酰基转移酶2基因促进颗粒细胞铁死亡[J]. 实用医学杂志, 2025, 41(16): 2498-2506.
[74] Lv, L., Wang, Y., Lv, X. and Miao, Q. (2025) Involvement of Hmgb1-Mediated Ferroptosis in Systemic Diseases. Frontiers in Cell and Developmental Biology, 13, Article ID: 1676941. [Google Scholar] [CrossRef
[75] Hsu, C.G., Chávez, C.L., Zhang, C., Sowden, M., Yan, C. and Berk, B.C. (2022) The Lipid Peroxidation Product 4-Hydroxynonenal Inhibits NLRP3 Inflammasome Activation and Macrophage Pyroptosis. Cell Death & Differentiation, 29, 1790-1803. [Google Scholar] [CrossRef] [PubMed]
[76] Hayat, N., Akram, Z., Khalid, N., Ullah, N.R. and Mazhar, T. (2025) Link between Iron-Mediated Lipid Peroxidation and Polycystic Ovary Syndrome (PCOS): Exploring the Genes Underlying Iron Regulatory Mechanism. Journal of Ovarian Research, 18, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
[77] Zhang, L., Wang, F., Li, D., Yan, Y. and Wang, H. (2021) Transferrin Receptor-Mediated Reactive Oxygen Species Promotes Ferroptosis of KGN Cells via Regulating NADPH Oxidase 1/PTEN Induced Kinase 1/Acyl-CoA Synthetase Long Chain Family Member 4 Signaling. Bioengineered, 12, 4983-4994. [Google Scholar] [CrossRef] [PubMed]
[78] Lin, Y., Zhang, Y., Ding, X., Xu, H., Xiong, C., Tang, M., et al. (2025) Chlorogenic Acid Mitigates DHEA-Induced Oxidative Stress in Granulosa Cells and Alleviates Ferroptosis via the NF-κB Signaling Pathway in PCOS. European Journal of Pharmacology, 1002, Article 177870. [Google Scholar] [CrossRef] [PubMed]
[79] Li, Y., Peng, Y., Yang, Y., Shi, T., Liu, R., Luan, Y., et al. (2024) Baicalein Improves the Symptoms of Polycystic Ovary Syndrome by Mitigating Oxidative Stress and Ferroptosis in the Ovary and Gravid Placenta. Phytomedicine, 128, Article 155423. [Google Scholar] [CrossRef] [PubMed]
[80] Eltokhy, A.K., El-shaer, R.A.A., El-Deeb, O.S., Farghal, E.E., Ibrahim, R.R., Elesawy, R., et al. (2025) Synergistic Effects of AgNPs and Zileuton on PCOS via Ferroptosis and Inflammation Mitigation. Redox Report, 30, Article 2445398. [Google Scholar] [CrossRef] [PubMed]
[81] Hamdy, A., Sayed, R.H., El-Yamany, M.F., Helal, G.K. and Fahmy, M.I. (2025) Repurposing of Rebamipide as a Neuroprotective Agent to Alleviate Letrozole-Induced Depressive-Like Behaviors in Female Rats: Targeting SIRT1/FoxO1/ Wnt/β-Catenin, and Related Ferroptosis Pathways. Life Sciences, 380, Article 123941. [Google Scholar] [CrossRef
[82] Sharma, U., Sahu, A., Thakur, N., Choudhary, R.K., Shekhar, H., Haque, S., et al. (2025) Journey through the Gut-Inflammation Axis in Polycystic Ovary Syndrome: The Microbiota’s Role in Shaping Inflammatory Pathways. Molecular and Cellular Biochemistry. [Google Scholar] [CrossRef
[83] Maqsood, S., Asif, M., Shakoor, S. and Saddiqa, A. (2025) Modulating Metabolism and Reproductive Health through Microbiome Driven Gut-Brain Axis Therapies. Microbial Pathogenesis, 209, Article 108113. [Google Scholar] [CrossRef
[84] Li, L., Simopoulos, C.M.A., Mayne, J., Ning, Z., Zhang, X., Hamada, M., et al. (2025) Systematic Metaproteomics Mapping Reveals Functional and Ecological Landscapes of Ex Vivo Human Gut Microbiota Responses to Therapeutic Drugs. Nature Communications, 16, Article No. 9383. [Google Scholar] [CrossRef
[85] Chen, K., Geng, H., Zheng, Y., Xie, H., Qin, R., Chen, J., et al. (2025) Disruption of Gut Microbiota‐Mediated De Novo Nad+ Synthesis Contributes to the Development of Polycystic Ovary Syndrome. Advanced Science, e6497. [Google Scholar] [CrossRef
[86] Li, P., Xie, L., Zheng, H., Feng, Y., Mai, F., Tang, W., et al. (2025) Gut Microbial‐Derived 3,4‐Dihydroxyphenylacetic Acid Ameliorates Reproductive Phenotype of Polycystic Ovary Syndrome. iMeta, 4, e70065. [Google Scholar] [CrossRef
[87] Cui, X., Li, H., Huang, X., Xue, T., Wang, S., Zhu, X., et al. (2024) N6‐Methyladenosine Modification on the Function of Female Reproductive Development and Related Diseases. Immunity, Inflammation and Disease, 12, e70089. [Google Scholar] [CrossRef] [PubMed]
[88] Zheng, H., Zhang, X. and Sui, N. (2020) Advances in the Profiling of N6-Methyladenosine (m6A) Modifications. Biotechnology Advances, 45, Article 107656. [Google Scholar] [CrossRef] [PubMed]
[89] Uzonyi, A., Dierks, D., Nir, R., Kwon, O.S., Toth, U., Barbosa, I., et al. (2023) Exclusion of M6a from Splice-Site Proximal Regions by the Exon Junction Complex Dictates M6a Topologies and mRNA Stability. Molecular Cell, 83, 237-251.e7. [Google Scholar] [CrossRef] [PubMed]
[90] Lei, K., Lin, S. and Yuan, Q. (2023) N6-Methyladenosine (m6A) Modification of Ribosomal RNAs (rRNAs): Critical Roles in mRNA Translation and Diseases. Genes & Diseases, 10, 126-134. [Google Scholar] [CrossRef] [PubMed]
[91] Szukiewicz, D., Trojanowski, S., Kociszewska, A. and Szewczyk, G. (2022) Modulation of the Inflammatory Response in Polycystic Ovary Syndrome (PCOS)—Searching for Epigenetic Factors. International Journal of Molecular Sciences, 23, Article 14663. [Google Scholar] [CrossRef] [PubMed]
[92] Qiu, M., Qu, J., Wang, J., Zhi, Y. and Teng, X. (2025) The Methylation Regulator PRDM6 Confers Protection against Polycystic Ovary Syndrome: Evidences from Bioinformatics and Experimental Approaches. Reproductive Sciences. [Google Scholar] [CrossRef
[93] Weng, L., Zhu, Q., Xiang, Y., Cao, T., Cai, J., Liang, N., et al. (2024) Mettl3-Mediated M6A Modification of CD36: Implications for Glucose Metabolism and Inflammatory Dysregulation in Follicles of Polycystic Ovary Syndrome. International Immunopharmacology, 143, Article 113327. [Google Scholar] [CrossRef] [PubMed]
[94] Liu, K., He, X., Huang, J., Yu, S., Cui, M., Gao, M., et al. (2023) Short-Chain Fatty Acid-Butyric Acid Ameliorates Granulosa Cells Inflammation through Regulating Mettl3-Mediated N6-Methyladenosine Modification of FOSL2 in Polycystic Ovarian Syndrome. Clinical Epigenetics, 15, Article No. 86. [Google Scholar] [CrossRef] [PubMed]
[95] Peng, Q., Chen, X., Liang, X., Ouyang, J., Wang, Q., Ren, S., et al. (2023) Metformin Improves Polycystic Ovary Syndrome in Mice by Inhibiting Ovarian Ferroptosis. Frontiers in Endocrinology, 14, Article ID: 1070264. [Google Scholar] [CrossRef] [PubMed]