|
[1]
|
Shetty, C., Rizvi, S.M.H.A., Sharaf, J., Williams, K.D., Tariq, M., Acharekar, M.V., et al. (2023) Risk of Gynecological Cancers in Women with Polycystic Ovary Syndrome and the Pathophysiology of Association. Cureus, 15, e37266. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Su, P., Chen, C. and Sun, Y. (2025) Physiopathology of Polycystic Ovary Syndrome in Endocrinology, Metabolism and Inflammation. Journal of Ovarian Research, 18, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Joham, A.E., Norman, R.J., Stener-Victorin, E., Legro, R.S., Franks, S., Moran, L.J., et al. (2022) Polycystic Ovary Syndrome. The Lancet Diabetes & Endocrinology, 10, 668-680. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wendland, N., Opydo-Szymaczek, J., Formanowicz, D., Blacha, A., Jarząbek-Bielecka, G. and Mizgier, M. (2021) Association between Metabolic and Hormonal Profile, Proinflammatory Cytokines in Saliva and Gingival Health in Adolescent Females with Polycystic Ovary Syndrome. BMC Oral Health, 21, Article No. 193. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Margioris, A.N., Dermitzaki, E., Venihaki, M. and Tsatsanis, C. (2013) Chronic Low-Grade Inflammation. In: Calder, P.C. and Ya-qoob, P., Eds., Diet, Immunity and Inflammation, Elsevier, 105-120. [Google Scholar] [CrossRef]
|
|
[6]
|
Kelly, C.C.J., Lyall, H., Petrie, J.R., Gould, G.W., Connell, J.M.C. and Sattar, N. (2001) Low Grade Chronic Inflammation in Women with Polycystic Ovarian Syndrome. The Journal of Clinical Endocrinology & Metabolism, 86, 2453-2455. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Xiong, Y., Liang, X., Yang, X., Li, Y. and Wei, L. (2011) Low-Grade Chronic Inflammation in the Peripheral Blood and Ovaries of Women with Polycystic Ovarian Syndrome. European Journal of Obstetrics & Gynecology and Reproductive Biology, 159, 148-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Samadi Nasab, F., Babei, H., Nayebzadeh, M., Sadati, E., Zahiri, Z., Esfidani, T., et al. (2025) NLRP3 Inflammasome Activation in PCOS: A Novel Target for Managing Insulin Resistance and Metabolic Dysregulation. Tissue and Cell, 97, Article 103097. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yin, Q., Liu, Y., Zhang, G., Cao, Y. and Zheng, J. (2025) Reduced Mean Platelet Volume (MPV) as an Inflammatory Marker in Chinese Women with Polycystic Ovary Syndrome: A Case-Control Study. BMC Women’s Health, 25, Article No. 484. [Google Scholar] [CrossRef]
|
|
[10]
|
Yang, D., Wang, Y., Zheng, Y., Dai, F., Liu, S., Yuan, M., et al. (2021) Silencing of LncRNA UCA1 Inhibited the Pathological Progression in PCOS Mice through the Regulation of PI3K/AKT Signaling Pathway. Journal of Ovarian Research, 14, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chang, Z., Deng, G., Shao, Y., Xu, D., Zhao, Y., Sun, Y., et al. (2021) Shaoyao-Gancao Decoction Ameliorates the Inflammation State in Polycystic Ovary Syndrome Rats via Remodeling Gut Microbiota and Suppressing the TLR4/NF-κB Pathway. Frontiers in Pharmacology, 12, Article ID: 670054. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhuang, Z., Pan, X., Zhao, K., Gao, W., Liu, J., Deng, T., et al. (2019) The Effect of Interleukin-6 (IL-6), Interleukin-11 (IL-11), Signal Transducer and Activator of Transcription 3 (STAT3), and AKT Signaling on Adipocyte Proliferation in a Rat Model of Polycystic Ovary Syndrome. Medical Science Monitor, 25, 7218-7227. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Kawai, T., Autieri, M.V. and Scalia, R. (2021) Adipose Tissue Inflammation and Metabolic Dysfunction in Obesity. American Journal of Physiology-Cell Physiology, 320, C375-C391. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, H., Meng, Y., He, S., Tan, X., Zhang, Y., Zhang, X., et al. (2022) Macrophages, Chronic Inflammation, and Insulin Resistance. Cells, 11, Article 3001. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Jurczewska, J., Ostrowska, J., Chełchowska, M., Panczyk, M., Rudnicka, E., Kucharski, M., et al. (2023) Abdominal Obesity in Women with Polycystic Ovary Syndrome and Its Relationship with Diet, Physical Activity and Insulin Resistance: A Pilot Study. Nutrients, 15, Article 3652. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Shirvanizadeh, F., Eidi, A., Hafezi, M. and Eftekhari-Yazdi, P. (2023) Abdominal Obesity May Play a Significant Role in Exacerbation of Inflammation in Polycystic Ovary Syndrome Patients. JBRA Assisted Reproduction, 27, 682-688. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Vasyukova, E., Zaikova, E., Kalinina, O., Gorelova, I., Pyanova, I., Bogatyreva, E., et al. (2023) Inflammatory and Anti-Inflammatory Parameters in PCOS Patients Depending on Body Mass Index: A Case-Control Study. Biomedicines, 11, Article 2791. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Abraham Gnanadass, S., Divakar Prabhu, Y. and Valsala Gopalakrishnan, A. (2021) Association of Metabolic and Inflammatory Markers with Polycystic Ovarian Syndrome (PCOS): An Update. Archives of Gynecology and Obstetrics, 303, 631-643. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chen, H., Zhang, Y., Li, S., Tao, Y., Gao, R., Xu, W., et al. (2021) The Association between Genetically Predicted Systemic Inflammatory Regulators and Polycystic Ovary Syndrome: A Mendelian Randomization Study. Frontiers in Endocrinology, 12, Article ID: 731569. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tosi, F., Bonora, E. and Moghetti, P. (2017) Insulin Resistance in a Large Cohort of Women with Polycystic Ovary Syndrome: A Comparison between Euglycaemic-Hyperinsulinaemic Clamp and Surrogate Indexes. Human Reproduction, 32, 2515-2521. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Calcaterra, V., Verduci, E., Cena, H., Magenes, V.C., Todisco, C.F., Tenuta, E., et al. (2021) Polycystic Ovary Syndrome in Insulin-Resistant Adolescents with Obesity: The Role of Nutrition Therapy and Food Supplements as a Strategy to Protect Fertility. Nutrients, 13, Article 1848. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Cree-Green, M., Carreau, A., Rahat, H., Garcia-Reyes, Y., Bergman, B.C., Pyle, L., et al. (2019) Amino Acid and Fatty Acid Metabolomic Profile during Fasting and Hyperinsulinemia in Girls with Polycystic Ovarian Syndrome. American Journal of Physiology-Endocrinology and Metabolism, 316, E707-E718. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lewy, V.D., Danadian, K., Witchel, S.F. and Arslanian, S. (2001) Early Metabolic Abnormalities in Adolescent Girls with Polycystic Ovarian Syndrome. The Journal of Pediatrics, 138, 38-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
王亚妹, 谢宝国. 多囊卵巢综合征患者外周血单核细胞TLR4表达及其与胰岛素抵抗指数的相关性[J]. 山东医药, 2023, 63(21): 68-70.
|
|
[25]
|
Thathapudi, S., Kodati, V., Erukkambattu, J., Katragadda, A., Addepally, U. and Hasan, Q. (2014) Tumor Necrosis Factor-Alpha and Polycystic Ovarian Syndrome: A Clinical, Biochemical, and Molecular Genetic Study. Genetic Testing and Molecular Biomarkers, 18, 605-609. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Acosta-Martinez, M. and Cabail, M.Z. (2022) The PI3K/Akt Pathway in Meta-Inflammation. International Journal of Molecular Sciences, 23, Article 15330. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Minokoshi, Y., Kahn, C.R. and Kahn, B.B. (2003) Tissue-Specific Ablation of the GLUT4 Glucose Transporter or the Insulin Receptor Challenges Assumptions about Insulin Action and Glucose Homeostasis. Journal of Biological Chemistry, 278, 33609-33612. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Akash, M.S.H., Rehman, K. and Liaqat, A. (2018) Tumor Necrosis Factor‐Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. Journal of Cellular Biochemistry, 119, 105-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Plomgaard, P., Bouzakri, K., Krogh-Madsen, R., Mittendorfer, B., Zierath, J.R. and Pedersen, B.K. (2005) Tumor Necrosis Factor-Α Induces Skeletal Muscle Insulin Resistance in Healthy Human Subjects via Inhibition of Akt Substrate 160 Phosphorylation. Diabetes, 54, 2939-2945. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Matulewicz, N. and Karczewska-Kupczewska, M. (2016) Insulin Resistance and Chronic Inflammation. Postepy Hi-gieny i Medycyny Doswiadczalnej, 70, 1245-1258.
|
|
[31]
|
Weisberg, S.P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R.L. and Ferrante, A.W. (2003) Obesity Is Associated with Macrophage Accumulation in Adipose Tissue. Journal of Clinical Investigation, 112, 1796-1808. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Murano, I., Barbatelli, G., Parisani, V., Latini, C., Muzzonigro, G., Castellucci, M., et al. (2008) Dead Adipocytes, Detected as Crown-Like Structures, Are Prevalent in Visceral Fat Depots of Genetically Obese Mice. Journal of Lipid Research, 49, 1562-1568. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zeb, S., Gul, R., Ashraf, et al. (2025) Comparative Analysis of Interleukin-6 Levels in Polycystic Ovary Syndrome (PCOS) Patients with and without Insulin Resistance. Cureus,17, e81878. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Rehman, K., Akash, M.S.H., Liaqat, A., Kamal, S., Qadir, M.I. and Rasul, A. (2017) Role of Interleukin-6 in Development of Insulin Resistance and Type 2 Diabetes Mellitus. Critical Reviews in Eukaryotic Gene Expression, 27, 229-236. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Dey, B.R., Furlanetto, R.W. and Nissley, P. (2000) Suppressor of Cytokine Signaling (SOCS)-3 Protein Interacts with the Insulin-Like Growth Factor-I Receptor. Biochemical and Biophysical Research Communications, 278, 38-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Olefsky, J.M. and Glass, C.K. (2010) Macrophages, Inflammation, and Insulin Resistance. Annual Review of Physiology, 72, 219-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Weiss, R., Dziura, J., Burgert, T.S., Tamborlane, W.V., Taksali, S.E., Yeckel, C.W., et al. (2004) Obesity and the Metabolic Syndrome in Children and Adolescents. New England Journal of Medicine, 350, 2362-2374. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Lin, T., Chiu, C., Kuan, C., Chen, F., Shen, Y., Wu, C., et al. (2020) IL-29 Promoted Obesity-Induced Inflammation and Insulin Resistance. Cellular & Molecular Immunology, 17, 369-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kobashi, C., Asamizu, S., Ishiki, M., Iwata, M., Usui, I., Yamazaki, K., et al. (2009) Inhibitory Effect of IL-8 on Insulin Action in Human Adipocytes via MAP Kinase Pathway. Journal of Inflammation, 6, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Veličković, N., Mićić, B., Teofilović, A., Milovanovic, M., Jovanović, M., Djordjevic, A., et al. (2024) Overfeeding in the Early Postnatal Period Aggravates Inflammation and Hepatic Insulin Sensitivity in the 5α-Dihydrotestosterone-Induced Animal Model of PCOS. Frontiers in Endocrinology, 15, Article ID: 1402905. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wang, J., Huang, Z., Cao, Z., Luo, Y., Liu, Y., Cao, H., et al. (2024) Loureirin B Reduces Insulin Resistance and Chronic Inflammation in a Rat Model of Polycystic Ovary Syndrome by Upregulating GPR120 and Activating the LKB1/AMPK Signaling Pathway. International Journal of Molecular Sciences, 25, Article 11146. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Li, H., Zhang, G., Guo, Y., Deng, J., Fischer, H., Craig, L.B., et al. (2021) Autoimmune Activation of the GNRH Receptor Induces Insulin Resistance Independent of Obesity in a Female Rat Model. Physiological Reports, 8, e14672. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Vajravelu, M.E., Shahid, N., Chebli, M., Stauffer, T., Squires, J.E., Tadros, S., et al. (2025) Hepatic Steatosis and Stiffness in Adolescent Obesity Are Linked to Androgenemia, Insulin Sensitivity, and Inflammation. Hormone Research in Paediatrics, 1-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Li, A., Zhang, L., Jiang, J., et al. (2017) Follicular Hyperandrogenism and Insulin Resistance in Polycystic Ovary Syndrome Patients with Normal Circulating Testosterone Levels. Journal of Biomedical Research, 32, 208-214.
|
|
[45]
|
Wang, K., Li, Y. and Chen, Y. (2023) Androgen Excess: A Hallmark of Polycystic Ovary Syndrome. Frontiers in Endocrinology, 14, Article ID: 1273542. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Yadav, V. and Sharma, Y. (2023) Hyperandrogenism. Indian Journal of Pediatrics, 90, 1018-1024. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zhao, W., Li, Z., Cai, B., Zhou, C. and Mai, Q. (2024) Impact of Dehydroepiandrosterone Sulfate and Free Androgen Index on Pregnancy and Neonatal Outcomes in PCOS Patients. Reproductive Biology and Endocrinology, 22, Article No. 43. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ye, W., Xie, T., Song, Y. and Zhou, L. (2021) The Role of Androgen and Its Related Signals in PCOS. Journal of Cellular and Molecular Medicine, 25, 1825-1837. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Lonardo, M.S., Cacciapuoti, N., Guida, B., Di Lorenzo, M., Chiurazzi, M., Damiano, S., et al. (2024) Hypothalamic-ovarian Axis and Adiposity Relationship in Polycystic Ovary Syndrome: Physiopathology and Therapeutic Options for the Management of Metabolic and Inflammatory Aspects. Current Obesity Reports, 13, 51-70. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Sun, M., Wu, Y., Yuan, C., Lyu, J., Zhao, X., Ruan, Y.C., et al. (2023) Androgen-Induced Upregulation of CFTR in Pancreatic β-Cell Contributes to Hyperinsulinemia in PCOS Model. Endocrine, 83, 242-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Harsha Varma, S., Tirupati, S., Pradeep, T.V.S., Sarathi, V. and Kumar, D. (2019) Insulin Resistance and Hyperandrogenemia Independently Predict Nonalcoholic Fatty Liver Disease in Women with Polycystic Ovary Syndrome. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 1065-1069. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Cui, P., Hu, W., Ma, T., Hu, M., Tong, X., Zhang, F., et al. (2021) Long-Term Androgen Excess Induces Insulin Resistance and Non-Alcoholic Fatty Liver Disease in PCOS-Like Rats. The Journal of Steroid Biochemistry and Molecular Biology, 208, Article 105829. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Li, Y., Chen, C., Ma, Y., Xiao, J., Luo, G., Li, Y., et al. (2019) Multi-System Reproductive Metabolic Disorder: Significance for the Pathogenesis and Therapy of Polycystic Ovary Syndrome (PCOS). Life Sciences, 228, 167-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Krishnan, A., Muthusami, S., Periyasamy, L., Stanley, J.A., Gopalakrishnan, V. and Ramachandran, I. (2020) Effect of DHT-Induced Hyperandrogenism on the Pro-Inflammatory Cytokines in a Rat Model of Polycystic Ovary Morphology. Medicina, 56, Article 100. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Rudnicka, E., Kunicki, M., Suchta, K., Machura, P., Grymowicz, M. and Smolarczyk, R. (2020) Inflammatory Markers in Women with Polycystic Ovary Syndrome. BioMed Research International, 2020, Article ID: 4092470. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Shabbir, S., Khurram, E., Moorthi, V.S., Eissa, Y.T.H., Kamal, M.A. and Butler, A.E. (2023) The Interplay between Androgens and the Immune Response in Polycystic Ovary Syndrome. Journal of Translational Medicine, 21, Article No. 259. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Torstensson, S., Ascani, A., Risal, S., Lu, H., Zhao, A., Espinosa, A., et al. (2024) Androgens Modulate the Immune Profile in a Mouse Model of Polycystic Ovary Syndrome. Advanced Science, 11, e2401772. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Areloegbe, S.E., Peter, M.U., Oyeleke, M.B. and Olaniyi, K.S. (2022) Low-Dose Spironolactone Ameliorates Adipose Tissue Inflammation and Apoptosis in Letrozole-Induced PCOS Rat Model. BMC Endocrine Disorders, 22, Article No. 224. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
He, Z., Wang, Y., Zhuan, L., Li, Y., Tang, Z., Wu, Z., et al. (2021) MIF-Mediated NF-κB Signaling Pathway Regulates the Pathogenesis of Polycystic Ovary Syndrome in Rats. Cytokine, 146, Article 155632. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Harada, M., Takahashi, N., Azhary, J.M., Kunitomi, C., Fujii, T. and Osuga, Y. (2021) Endoplasmic Reticulum Stress: A Key Regulator of the Follicular Microenvironment in the Ovary. Molecular Human Reproduction, 27, gaaa088. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Siddiqua, A., Malik, A. and Iqbal, U. (2025) Modulating Endoplasmic Reticulum Stress and NLRP3 Inflammasome in Polycystic Ovary Syndrome: A Review of Natural and Synthetic Compounds. Inflammopharmacology, 33, 4519-4533. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Weng, Y., Zhang, Y., Wang, D., Wang, R., Xiang, Z., Shen, S., et al. (2023) Exercise-Induced Irisin Improves Follicular Dysfunction by Inhibiting IRE1α-TXNIP/ROS-NLRP3 Pathway in PCOS. Journal of Ovarian Research, 16, Article No. 151. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Xiang, Y., Wang, H., Ding, H., Xu, T., Liu, X., Huang, Z., et al. (2023) Hyperandrogenism Drives Ovarian Inflammation and Pyroptosis: A Possible Pathogenesis of PCOS Follicular Dysplasia. International Immunopharmacology, 125, Article 111141. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Wang, D., Weng, Y., Zhang, Y., Wang, R., Wang, T., Zhou, J., et al. (2020) Exposure to Hyperandrogen Drives Ovarian Dysfunction and Fibrosis by Activating the NLRP3 Inflammasome in Mice. Science of The Total Environment, 745, Article 141049. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Xu, T., Xiang, Y., Huang, Z., Zhu, Q., Wu, H., Cai, J., et al. (2025) Hyperandrogenism-Mediated YAP Activation Drives Ovarian Inflammation and Pyroptosis in PCOS: Implications for Follicular Dysfunction. Journal of Ovarian Research, 18, Article No. 170. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Cai, J., Zhu, Q., Xiang, Y., Weng, L., Liang, N., Hong, X., et al. (2025) Hyperandrogenism Triggers mtDNA Release to Participate in Ovarian Inflammation via mPTP/cGAS/STING in PCOS. iScience, 28, Article 112391. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Luyckx, L., Myllykangas, M., Saarela, U., Virtanen, N., Hurskainen, E., Savolainen, A., et al. (2025) Prenatally Androgenized PCOS Mice Have Ovary-Independent Uterine Dysfunction and Placental Inflammation Aggravated by High-Fat Diet. Science Advances, 11, eadu3699. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Chen, X., Yu, C., Kang, R. and Tang, D. (2020) Iron Metabolism in Ferroptosis. Frontiers in Cell and Developmental Biology, 8, Article ID: 590226. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Bayır, H., Anthonymuthu, T.S., Tyurina, Y.Y., Patel, S.J., Amoscato, A.A., Lamade, A.M., et al. (2020) Achieving Life through Death: Redox Biology of Lipid Peroxidation in Ferroptosis. Cell Chemical Biology, 27, 387-408. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Hu, M., Zhang, Y., Ma, S., Li, J., Wang, X., Liang, M., et al. (2021) Suppression of Uterine and Placental Ferroptosis by N-Acetylcysteine in a Rat Model of Polycystic Ovary Syndrome. Molecular Human Reproduction, 27, 247-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Zhang, Y., Hu, M., Jia, W., Liu, G., Zhang, J., Wang, B., et al. (2020) Hyperandrogenism and Insulin Resistance Modulate Gravid Uterine and Placental Ferroptosis in PCOS-Like Rats. Journal of Endocrinology, 246, 247-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Xu, Q., Zhu, C., Li, L., Li, J., An, Z. and Tang, C. (2025) The Role of Ferroptosis in Women’s Health and Diseases. MedComm, 6, e70296. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
李远成, 李荔. 多囊卵巢综合征高雄激素介导二酰基甘油酰基转移酶2基因促进颗粒细胞铁死亡[J]. 实用医学杂志, 2025, 41(16): 2498-2506.
|
|
[74]
|
Lv, L., Wang, Y., Lv, X. and Miao, Q. (2025) Involvement of Hmgb1-Mediated Ferroptosis in Systemic Diseases. Frontiers in Cell and Developmental Biology, 13, Article ID: 1676941. [Google Scholar] [CrossRef]
|
|
[75]
|
Hsu, C.G., Chávez, C.L., Zhang, C., Sowden, M., Yan, C. and Berk, B.C. (2022) The Lipid Peroxidation Product 4-Hydroxynonenal Inhibits NLRP3 Inflammasome Activation and Macrophage Pyroptosis. Cell Death & Differentiation, 29, 1790-1803. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Hayat, N., Akram, Z., Khalid, N., Ullah, N.R. and Mazhar, T. (2025) Link between Iron-Mediated Lipid Peroxidation and Polycystic Ovary Syndrome (PCOS): Exploring the Genes Underlying Iron Regulatory Mechanism. Journal of Ovarian Research, 18, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Zhang, L., Wang, F., Li, D., Yan, Y. and Wang, H. (2021) Transferrin Receptor-Mediated Reactive Oxygen Species Promotes Ferroptosis of KGN Cells via Regulating NADPH Oxidase 1/PTEN Induced Kinase 1/Acyl-CoA Synthetase Long Chain Family Member 4 Signaling. Bioengineered, 12, 4983-4994. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Lin, Y., Zhang, Y., Ding, X., Xu, H., Xiong, C., Tang, M., et al. (2025) Chlorogenic Acid Mitigates DHEA-Induced Oxidative Stress in Granulosa Cells and Alleviates Ferroptosis via the NF-κB Signaling Pathway in PCOS. European Journal of Pharmacology, 1002, Article 177870. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Li, Y., Peng, Y., Yang, Y., Shi, T., Liu, R., Luan, Y., et al. (2024) Baicalein Improves the Symptoms of Polycystic Ovary Syndrome by Mitigating Oxidative Stress and Ferroptosis in the Ovary and Gravid Placenta. Phytomedicine, 128, Article 155423. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Eltokhy, A.K., El-shaer, R.A.A., El-Deeb, O.S., Farghal, E.E., Ibrahim, R.R., Elesawy, R., et al. (2025) Synergistic Effects of AgNPs and Zileuton on PCOS via Ferroptosis and Inflammation Mitigation. Redox Report, 30, Article 2445398. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Hamdy, A., Sayed, R.H., El-Yamany, M.F., Helal, G.K. and Fahmy, M.I. (2025) Repurposing of Rebamipide as a Neuroprotective Agent to Alleviate Letrozole-Induced Depressive-Like Behaviors in Female Rats: Targeting SIRT1/FoxO1/ Wnt/β-Catenin, and Related Ferroptosis Pathways. Life Sciences, 380, Article 123941. [Google Scholar] [CrossRef]
|
|
[82]
|
Sharma, U., Sahu, A., Thakur, N., Choudhary, R.K., Shekhar, H., Haque, S., et al. (2025) Journey through the Gut-Inflammation Axis in Polycystic Ovary Syndrome: The Microbiota’s Role in Shaping Inflammatory Pathways. Molecular and Cellular Biochemistry. [Google Scholar] [CrossRef]
|
|
[83]
|
Maqsood, S., Asif, M., Shakoor, S. and Saddiqa, A. (2025) Modulating Metabolism and Reproductive Health through Microbiome Driven Gut-Brain Axis Therapies. Microbial Pathogenesis, 209, Article 108113. [Google Scholar] [CrossRef]
|
|
[84]
|
Li, L., Simopoulos, C.M.A., Mayne, J., Ning, Z., Zhang, X., Hamada, M., et al. (2025) Systematic Metaproteomics Mapping Reveals Functional and Ecological Landscapes of Ex Vivo Human Gut Microbiota Responses to Therapeutic Drugs. Nature Communications, 16, Article No. 9383. [Google Scholar] [CrossRef]
|
|
[85]
|
Chen, K., Geng, H., Zheng, Y., Xie, H., Qin, R., Chen, J., et al. (2025) Disruption of Gut Microbiota‐Mediated De Novo Nad+ Synthesis Contributes to the Development of Polycystic Ovary Syndrome. Advanced Science, e6497. [Google Scholar] [CrossRef]
|
|
[86]
|
Li, P., Xie, L., Zheng, H., Feng, Y., Mai, F., Tang, W., et al. (2025) Gut Microbial‐Derived 3,4‐Dihydroxyphenylacetic Acid Ameliorates Reproductive Phenotype of Polycystic Ovary Syndrome. iMeta, 4, e70065. [Google Scholar] [CrossRef]
|
|
[87]
|
Cui, X., Li, H., Huang, X., Xue, T., Wang, S., Zhu, X., et al. (2024) N6‐Methyladenosine Modification on the Function of Female Reproductive Development and Related Diseases. Immunity, Inflammation and Disease, 12, e70089. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Zheng, H., Zhang, X. and Sui, N. (2020) Advances in the Profiling of N6-Methyladenosine (m6A) Modifications. Biotechnology Advances, 45, Article 107656. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Uzonyi, A., Dierks, D., Nir, R., Kwon, O.S., Toth, U., Barbosa, I., et al. (2023) Exclusion of M6a from Splice-Site Proximal Regions by the Exon Junction Complex Dictates M6a Topologies and mRNA Stability. Molecular Cell, 83, 237-251.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Lei, K., Lin, S. and Yuan, Q. (2023) N6-Methyladenosine (m6A) Modification of Ribosomal RNAs (rRNAs): Critical Roles in mRNA Translation and Diseases. Genes & Diseases, 10, 126-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Szukiewicz, D., Trojanowski, S., Kociszewska, A. and Szewczyk, G. (2022) Modulation of the Inflammatory Response in Polycystic Ovary Syndrome (PCOS)—Searching for Epigenetic Factors. International Journal of Molecular Sciences, 23, Article 14663. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Qiu, M., Qu, J., Wang, J., Zhi, Y. and Teng, X. (2025) The Methylation Regulator PRDM6 Confers Protection against Polycystic Ovary Syndrome: Evidences from Bioinformatics and Experimental Approaches. Reproductive Sciences. [Google Scholar] [CrossRef]
|
|
[93]
|
Weng, L., Zhu, Q., Xiang, Y., Cao, T., Cai, J., Liang, N., et al. (2024) Mettl3-Mediated M6A Modification of CD36: Implications for Glucose Metabolism and Inflammatory Dysregulation in Follicles of Polycystic Ovary Syndrome. International Immunopharmacology, 143, Article 113327. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Liu, K., He, X., Huang, J., Yu, S., Cui, M., Gao, M., et al. (2023) Short-Chain Fatty Acid-Butyric Acid Ameliorates Granulosa Cells Inflammation through Regulating Mettl3-Mediated N6-Methyladenosine Modification of FOSL2 in Polycystic Ovarian Syndrome. Clinical Epigenetics, 15, Article No. 86. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Peng, Q., Chen, X., Liang, X., Ouyang, J., Wang, Q., Ren, S., et al. (2023) Metformin Improves Polycystic Ovary Syndrome in Mice by Inhibiting Ovarian Ferroptosis. Frontiers in Endocrinology, 14, Article ID: 1070264. [Google Scholar] [CrossRef] [PubMed]
|