|
[1]
|
Yi, S.L., Zeng, H.L., Lin, X.T., et al. (2023) Establishment and Validation of Early Prediction Model for Hypertriglyceridemic Severe Acute Pancreatitis. Lipids in Health and Disease, 22, Article No. 218. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Petrov, M.S. and Yadav, D. (2018) Global Epidemiology and Holistic Prevention of Pancreatitis. Nature Reviews Gastroenterology & Hepatology, 16, 175-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
中华医学会外科学分会胰腺外科学组. 中国急性胰腺炎诊治指南(2021) [J]. 浙江实用医学, 2021, 26(6): 511-519, 535.
|
|
[4]
|
徐暄, 吴遥, 刘丕. 高甘油三酯血症性急性胰腺炎研究进展[J]. 南昌大学学报(医学版), 2022, 62(6): 87-91, 96.
|
|
[5]
|
Li, X., Ke, L., Dong, J., Ye, B., Meng, L., Mao, W., et al. (2018) Significantly Different Clinical Features between Hypertriglyceridemia and Biliary Acute Pancreatitis: A Retrospective Study of 730 Patients from a Tertiary Center. BMC Gastroenterology, 18, Article No. 89. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Vipperla, K., Somerville, C., Furlan, A., Koutroumpakis, E., Saul, M., Chennat, J., et al. (2017) Clinical Profile and Natural Course in a Large Cohort of Patients with Hypertriglyceridemia and Pancreatitis. Journal of Clinical Gastroenterology, 51, 77-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lin, X., Zeng, Y., Zhang, Z., Lin, Z., Chen, L. and Ye, Z. (2022) Incidence and Clinical Characteristics of Hypertriglyceridemic Acute Pancreatitis: A Retrospective Single-Center Study. World Journal of Gastroenterology, 28, 3946-3959. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Chen, W.J., Sun, X.F., Zhang, R.X., Xu, M.J., Dou, T.H., Zhang, X.B., et al. (2017) Hypertriglyceridemic Acute Pancreatitis in Emergency Department: Typical Clinical Features and Genetic Variants. Journal of Digestive Diseases, 18, 359-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
de Pretis, N., Amodio, A. and Frulloni, L. (2018) Hypertriglyceridemic Pancreatitis: Epidemiology, Pathophysiology and Clinical Management. United European Gastroenterology Journal, 6, 649-655. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Beyer, G., Habtezion, A., Werner, J., Lerch, M.M. and Mayerle, J. (2020) Chronic Pancreatitis. The Lancet, 396, 499-512. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
徐金杰, 刘雨, 胡良皞. 全球慢性胰腺炎流行病学研究进展[J]. 海军军医大学学报, 2024, 45(2): 206-211.
|
|
[12]
|
Vege, S.S. and Chari, S.T. (2022) Chronic Pancreatitis. New England Journal of Medicine, 386, 869-878. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cohen, S.M. and Kent, T.S. (2023) Etiology, Diagnosis, and Modern Management of Chronic Pancreatitis. JAMA Surgery, 158, 652-661. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, J. (2023) What Has Genomics Taught an Evolutionary Biologist? Genomics, Proteomics & Bioinformatics, 21, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Rodriguez, R. and Krishnan, Y. (2023) The Chemistry of Next-Generation Sequencing. Nature Biotechnology, 41, 1709-1715. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Porubsky, D. and Eichler, E.E. (2024) A 25-Year Odyssey of Genomic Technology Advances and Structural Variant Discovery. Cell, 187, 1024-1037. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liu, D., Zhou, R. and Zhou, A. (2021) Identification of Key Biomarkers and Functional Pathways in Osteosarcomas with Lung Metastasis. Medicine, 100, e24471. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kinnersley, B., Sud, A., Everall, A., Cornish, A.J., Chubb, D., Culliford, R., et al. (2024) Analysis of 10,478 Cancer Genomes Identifies Candidate Driver Genes and Opportunities for Precision Oncology. Nature Genetics, 56, 1868-1877. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Fang, F., Xu, J., Kang, Y., Ren, H., Muyey, D.M., Chen, X., et al. (2021) GATA2 rs2335052 and GATA2 rs78245253 Single‐Nucleotide Polymorphisms in Chinese Patients with Acute Myelocytic Leukemia. International Journal of Laboratory Hematology, 43, 1491-1500. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Manoharan, A., Sambandam, R. and Ballambattu, V.B. (2022) Genetics of Atrial Fibrillation—An Update of Recent Findings. Molecular Biology Reports, 49, 8121-8129. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, X., Yu, W., Li, Y., Wang, A., Cao, H. and Fu, Y. (2024) Drug Development Advances in Human Genetics‐Based Targets. MedComm, 5, e481. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
杨妮, 白郑海, 邱晓娟, 等. 急性胰腺炎患者尿液蛋白质组学分析[J]. 山东医药, 2018, 58(38): 20-23.
|
|
[23]
|
Duong, V. and Lee, H. (2023) Bottom-Up Proteomics: Advancements in Sample Preparation. International Journal of Molecular Sciences, 24, Article 5350. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Aslam, B., Basit, M., Nisar, M.A., Khurshid, M. and Rasool, M.H. (2016) Proteomics: Technologies and Their Applications. Journal of Chromatographic Science, 55, 182-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
白建瑞. 蛋白质组学的发展及其在生物领域的重要性[J]. 农业开发与装备, 2024(12): 148-150.
|
|
[26]
|
孙桂江, 姜埃利, 李遇伯, 等. 代谢组学在疾病诊断及中药治疗的研究进展[J]. 中国中西医结合杂志, 2021, 41(1): 122-125.
|
|
[27]
|
Sinclair, K. and Dudley, E. (2019) Metabolomics and Biomarker Discovery. In: Woods, A. and Darie, C., Eds., Advancements of Mass Spectrometry in Biomedical Research, Springer, 613-633. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
邓渊瑞, 王晓建. 肺动脉高压代谢组学: 从病理机制到治疗靶点[J]. 基础医学与临床, 2024, 44(8): 1074-1079.
|
|
[29]
|
王辉, 戴建英, 何晓莉, 等. 代谢组学在阿尔茨海默症病理机制和中药疗效评价研究中的应用进展[J]. 药物分析杂志, 2022, 42(1): 94-107.
|
|
[30]
|
雷超. 基于代谢组学和转录组学的含何首乌制剂致DILI作用机制及生物标志物筛选研究[D]: [博士学位论文]. 北京: 中国中医科学院, 2024.
|
|
[31]
|
Mayerle, J., Sendler, M., Hegyi, E., Beyer, G., Lerch, M.M. and Sahin-Tóth, M. (2019) Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology, 156, 1951-1968.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Bourgault, J., Abner, E., Manikpurage, H.D., Pujol-Gualdo, N., Laisk, T., Gobeil, É., et al. (2023) Proteome-Wide Mendelian Randomization Identifies Causal Links between Blood Proteins and Acute Pancreatitis. Gastroenterology, 164, 953-965.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
He, J., Hou, X., Wu, J., Wang, K., Qi, X., Wei, Z., et al. (2024) Hspb1 Protects against Severe Acute Pancreatitis by Attenuating Apoptosis and Ferroptosis via Interacting with Anxa2 to Restore the Antioxidative Activity of Prdx1. International Journal of Biological Sciences, 20, 1707-1728. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhang, S., Wang, Z., Zhang, Y., Dong, X., Zhu, Q., Yuan, C., et al. (2025) LASP1 Inhibits the Formation of Nets and Alleviates Acute Pancreatitis by Stabilizing F-Actin Polymerization in Neutrophils. Biochemical and Biophysical Research Communications, 744, Article ID: 151134. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Jia, Y., Shi, Y., Wang, J., Liu, H., Huang, Y., Wang, H., et al. (2024) Integrating Metagenomics with Metabolomics for Gut Microbiota and Metabolites Profiling in Acute Pancreatitis. Scientific Reports, 14, Article No. 21491. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lee, B., Namkoong, H., Yang, Y., Huang, H., Heller, D., Szot, G.L., et al. (2021) Single-Cell Sequencing Unveils Distinct Immune Microenvironments with CCR6-CCL20 Crosstalk in Human Chronic Pancreatitis. Gut, 71, 1831-1842. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Huang, H., Swidnicka-Siergiejko, A.K., Daniluk, J., Gaiser, S., Yao, Y., Peng, L., et al. (2020) Transgenic Expression of PRSS1R122H Sensitizes Mice to Pancreatitis. Gastroenterology, 158, 1072-1082.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Rosendahl, J., Kirsten, H., Hegyi, E., Kovacs, P., Weiss, F.U., Laumen, H., et al. (2017) Genome-wide Association Study Identifies Inversion in the CTRB1-CTRB2 Locus to Modify Risk for Alcoholic and Non-Alcoholic Chronic Pancreatitis. Gut, 67, 1855-1863. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhu, Q., Luo, J., Li, H., Ye, W., Pan, R., Shi, K., et al. (2023) Robust Acute Pancreatitis Identification and Diagnosis: RAPIDx. ACS Nano, 17, 8564-8574. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Waldron, R.T., Lugea, A., Gulla, A. and Pandol, S.J. (2018) Proteomic Identification of Novel Plasma Biomarkers and Pathobiologic Pathways in Alcoholic Acute Pancreatitis. Frontiers in Physiology, 9, Article 1215. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zeng, W., Pan, J., Li, W., Huang, B., Lu, X. and Xiao, J. (2024) Pyrazole Derivative Z10 Ameliorates Acute Pancreatitis by Inhibiting the ERK/Ddt Pathway. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1870, Article ID: 167088. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhang, W., Zhao, Y., Zeng, Y., Yu, X., Yao, J., Zhao, S., et al. (2012) Hyperlipidemic versus Normal-Lipid Acute Necrotic Pancreatitis. Pancreas, 41, 317-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Meng, Y., Zhou, Y., Han, P. and Ren, H. (2023) Ferroptosis Inhibition Attenuates Inflammatory Response in Mice with Acute Hypertriglyceridemic Pancreatitis. World Journal of Gastroenterology, 29, 2294-2309. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Xiang, X., Xu, M., Liu, L., Meng, N., Lei, Y., Feng, Y., et al. (2024) Liproxstatin-1 Attenuates Acute Hypertriglyceridemic Pancreatitis through Inhibiting Ferroptosis in Rats. Scientific Reports, 14, Article No. 9458. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Tan, J., Cao, R., Zhou, L., Zhou, Z., Chen, H., Xu, J., et al. (2020) EMC6 Regulates Acinar Apoptosis via APAF1 in Acute and Chronic Pancreatitis. Cell Death & Disease, 11, Article No. 966. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Kandikattu, H.K., Upparahalli Venkateshaiah, S., Kumar, S., Yadavalli, C.S. and Mishra, A. (2023) Il-18-Mediated Neutrophil Recruitment Promotes Acute Lung Injury in Inflammation-Mediated Chronic Pancreatitis. Molecular Immunology, 155, 100-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Sun, C., Liu, M., An, W., Liu, J., Yang, F., Wang, F., et al. (2022) Identification of Novel Factors That Affect the Onset of Idiopathic Chronic Pancreatitis: The Role for MicroRNA‐323b‐5p. The Journal of Gene Medicine, 25, e3456. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Shen, Z., Wang, X., Zhen, Z., Wang, Y. and Sun, P. (2021) Metabolic Syndrome Components and Acute Pancreatitis: A Case-Control Study in China. BMC Gastroenterology, 21, Article No. 17. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Niknam, R., Moradi, J., Jahanshahi, K.A., Mahmoudi, L. and Ejtehadi, F. (2020) Association between Metabolic Syndrome and Its Components with Severity of Acute Pancreatitis. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 1289-1296. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Guo, J., Li, X., Wang, D., Guo, Y. and Cao, T. (2019) Exploring Metabolic Biomarkers and Regulation Pathways of Acute Pancreatitis Using Ultra-Performance Liquid Chromatography Combined with a Mass Spectrometry-Based Metabolomics Strategy. RSC Advances, 9, 12162-12173. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Silva-Vaz, P., Jarak, I., Rato, L., Oliveira, P.F., Morgado-Nunes, S., Paulino, A., et al. (2021) Plasmatic Oxidative and Metabonomic Profile of Patients with Different Degrees of Biliary Acute Pancreatitis Severity. Antioxidants, 10, Article 988. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Liao, Z., Yang, J., Yang, Z., Wei, Z., Qi, X., Yang, L., et al. (2025) SCD1 Protects Acinar Cells from Ferroptosis during Severe Acute Pancreatitis by Balancing Lipid and Redox Homeostasis. International Immunopharmacology, 162, Article ID: 115171. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Tang, M., Hu, G., Zhao, Y., Su, M., Wang, Y., Jia, W., et al. (2013) A Serum Metabolomic Investigation on Lipoprotein Lipase-Deficient Mice with Hyperlipidemic Pancreatitis Using Gas Chromatography/Mass Spectrometry. Biomedical Reports, 1, 469-473. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Cui, M., Fan, M., Wu, J., Chen, S., Zhao, M., Jiang, Q., et al. (2025) Explore the Changes of Metabolites in Feces and Serum of Acute Pancreatitis Patients with Different Etiologies by LC-MS Based Metabolomics Strategy. Frontiers in Pharmacology, 16, Article 1614713. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Wu, L., Huang, X., Ouyang, Q., Liu, W., Liu, S., Huang, Y., et al. (2023) Serum Metabolomics Study for Acute Attack of Chronic Pancreatitis. Clinica Chimica Acta, 541, Article ID: 117251. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Díaz, C., Jiménez-Luna, C., Diéguez-Castillo, C., Martín, A., Prados, J., Martín-Ruíz, J.L., et al. (2021) Untargeted Metabolomics for the Diagnosis of Exocrine Pancreatic Insufficiency in Chronic Pancreatitis. Medicina, 57, Article 876. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Cao, R., Yang, W., Xiao, W., Zhou, L., Tan, J., Wang, M., et al. (2022) St13 Protects against Disordered Acinar Cell Arachidonic Acid Pathway in Chronic Pancreatitis. Journal of Translational Medicine, 20, Article No. 218. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Xu, X., Liu, S., Shao, M., Wu, L., Ouyang, Q., Yi, Q., et al. (2025) Early Diagnosis of the Need for Surgical Drainage in Chronic Pancreatitis Patients Based on Serum Metabolomics. Clinica Chimica Acta, 576, Article ID: 120369. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Liu, J., Yan, Q., Li, S., Jiao, J., Hao, Y., Zhang, G., et al. (2024) Integrative Metagenomic and Metabolomic Analyses Reveal the Potential of Gut Microbiota to Exacerbate Acute Pancreatitis. npj Biofilms and Microbiomes, 10, Article No. 29. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Zhang, C., Chen, S., Wang, Z., Zhang, J., Yu, W., Wang, Y., et al. (2025) Exploring the Mechanism of Intestinal Bacterial Translocation after Severe Acute Pancreatitis: The Role of Toll-Like Receptor 5. Gut Microbes, 17, Article ID: 2489768. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Wang, Y., Li, H., Liu, G., Jiang, C., Ni, Y., Zeng, J., et al. (2024) COMP Promotes Pancreatic Fibrosis by Activating Pancreatic Stellate Cells through CD36-ERK/AKT Signaling Pathways. Cellular Signalling, 118, Article ID: 111135. [Google Scholar] [CrossRef] [PubMed]
|