|
[1]
|
Levey, A.S. and Coresh, J. (2012) Chronic Kidney Disease. The Lancet, 379, 165-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Perl, J., Karaboyas, A., Morgenstern, H., Sen, A., Rayner, H.C., Vanholder, R.C., et al. (2017) Association between Changes in Quality of Life and Mortality in Hemodialysis Patients: Results from the DOPPS. Nephrology Dialysis Transplantation, 32, 521-527. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wang, L.M., Xu, X. and Zhang, M. (2023) Prevalence of Chronic Kidney Disease in China Results from the Sixth China Chronic Disease and Risk Factor Surveillance. JAMA Internal Medicine, 183, 298-310.
|
|
[4]
|
Zhang, L.X., Wang, F. and Wang, L. (2012) Prevalence of Chronic Kidney Disease in China: A Cross-Sectional Survey. The Lancet, 379, 815-822. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Foreman, K.J., Marquez, N., Dolgert, A., Fukutaki, K., Fullman, N., McGaughey, M., et al. (2018) Forecasting Life Expectancy, Years of Life Lost, and All-Cause and Cause-Specific Mortality for 250 Causes of Death: Reference and Alternative Scenarios for 2016-40 for 195 Countries and Territories. The Lancet, 392, 2052-2090. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Pedersen, B.K., Steensberg, A., Fischer, C., et al. (2003) Searching for the Exercise Factor: Is IL-6 a Candidate? Journal of Muscle Research and Cell Motility, 24, 113-119.
|
|
[7]
|
Severinsen, M.C.K. and Pedersen, B.K. (2020) Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocrine Reviews, 41, 594-609. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Huh, J.Y. (2018) The Role of Exercise-Induced Myokines in Regulating Metabolism. Archives of Pharmacal Research, 41, 14-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lee, B., Shin, M., Park, Y., Won, S. and Cho, K.S. (2021) Physical Exercise-Induced Myokines in Neurodegenerative Diseases. International Journal of Molecular Sciences, 22, Article 5795. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
McPherron, A.C., Lawler, A.M. and Lee, S. (1997) Regulation of Skeletal Muscle Mass in Mice by a New TGF-β Superfamily Member. Nature, 387, 83-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Langley, B., Thomas, M., Bishop, A., Sharma, M., Gilmour, S. and Kambadur, R. (2002) Myostatin Inhibits Myoblast Differentiation by Down-Regulating MyoD Expression. Journal of Biological Chemistry, 277, 49831-49840. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
McFarlane, C., Plummer, E., Thomas, M., Hennebry, A., Ashby, M., Ling, N., et al. (2006) Myostatin Induces Cachexia by Activating the Ubiquitin Proteolytic System through an NF-κB-Independent, FoxO1-Dependent Mechanism. Journal of Cellular Physiology, 209, 501-514. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Dankbar, B., Fennen, M., Brunert, D., Hayer, S., Frank, S., Wehmeyer, C., et al. (2015) Myostatin Is a Direct Regulator of Osteoclast Differentiation and Its Inhibition Reduces Inflammatory Joint Destruction in Mice. Nature Medicine, 21, 1085-1090. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wang, D.T., Yang, Y.J., Huang, R.H., et al. (2015) Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease. Oxidative Medicine and Cellular Longevity, 2015, 1-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yano, S., Nagai, A., Isomura, M., Yamasaki, M., Kijima, T., Takeda, M., et al. (2015) Relationship between Blood Myostatin Levels and Kidney Function: Shimane Cohre Study. PLOS ONE, 10, e0141035. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yamada, S., Tsuruya, K., Yoshida, H., Tokumoto, M., Ueki, K., Ooboshi, H., et al. (2016) Factors Associated with the Serum Myostatin Level in Patients Undergoing Peritoneal Dialysis: Potential Effects of Skeletal Muscle Mass and Vitamin D Receptor Activator Use. Calcified Tissue International, 99, 13-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Verzola, D., Procopio, V., Sofia, A., Villaggio, B., Tarroni, A., Bonanni, A., et al. (2011) Apoptosis and Myostatin mRNA Are Upregulated in the Skeletal Muscle of Patients with Chronic Kidney Disease. Kidney International, 79, 773-782. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhang, L., Rajan, V., Lin, E., Hu, Z., Han, H.Q., Zhou, X., et al. (2011) Pharmacological Inhibition of Myostatin Suppresses Systemic Inflammation and Muscle Atrophy in Mice with Chronic Kidney Disease. The FASEB Journal, 25, 1653-1663. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Dong, J., Dong, Y., Chen, Z., Mitch, W.E. and Zhang, L. (2017) The Pathway to Muscle Fibrosis Depends on Myostatin Stimulating the Differentiation of Fibro/Adipogenic Progenitor Cells in Chronic Kidney Disease. Kidney International, 91, 119-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Boström, P., Wu, J., Jedrychowski, M.P., Korde, A., Ye, L., Lo, J.C., et al. (2012) A PGC1-α-Dependent Myokine That Drives Brown-Fat-Like Development of White Fat and Thermogenesis. Nature, 481, 463-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Mu, A., Wales, T.E., Zhou, H.X., et al. (2023) Irisin Acts through Its Integrin Receptor in a Two-Step Process Involving Extracellular Hsp90α. Molecular Cell, 83, 1903-1920.e12. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lee, H.J., Lee, J.O., Kim, N., Kim, J.K., Kim, H.I., Lee, Y.W., et al. (2015) Irisin, a Novel Myokine, Regulates Glucose Uptake in Skeletal Muscle Cells via AMPK. Molecular Endocrinology, 29, 873-881. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhang, Q.Y., Yang, X., Peng, M., et al. (2022) Post-Treatment with Irisin Attenuates Acute Kidney Injury in Sepsis Mice through Anti-Ferroptosis via the SIRT1/Nrf2 Pathway. Frontiers in Pharmacology, 13, Article 857067. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wang, P.W., Pang, Q., Zhou, T., et al. (2022) Irisin Alleviates Vascular Calcification by Inhibiting VSMC Osteoblastic Transformation and Mitochondria Dysfunction via AMPK/Drp1 Signaling Pathway in Chronic Kidney Disease. Atherosclerosis, 346, 36-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ebert, T., Focke, D., Petroff, D., Wurst, U., Richter, J., Bachmann, A., et al. (2014) Serum Levels of the Myokine Irisin in Relation to Metabolic and Renal Function. European Journal of Endocrinology, 170, 501-506. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yang, S., Xiao, F., Pan, L., Zhang, H., Ma, Z., Liu, S., et al. (2015) Association of Serum Irisin and Body Composition with Chronic Kidney Disease in Obese Chinese Adults: A Cross-Sectional Study. BMC Nephrology, 16, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lee, M.J., Lee, S.A., Nam, B.Y., Park, S., Lee, S., Ryu, H.J., et al. (2015) Irisin, a Novel Myokine Is an Independent Predictor for Sarcopenia and Carotid Atherosclerosis in Dialysis Patients. Atherosclerosis, 242, 476-482. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
He, W.Y., Wu, F., Pang, X.X., et al. (2016) Irisin Is Associated with Urotensin II and Protein Energy Wasting in Hemodialysis Patients. Kidney and Blood Pressure Research, 41, 78-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhang, S., Chen, Q., Lin, X., Chen, M. and Liu, Q. (2020) A Review of Adropin as the Medium of Dialogue between Energy Regulation and Immune Regulation. Oxidative Medicine and Cellular Longevity, 2020, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Grzegorzewska, A.E., Niepolski, L., Mostowska, A., Warchoł, W. and Jagodziński, P.P. (2016) Involvement of Adropin and Adropin-Associated Genes in Metabolic Abnormalities of Hemodialysis Patients. Life Sciences, 160, 41-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Hu, W. and Chen, L. (2016) Association of Serum Adropin Concentrations with Diabetic Nephropathy. Mediators of Inflammation, 2016, 1-5. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Memi, G. and Yazgan, B. (2021) Adropin and Spexin Hormones Regulate the Systemic Inflammation in Adenine-Induced Chronic Kidney Failure in Rat. Chinese Journal of Physiology, 64, 194-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yazgan, B., Avcı, F., Memi, G. and Tastekin, E. (2021) Inflammatory Response and Matrix Metalloproteinases in Chronic Kidney Failure: Modulation by Adropin and Spexin. Experimental Biology and Medicine, 246, 1917-1927. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Kaur, R., Krishan, P., Kumari, P., Singh, T., Singh, V., Singh, R., et al. (2023) Clinical Significance of Adropin and Afamin in Evaluating Renal Function and Cardiovascular Health in the Presence of CKD-MBD Biomarkers in Chronic Kidney Disease. Diagnostics, 13, Article 3158. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Boric-Skaro, D., Mizdrak, M., Luketin, M., Martinovic, D., Tokic, D., Vilovic, M., et al. (2021) Serum Adropin Levels in Patients on Hemodialysis. Life, 11, Article 337. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kałużna, M., Hoppe, K., Schwermer, K., Ibrahim, A.Y., Pawlaczyk, K. and Ziemnicka, K. (2016) Adropin and Irisin Levels in Relation to Nutrition, Body Composition, and Insulin Resistance in Patients with End-Stage Renal Disease on Chronic Hemodialysis and Peritoneal Dialysis. Polish Archives of Internal Medicine, 126, 474-482. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Jasaszwili, M., Billert, M., Strowski, M.Z., Nowak, K.W. and Skrzypski, M. (2020) Adropin as a Fat-Burning Hormone with Multiple Functions—Review of a Decade of Research. Molecules, 25, Article 549. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Luo, F., Li, Q.C., Zhang, F.J., et al. (2020) Protective Effect of Adropin against High Fat Diet-Induced Obese Diabetic Wistar Rats via Nuclear Factor Erythroid 2-Related Factor 2 Pathway. Pharmacognosy Magazine, 16, 250-257.
|
|
[39]
|
Mushala, B.A.S. and Scott, I. (2021) Adropin: A Hepatokine Modulator of Vascular Function and Cardiac Fuel Metabolism. American Journal of Physiology-Heart and Circulatory Physiology, 320, H238-H244. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Pourteymour, S., Eckardt, K., Holen, T., Langleite, T., Lee, S., Jensen, J., et al. (2017) Global mRNA Sequencing of Human Skeletal Muscle: Search for Novel Exercise-Regulated Myokines. Molecular Metabolism, 6, 352-365. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Roux, K.J., Kim, D.I., Burke, B. and May, D.G. (2018) BioID: A Screen for Protein-Protein Interactions. Current Protocols in Protein Science, 91. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Fassbinder, T.R.C., Winkelmann, E.R., Schneider, J., Wendland, J. and Oliveira, O.B.D. (2015) Functional Capacity and Quality of Life in Patients with Chronic Kidney Disease in Pre-Dialytic Treatment and on Hemodialysis—A Cross Sectional Study. Jornal Brasileiro de Nefrologia, 37, 47-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Cheung, A.K., Chang, T.I., Cushman, W.C., Furth, S.L., Hou, F.F., Ix, J.H., et al. (2021) KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney International, 99, S1-S87. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Baker, L.A., March, D.S., Wilkinson, T.J., Billany, R.E., Bishop, N.C., Castle, E.M., et al. (2022) Clinical Practice Guideline Exercise and Lifestyle in Chronic Kidney Disease. BMC Nephrology, 23, Article No. 75. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Quiroga, B. and Díez, J. (2025) The Kidney-Skeletal Muscle-Heart Axis in Chronic Kidney Disease: Implications for Myokines. Nephrology Dialysis Transplantation, 40, 255-263. [Google Scholar] [CrossRef] [PubMed]
|