|
[1]
|
Tweeddale, H., Notley-McRobb, L. and Ferenci, T. (1998) Effect of Slow Growth on Metabolism of Escherichia coli, as Revealed by Global Metabolite Pool (“Metabolome”) Analysis. Journal of Bacteriology, 180, 5109-5116.
|
|
[2]
|
Václavík, T., Lautenbach, S., Kuemmerle, T. and Seppelt, R. (2013) Mapping Global Land System Archetypes. Global Environmental Change, 23, 1637-1647. [Google Scholar] [CrossRef]
|
|
[3]
|
Mubeen, S., Hoyt, C.T., Gemünd, A., Hofmann-Apitius, M., Fröhlich, H. and Domingo-Fernández, D. (2019) The Impact of Pathway Database Choice on Statistical Enrichment Analysis and Predictive Modeling. Frontiers in Genetics, 10, Article No. 1203. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kazmi, Z., Fatima, I., Perveen, S. and Malik, S.S. (2017) Monosodium Glutamate: Review on Clinical Reports. International Journal of Food Properties, 20, 1807-1815. [Google Scholar] [CrossRef]
|
|
[5]
|
Van Dam, N.M. and van der Meijden, E. (2011) A Role for Metabolomics in Plant Ecology. In: Annual Plant Reviews, Volume 43, John Wiley & Sons, Ltd., 87-107.
|
|
[6]
|
Nicholson, J.K., Lindon, J.C. and Holmes, E. (1999) “Metabonomics”: Understanding the Metabolic Responses of Living Systems to Pathophysiological Stimuli via Multivariate Statistical Analysis of Biological NMR Spectroscopic Data. Xenobiotica, 29, 1181-1189.
|
|
[7]
|
Patel, M., Pandey, S., Kumar, M., Haque, M., Pal, S. and Yadav, N. (2021) Plants Metabolome Study: Emerging Tools and Techniques. Plants, 10, Article No. 2409. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R.N. and Willmitzer, L. (2000) Metabolite Profiling for Plant Functional Genomics. Nature Biotechnology, 18, 1157-1161. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Giunchetti, R.C., Silveira, P., Resende, L.A., Leite, J.C., Melo-Júnior, O.A.d.O., Rodrigues-Alves, M.L., et al. (2019) Canine Visceral Leishmaniasis Biomarkers and Their Employment in Vaccines. Veterinary Parasitology, 271, 87-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, Y., Zhang, S., Li, F., Zhou, Y., Zhang, Y., Wang, Z., et al. (2019) Therapeutic Target Database 2020: Enriched Resource for Facilitating Research and Early Development of Targeted Therapeutics. Nucleic Acids Research, 48, D1031-D1041. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
t’Kindt, R., Morreel, K., Deforce, D., Boerjan, W. and Van Bocxlaer, J. (2009) Joint GC-MS and LC-MS Platforms for Comprehensive Plant Metabolomics: Repeatability and Sample Pre-Treatment. Journal of Chromatography B, 877, 3572-3580. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Muráriková, A., Ťažký, A., Neugebauerová, J., Planková, A., Jampílek, J., Mučaji, P., et al. (2017) Characterization of Essential Oil Composition in Different Basil Species and Pot Cultures by a GC-MS Method. Molecules, 22, Article No. 1221. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Fiehn, O. (2003) Metabolic Networks of Cucurbita Maxima Phloem. Phytochemistry, 62, 875-886. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Hirai, M.Y. and Saito, K. (2004) Post-Genomics Approaches for the Elucidation of Plant Adaptive Mechanisms to Sulphur Deficiency. Journal of Experimental Botany, 55, 1871-1879. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Aharoni, A., et al. (2004) Nontargeted Metabolome Analysis by Use of Fourier Transform Ion Cyclotron Mass Spectrometry. https://home.liebertpub.com/omi
|
|
[16]
|
Takada, D., Ehara, K. and Saka, S. (2004) Gas Chromatographic and Mass Spectrometric (GC-MS) Analysis of Lignin-Derived Products from Cryptomeria Japonica Treated in Supercritical Water. Journal of Wood Science, 50, 253-259. [Google Scholar] [CrossRef]
|
|
[17]
|
Xie, Y.J., et al. (2012) Chemical Variation in Essential Oil of Cryptomeria fortunei from Various Areas of China. Industrial Crops and Products, 36, 308-312. https://www.sciencedirect.com/science/article/abs/pii/S0926669011004134
|
|
[18]
|
Qin, Y., Chen, X., Yang, J., Gao, J., Zhang, G., Yan, Y., et al. (2024) Integrated Metabolomic and Transcriptomic Analyses Reveal the Regulatory Mechanism Underlying the Accumulation of Anthocyanins in Cornus officinalis Pericarp. Horticulturae, 10, Article No. 651. [Google Scholar] [CrossRef]
|
|
[19]
|
Kumar, S., Shah, S.H., Vimala, Y., Jatav, H.S., Ahmad, P., Chen, Y., et al. (2022) Abscisic Acid: Metabolism, Transport, Crosstalk with Other Plant Growth Regulators, and Its Role in Heavy Metal Stress Mitigation. Frontiers in Plant Science, 13, Article 972856. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Raguso, R.A. (2008) Wake up and Smell the Roses: The Ecology and Evolution of Floral Scent. Annual Review of Ecology, Evolution, and Systematics, 39, 549-569. [Google Scholar] [CrossRef]
|
|
[21]
|
Knudsen, J.T., et al. (2006) Diversity and Distribution of Floral Scent. The Botanical Review, 72, Article No. 1. https://link.springer.com/article/10.1663/0006-8101(2006)72[1:dadofs]2.0.co;2 [Google Scholar] [CrossRef]
|
|
[22]
|
Hartmann, T. (2007) From Waste Products to Ecochemicals: Fifty Years Research of Plant Secondary Metabolism. Phytochemistry, 68, 2831-2846. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yousaf, H.K., Shan, T., Chen, X., Ma, K., Shi, X., Desneux, N., et al. (2018) Impact of the Secondary Plant Metabolite Cucurbitacin B on the Demographical Traits of the Melon Aphid, Aphis gossypii. Scientific Reports, 8, Article No. 16473. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Isah, T. (2019) Stress and Defense Responses in Plant Secondary Metabolites Production. Biological Research, 52, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kumar, R. and Tewari, A.K. (2018) Isolation of Medicinally Important Constituents from Rare and Exotic Medicinal Plants. In: Tewari, A. and Tiwari, S., Eds., Synthesis of Medicinal Agents from Plants, Elsevier, 229-256. [Google Scholar] [CrossRef]
|
|
[26]
|
Gao, F., Zhu, S., Sun, Y., Du, L., Parajulee, M., Kang, L., et al. (2008) Interactive Effects of Elevated CO2 and Cotton Cultivar on Tri-Trophic Interaction of Gossypium hirsutum, Aphis gossyppii, and Propylaea japonica. Environmental Entomology, 37, 29-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yuan, Y., Tang, X., Jia, Z., Li, C., Ma, J. and Zhang, J. (2020) The Effects of Ecological Factors on the Main Medicinal Components of Dendrobium Officinale under Different Cultivation Modes. Forests, 11, Article No. 94. [Google Scholar] [CrossRef]
|
|
[28]
|
Yang, L., Wen, K., Ruan, X., Zhao, Y., Wei, F. and Wang, Q. (2018) Response of Plant Secondary Metabolites to Environmental Factors. Molecules, 23, Article No. 762. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Mohd Ali, S.A., Che Mohd Zain, C.R. and Latip, J. (2019) Influence of Elevated CO2 on the Growth and Phenolic Constituents Production in Hibiscus sabdariffa var. UKMR-2. Jurnal Teknologi, 81, 109-118. [Google Scholar] [CrossRef]
|
|
[30]
|
Qiang, Q., Gao, Y., Yu, B., Wang, M., Ni, W., Li, S., et al. (2020) Elevated CO2 Enhances Growth and Differentially Affects Saponin Content in Paris polyphylla var. yunnanensis. Industrial Crops and Products, 147, Article ID: 112124. [Google Scholar] [CrossRef]
|
|
[31]
|
Ma, C.H., Chu, J.Z., Shi, X.F., Liu, C.Q. and Yao, X.Q. (2016) Effects of Enhanced UV-B Radiation on the Nutritional and Active Ingredient Contents during the Floral Development of Medicinal Chrysanthemum. Journal of Photochemistry and Photobiology B: Biology, 158, 228-234. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Bieza, K. and Lois, R. (2001) An Arabidopsis Mutant Tolerant to Lethal Ultraviolet-B Levels Shows Constitutively Elevated Accumulation of Flavonoids and Other Phenolics. Plant Physiology, 126, 1105-1115. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Nascimento, L.B.d.S., Leal-Costa, M.V., Menezes, E.A., Lopes, V.R., Muzitano, M.F., Costa, S.S., et al. (2015) Ultraviolet-b Radiation Effects on Phenolic Profile and Flavonoid Content of Kalanchoe pinnata. Journal of Photochemistry and Photobiology B: Biology, 148, 73-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Kleinwächter, M. and Selmar, D. (2014) New Insights Explain That Drought Stress Enhances the Quality of Spice and Medicinal Plants: Potential Applications. Agronomy for Sustainable Development, 35, 121-131. [Google Scholar] [CrossRef]
|
|
[35]
|
Alhaithloul, H.A., Soliman, M.H., Ameta, K.L., El-Esawi, M.A. and Elkelish, A. (2019) Changes in Ecophysiology, Osmolytes, and Secondary Metabolites of the Medicinal Plants of Mentha piperita and Catharanthus roseus Subjected to Drought and Heat Stress. Biomolecules, 10, Article No. 43. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Pant, P., Pandey, S. and Dall’Acqua, S. (2021) The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chemistry & Biodiversity, 18, e2100345. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Jogawat, A., et al. (2021) Crosstalk between Phytohormones and Secondary Metabolites in the Drought Stress Tolerance of Crop Plants: A Review. Physiologia Plantarum, 172, 1106-1132.
|
|
[38]
|
Li, Y., Kong, D., Fu, Y., Sussman, M.R. and Wu, H. (2020) The Effect of Developmental and Environmental Factors on Secondary Metabolites in Medicinal Plants. Plant Physiology and Biochemistry, 148, 80-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Cox-Georgian, D., Ramadoss, N., Dona, C. and Basu, C. (2019) Therapeutic and Medicinal Uses of Terpenes. In: Joshee, N., Dhekney, S.A. and Parajuli, P., Eds., From Farm to Pharmacy, Springer International Publishing, 333-359. [Google Scholar] [CrossRef]
|
|
[40]
|
Wada, K., Hazawa, M., Takahashi, K., Mori, T., Kawahara, N. and Kashiwakura, I. (2007) Inhibitory Effects of Diterpenoid Alkaloids on the Growth of A172 Human Malignant Cells. Journal of Natural Products, 70, 1854-1858. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Reynolds, W.F. and Enriquez, R.G. (2016) Chapter 7. Terpenes: Mono-, Sesqui-, and Higher Terpenes. In: Williams, A., et al., Eds., Modern NMR Approaches to the Structure Elucidation of Natural Products: Data Acquisition and Applications to Compound Classes, Royal Society of Chemistry, 251-274. [Google Scholar] [CrossRef]
|
|
[42]
|
Trost, B.M. and Min, C. (2020) Total Synthesis of Terpenes via Palladium-Catalysed Cyclization Strategy. Nature Chemistry, 12, 568-573. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kumar, S., Shah, S.H., Vimala, Y., Jatav, H.S., Ahmad, P., Chen, Y., et al. (2022) Abscisic Acid: Metabolism, Transport, Crosstalk with Other Plant Growth Regulators, and Its Role in Heavy Metal Stress Mitigation. Frontiers in Plant Science, 13, Article ID: 972856. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Chen, M., Du, Y., Zhu, G., Takamatsu, G., Ihara, M., Matsuda, K., et al. (2018) Action of Six Pyrethrins Purified from the Botanical Insecticide Pyrethrum on Cockroach Sodium Channels Expressed in Xenopus Oocytes. Pesticide Biochemistry and Physiology, 151, 82-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Lybrand, D.B., Xu, H., Last, R.L. and Pichersky, E. (2020) How Plants Synthesize Pyrethrins: Safe and Biodegradable Insecticides. Trends in Plant Science, 25, 1240-1251. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Silva, L.N., Zimmer, K.R., Macedo, A.J. and Trentin, D.S. (2016) Plant Natural Products Targeting Bacterial Virulence Factors. Chemical Reviews, 116, 9162-9236. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Merk, L., Kloos, M., Schönwitz, R. and Ziegler, H. (1988) Influence of Various Factors on Quantitative Composition of Leaf Monoterpenes of Picea abies (L.) Karst. Trees, 2, 45-51. https://link.springer.com/article/10.1007/BF00196979 [Google Scholar] [CrossRef]
|
|
[48]
|
Bang, K.W., Lewis, G. and Villas-Boas, S.G. (2020) Leptospermum scoparium (Mānuka) and Cryptomeria japonica (Sugi) Leaf Essential Oil Seasonal Chemical Variation and Their Effect on Antimicrobial Activity. https://www.preprints.org/manuscript/202008.0623
|
|
[49]
|
Hanover, J.W. (1992) Applications of Terpene Analysis in Forest Genetics. New Forests, 6, 159-178. [Google Scholar] [CrossRef]
|
|
[50]
|
Salam, U., Ullah, S., Tang, Z., Elateeq, A.A., Khan, Y., Khan, J., et al. (2023) Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life, 13, Article No. 706. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Stanivuković, Z., Govedar, Z., Kapovic Solomun, M. and Hrkić Ilić, Z. (2010) Climate Change Impact on Forest Vegetation in the Republic of Srpska.
|
|
[52]
|
Zhang, Y., Elam, E., Ni, Z., Zhang, F., Thakur, K., Wang, S., et al. (2022) LC-MS/MS Targeting Analysis of Terpenoid Metabolism in Carya cathayensis at Different Developmental Stages. Food Chemistry, 366, Article ID: 130583. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Tang, Q., Xu, Y., Gao, F., Xu, Y., Cheng, C., Deng, C., et al. (2023) Transcriptomic and Metabolomic Analyses Reveal the Differential Accumulation of Phenylpropanoids and Terpenoids in Hemp Autotetraploid and Its Diploid Progenitor. BMC Plant Biology, 23, Article No. 616. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Liang, S.-M., Zhang, F., Zou, Y.-N., Kuča, K. and Wu, Q.-S. (2021) Metabolomics Analysis Reveals Drought Responses of Trifoliate Orange by Arbuscular Mycorrhizal Fungi with a Focus on Terpenoid Profile. Frontiers in Plant Science, 12, Article ID: 740524. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Valle, I.D., et al. (2020) Soil Organic Matter Attenuates the Efficacy of Flavonoid-Based Plant-Microbe Communication. Science Advances, 6, eaax8254. https://www.science.org/doi/full/10.1126/sciadv.aax8254 [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Peer, W.A. and Murphy, A.S. (2007) Flavonoids and Auxin Transport: Modulators or Regulators? Trends in Plant Science, 12, 556-563. https://www.cell.com/ajhg/abstract/S1360-1385(07)00276-2
|
|
[57]
|
Gayomba, S.R., Watkins, J.M. and Muday, G.K. (2017) Flavonols Regulate Plant Growth and Development through Regulation of Auxin Transport and Cellular Redox Status. In: Recent Advances in Polyphenol Research, John Wiley & Sons, Ltd., 143-170.
|
|
[58]
|
Taylor, L.P. and Grotewold, E. (2005) Flavonoids as Developmental Regulators. Current Opinion in Plant Biology, 8, 317-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M. and Zheng, B. (2019) Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules, 24, Article No. 2452. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Agati, G., et al. (2012) Flavonoids as Antioxidants in Plants: Location and Functional Significance. Plant Science, 196, 67-76. https://www.sciencedirect.com/science/article/abs/pii/S0168945212001586
|
|
[61]
|
Agati, G. and Tattini, M. (2010) Multiple Functional Roles of Flavonoids in Photoprotection. New Phytologist, 186, 786-793. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Shen, N., et al. (2022) Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chemistry, 383, Article ID: 132531. https://www.sciencedirect.com/science/article/abs/pii/S0308814622004939
|
|
[63]
|
Yin, X., et al. (2024) Metabolic Profiling and Spatial Metabolite Distribution in Wild Soybean (G. soja) and Cultivated Soybean (G. max) Seeds. Food Chemistry: X, 23, Article ID: 101717. https://www.sciencedirect.com/science/article/pii/S2590157524006059
|