|
[1]
|
Vlisides, P. and Avidan, M. (2019) Recent Advances in Preventing and Managing Postoperative Delirium. F1000Research, 8, Article 607. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Robinson, T.N., Raeburn, C.D., Tran, Z.V., Angles, E.M., Brenner, L.A. and Moss, M. (2009) Postoperative Delirium in the Elderly: Risk Factors and Outcomes. Annals of Surgery, 249, 173-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
吴水晶, 娄景盛. 中国老年患者围手术期感染防治的麻醉专家共识[J]. 中华老年多器官疾病杂志, 2022, 21(12): 881-887.
|
|
[4]
|
Rengel, K.F., Pandharipande, P.P. and Hughes, C.G. (2018) Postoperative Delirium. La Presse Médicale, 47, e53-e64. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
詹鑫, 郭浩, 郑敏. 艾司氯胺酮不同时机给药对瑞芬太尼痛觉过敏的影响[J]. 中国现代手术学杂志, 2022, 26(2): 142-148.
|
|
[6]
|
Song, X., Wang, F., Dong, R., Zhu, K. and Wang, C. (2022) Efficacy and Safety of Remimazolam Tosilate Combined with Esketamine for Analgesic Sedation in Mechanically Ventilated ICU Patients: A Single-Arm Clinical Study Protocol. Frontiers in Medicine, 9, Article ID: 832105. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Rotroff, D.M., Corum, D.G., Motsinger-Reif, A., Fiehn, O., Bottrel, N., Drevets, W.C., et al. (2016) Metabolomic Signatures of Drug Response Phenotypes for Ketamine and Esketamine in Subjects with Refractory Major Depressive Disorder: New Mechanistic Insights for Rapid Acting Antidepressants. Translational Psychiatry, 6, e894-e894. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Marcantonio, E.R. (2011) Delirium. Annals of Internal Medicine, 154, ITC6-1. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bowman, E.M.L., Cunningham, E.L., Page, V.J. and McAuley, D.F. (2021) Phenotypes and Subphenotypes of Delirium: A Review of Current Categorisations and Suggestions for Progression. Critical Care, 25, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
中华医学会神经病学分会神经心理与行为神经病学组. 陈海波, 汪凯, 等. 综合医院谵妄诊治中国专家共识(2021) [J]. 中华老年医学杂志, 2021(10): 1226-1233.
|
|
[11]
|
Lin, G.‐X., Wang, T., Chen, M.‐H., Hu, Z.‐H. and Ouyang, W. (2014) Serum High-Mobility Group Box 1 Protein Correlates with Cognitive Decline after Gastrointestinal Surgery. Acta Anaesthesiologica Scandinavica, 58, 668-674. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Safavynia, S.A. and Goldstein, P.A. (2019) The Role of Neuroinflammation in Postoperative Cognitive Dysfunction: Moving from Hypothesis to Treatment. Frontiers in Psychiatry, 9, Article ID: 752. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Berger, M., Terrando, N., Smith, S.K., Browndyke, J.N., Newman, M.F. and Mathew, J.P. (2018) Neurocognitive Function after Cardiac Surgery: From Phenotypes to Mechanisms. Anesthesiology, 129, 829-851. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Taylor, J., Parker, M., Casey, C.P., et al. (2022) Postoperative Delirium and Changes in the Blood-Brain Barrier, Neuroinflammation, and Cerebrospinal Fluid Lactate: A Prospective Cohort Study. British Journal of Anaesthesia, 129, 219-230.
|
|
[15]
|
Yang, T., Velagapudi, R. and Terrando, N. (2020) Neuroinflammation after Surgery: From Mechanisms to Therapeutic Targets. Nature Immunology, 21, 1319-1326. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhong Chong, Z., Changyaleket, B., Xu, H., O. Dull, R. and E. Schwartz, D. (2016) Identifying S100B as a Biomarker and a Therapeutic Target for Brain Injury and Multiple Diseases. Current Medicinal Chemistry, 23, 1571-1596. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ruan, H.Z., Fan, X.T., Zhang, J.H., et al. (2004) Excitatory Amino Acid Enhance Prepro-Somatostatin mRNA Expression Induced by Altitude Hypoxia in the Rat Hypothalamus. Chinese Journal of Applied Physiology, 16, 302-304.
|
|
[18]
|
Subramaniyan, S. and Terrando, N. (2019) Neuroinflammation and Perioperative Neurocognitive Disorders. Anesthesia & Analgesia, 128, 781-788. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Cochrane Developmental, Psychosocial and Learning Problems Group, Mohan, M., Bennett, C. and Carpenter, P.K. (1996) Memantine for Dementia in People with down Syndrome. Cochrane Database of Systematic Reviews, No.5, CD007657.
|
|
[20]
|
Hei, M.Y., Wu, Z.X. and Bhatia, I. (2006) Effect of Brain Hypoxia-Ischemia on Expression of Phosphorylated NMDA Receptor-1 Sub-Unit of Cerebral Cortex Cells. Chinese Journal of Pediatrics, 44, 465-466.
|
|
[21]
|
Işik, B. (2015) Postoperative Cognitive Dysfunction and Alzheimer Disease. Turkish Journal of Medical Sciences, 45, 1015-1019. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Forrester, S.J., Kikuchi, D.S., Hernandes, M.S., Xu, Q. and Griendling, K.K. (2018) Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circulation Research, 122, 877-902. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Aleksandrova, L.R. and Phillips, A.G. (2021) Neuroplasticity as a Convergent Mechanism of Ketamine and Classical Psychedelics. Trends in Pharmacological Sciences, 42, 929-942. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yang, X., Gong, R., Qin, L., Bao, Y., Fu, Y., Gao, S., et al. (2022) Trafficking of NMDA Receptors Is Essential for Hippocampal Synaptic Plasticity and Memory Consolidation. Cell Reports, 40, Article 111217. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Xu, F., Han, L., Wang, Y., Deng, D., Ding, Y., Zhao, S., et al. (2023) Prolonged Anesthesia Induces Neuroinflammation and Complement-Mediated Microglial Synaptic Elimination Involved in Neurocognitive Dysfunction and Anxiety-Like Behaviors. BMC Medicine, 21, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Umholtz, M. and Nader, N.D. (2017) Anesthetic Immunomodulation of the Neuroinflammation in Postoperative Cognitive Dysfunction. Immunological Investigations, 46, 805-815. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wang, Y. and Shen, X. (2018) Postoperative Delirium in the Elderly: The Potential Neuropathogenesis. Aging Clinical and Experimental Research, 30, 1287-1295. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Rohleder, N. (2019) Stress and Inflammation—The Need to Address the Gap in the Transition between Acute and Chronic Stress Effects. Psychoneuroendocrinology, 105, 164-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cain, D.W. and Cidlowski, J.A. (2017) Immune Regulation by Glucocorticoids. Nature Reviews Immunology, 17, 233-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chung, H.Y., Cesari, M., Anton, S., Marzetti, E., Giovannini, S., Seo, A.Y., et al. (2009) Molecular Inflammation: Underpinnings of Aging and Age-Related Diseases. Ageing Research Reviews, 8, 18-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
朱冉. 盐酸羟哌吡酮快速起效抗抑郁的电生理机制研究[D]: [硕士学位论文]. 南宁: 广西医科大学, 2018.
|
|
[32]
|
Nowacka, A. and Borczyk, M. (2019) Ketamine Applications Beyond Anesthesia—A Literature Review. European Journal of Pharmacology, 860, Article 172547. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
金宝伟, 郭建荣. 艾司氯胺酮的药理学特性及其在小儿麻醉中的应用进展[J]. 中国临床药理学与治疗学, 2024, 29(3): 328-333.
|
|
[34]
|
齐曼曼, 李妍, 张天鸽. 超声引导单次髂筋膜间隙阻滞联合艾司氯胺酮对髋部骨折手术老年患者术后谵妄的影响[J]. 中华麻醉学杂志. 2023, 43(9): 1062-1066.
|
|
[35]
|
Wen, Y., Xu, J., Shen, J., Tang, Z., Li, S., Zhang, Q., et al. (2024) Esketamine Prevents Postoperative Emotional and Cognitive Dysfunction by Suppressing Microglial M1 Polarization and Regulating the BDNF-TrkB Pathway in Ageing Rats with Preoperative Sleep Disturbance. Molecular Neurobiology, 61, 5680-5698. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Gao, Y., Li, L., Zhao, F., Cheng, Y., Jin, M. and Xue, F. (2025) Esketamine at a Clinical Dose Attenuates Cerebral Ischemia/Reperfusion Injury by Inhibiting AKT Signaling Pathway to Facilitate Microglia M2 Polarization and Autophagy. Drug Design, Development and Therapy, 19, 369-387. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Witkin, J.M., Knutson, D.E., Rodriguez, G.J. and Shi, S. (2018) Rapid-Acting Antidepressants. Current Pharmaceutical Design, 24, 2556-2563. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
王彬, 杨建新, 李月, 等. 甘草酸苷联合艾司氯胺酮对小鼠围手术期神经认知障碍的影响及其机制[J]. 山西医科大学学报, 2024, 55(1): 76-84.
|
|
[39]
|
宋苏蒙, 王丽琨, 伍国锋. 小胶质细胞极化M1/M2表型在脑出血后继发性损伤中的作用[J]. 中风与神经疾病杂志, 2021, 38(2): 165-168.
|
|
[40]
|
Han, L., Tian, B. and Li, S. (2025) Esketamine Has Promising Anti-Inflammatory Effects in Orthopedic Surgery and Plays a Protective Role in Postoperative Cognitive Function and Pain Management. American Journal of Translational Research, 17, 277-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Sapkota, A., Khurshid, H., Qureshi, I.A., Jahan, N., Went, T.R., Sultan, W., et al. (2021) Efficacy and Safety of Intranasal Esketamine in Treatment-Resistant Depression in Adults: A Systematic Review. Cureus, 13, e17352. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Xu, G., Wang, Y., Chen, Z., Zhang, Y., Zhang, X. and Zhang, G. (2022) Esketamine Improves Propofol-Induced Brain Injury and Cognitive Impairment in Rats. Translational Neuroscience, 13, 430-439. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Li, Y., Wu, Z., Zheng, W., Wang, J., Song, R., et al. (2022) Esketamine Alleviates Postoperative Cognitive Decline via Stimulator of Interferon Genes/Tank‐Binding Kinase 1 Signaling Pathway in Aged Rats. Brain Research Bulletin, 187, 169-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
王京燕, 丁慧, 钟薇薇, 等. 艾司氯胺酮减轻HT22细胞炎症损伤及铁死亡相关机制[J]. 中国药理学通报, 2022, 38(11): 1647-1654.
|
|
[45]
|
印建军, 肖亚芬, 田敏, 等. 术中持续输注艾司氯胺酮对老年患者髋关节置换术后谵妄的影响[J]. 临床麻醉学杂志, 2025, 41(2): 119-124.
|
|
[46]
|
杨子健, 黄铭颖, 刘湘钰, 等. 艾司氯胺酮复合咪达唑仑对老年髋关节置换术后谵妄的影响及对HT22细胞的作用[J]. 实用医学杂志, 2022, 38(19): 2395-2399.
|
|
[47]
|
Han, C., Ji, H., Guo, Y., Fei, Y., Wang, C., Yuan, Y., et al. (2023) Effect of Subanesthetic Dose of Esketamine on Perioperative Neurocognitive Disorders in Elderly Undergoing Gastrointestinal Surgery: A Randomized Controlled Trial. Drug Design, Development and Therapy, 17, 863-873. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ma, J., Wang, F., Wang, J., Wang, P., Dou, X., Yao, S., et al. (2023) The Effect of Low-Dose Esketamine on Postoperative Neurocognitive Dysfunction in Elderly Patients Undergoing General Anesthesia for Gastrointestinal Tumors: A Randomized Controlled Trial. Drug Design, Development and Therapy, 17, 1945-1957. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Hudetz, J.A., Patterson, K.M., Iqbal, Z., Gandhi, S.D., Byrne, A.J., Hudetz, A.G., et al. (2009) Ketamine Attenuates Delirium after Cardiac Surgery with Cardiopulmonary Bypass. Journal of Cardiothoracic and Vascular Anesthesia, 23, 651-657. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Welters, I.D., Feurer, M.-., Preiss, V., Müller, M., Scholz, S., Kwapisz, M., et al. (2011) Continuous S-(+)-Ketamine Administration during Elective Coronary Artery Bypass Graft Surgery Attenuates Pro-Inflammatory Cytokine Response during and after Cardiopulmonary Bypass. British Journal of Anaesthesia, 106, 172-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Avidan, M.S., Maybrier, H.R., Abdallah, A.B., Jacobsohn, E., Vlisides, P.E., Pryor, K.O., et al. (2017) Intraoperative Ketamine for Prevention of Postoperative Delirium or Pain after Major Surgery in Older Adults: An International, Multicentre, Double-Blind, Randomised Clinical Trial. The Lancet, 390, 267-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Fellous, S., Dubost, B., Cambriel, A., Bonnet, M. and Verdonk, F. (2023) Perioperative Ketamine Administration to Prevent Delirium and Neurocognitive Disorders after Surgery: A Systematic Review and Meta-Analysis. International Journal of Surgery, 109, 3555-3565. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Himmelseher, S., Pfenninger, E. and Georgieff, M. (1996) The Effects of Ketamine-Isomers on Neuronal Injury and Regeneration in Rat Hippocampal Neurons. Anesthesia & Analgesia, 83, 505-512. [Google Scholar] [CrossRef]
|
|
[54]
|
McIntyre, R.S., Rosenblat, J.D., Nemeroff, C.B., Sanacora, G., Murrough, J.W., Berk, M., et al. (2021) Synthesizing the Evidence for Ketamine and Esketamine in Treatment-Resistant Depression: An International Expert Opinion on the Available Evidence and Implementation. American Journal of Psychiatry, 178, 383-399. [Google Scholar] [CrossRef] [PubMed]
|