|
[1]
|
Zhang, Y., Qin, G., Zheng, J., Li, Y., Huang, Z. and Han, X. (2023) Promotion Effect of CO Oxidation via Activation of Surface Lattice Oxygen by Single Atom Cu/MnO2 Catalyst. Molecular Catalysis, 540, Article 113057. [Google Scholar] [CrossRef]
|
|
[2]
|
Qiao, B., Liu, J., Wang, Y., Lin, Q., Liu, X., Wang, A., et al. (2015) Highly Efficient Catalysis of Preferential Oxidation of CO in H2-Rich Stream by Gold Single-Atom Catalysts. ACS Catalysis, 5, 6249-6254. [Google Scholar] [CrossRef]
|
|
[3]
|
Zhang, H., Fang, S. and Hu, Y.H. (202) Recent Advances in Single-Atom Catalysts for CO Oxidation. Catalysis Reviews, 64, 491-532. [Google Scholar] [CrossRef]
|
|
[4]
|
Yang, L., Li, J. and Liu, B. (2024) Recent Advances of Monolithic Metal Mesh-Based Catalysts for CO Oxidation. ChemCatChem, 16, e202401122. [Google Scholar] [CrossRef]
|
|
[5]
|
Peralta, Y.M., Molina, R. and Moreno, S. (2024) Rice HUSK Silica: A Review from Conventional Uses to New Catalysts for Advanced Oxidation Processes. Journal of Environmental Management, 370, Article 122735. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Qiao, B., Wang, A., Yang, X., Allard, L.F., Jiang, Z., Cui, Y., et al. (2011) Single-Atom Catalysis of CO Oxidation Using Pt1/FeOx. Nature Chemistry, 3, 634-641.
|
|
[7]
|
Wang, A., Li, J. and Zhang, T. (2018) Heterogeneous Single-Atom Catalysis. Nature Reviews Chemistry, 2, 65-81. [Google Scholar] [CrossRef]
|
|
[8]
|
Beniya, A. and Higashi, S. (2019) Towards Dense Single-Atom Catalysts for Future Automotive Applications. Nature Catalysis, 2, 590-602. [Google Scholar] [CrossRef]
|
|
[9]
|
Qiao, B., Liang, J., Wang, A., Liu, J. and Zhang, T. (2016) Single Atom Gold Catalysts for Low-Temperature CO Oxidation. Chinese Journal of Catalysis, 37, 1580-1586. [Google Scholar] [CrossRef]
|
|
[10]
|
Rivera-Cárcamo, C. and Serp, P. (2018) Single Atom Catalysts on Carbon-Based Materials. ChemCatChem, 10, 5058-5091. [Google Scholar] [CrossRef]
|
|
[11]
|
Lin, J., Wang, X. and Zhang, T. (2016) Recent Progress in CO Oxidation over Pt-Group-Metal Catalysts at Low Temperatures. Chinese Journal of Catalysis, 37, 1805-1813. [Google Scholar] [CrossRef]
|
|
[12]
|
Cheng, C., Zhang, X., Wang, M., Wang, S. and Yang, Z. (2018) Single Pd Atomic Catalyst on Mo2co2 Monolayer (MXene): Unusual Activity for CO Oxidation by Trimolecular Eley-Rideal Mechanism. Physical Chemistry Chemical Physics, 20, 3504-3513. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yang, T., Fan, S., Li, Y. and Zhou, Q. (2011) Fe-N/C Single-Atom Catalysts with High Density of Fe-Nx Sites toward Peroxymonosulfate Activation for High-Efficient Oxidation of Bisphenol A: Electron-Transfer Mechanism. Chemical Engineering Journal, 419, Article 129590. [Google Scholar] [CrossRef]
|
|
[14]
|
Liu, S. and Huang, S. (2017) Atomically Dispersed Co Atoms on MoS2 Monolayer: A Promising High-Activity Catalyst for CO Oxidation. Applied Surface Science, 425, 478-483. [Google Scholar] [CrossRef]
|
|
[15]
|
Yang, T., Fukuda, R., Hosokawa, S., Tanaka, T., Sakaki, S. and Ehara, M. (2017) A Theoretical Investigation on CO Oxidation by Single-Atom Catalysts M1/γ-Al2O3 (M=Pd, Fe, Co, and Ni). ChemCatChem, 9, 1222-1229. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sun, H., Wang, L., Guo, F., Shi, Y., Li, L., Xu, Z., et al. (2022) Fe-Doped G-C3N4 Derived from Biowaste Material with Fe-N Bonds for Enhanced Synergistic Effect between Photocatalysis and Fenton Degradation Activity in a Broad Ph Range. Journal of Alloys and Compounds, 900, Article 163410. [Google Scholar] [CrossRef]
|
|
[17]
|
Zhang, Y., Chen, X., Cui, M., Guo, Z., Chen, Y., Cui, K., et al. (2022) Binding Fe-Doped G-C3N4 on the Porous Diatomite for Efficient Degradation of Tetracycline via Photo-Fenton Process. Journal of Environmental Chemical Engineering, 10, Article 107406. [Google Scholar] [CrossRef]
|
|
[18]
|
Huang, Z., Yu, H., Wang, L., Liu, X., Ren, S., Huang, Y., et al. (2023) Coupling of Fe-N-C Single Atom Catalyst and Ferrocene-Modified Graphitic Carbon Nitride as an Efficient Photocatalyst for Removal of Pollutants from Water. Separation and Purification Technology, 322, Article 124192. [Google Scholar] [CrossRef]
|
|
[19]
|
Bicalho, H.A., Lopez, J.L., Binatti, I., Batista, P.F.R., Ardisson, J.D., Resende, R.R., et al. (2017) Facile Synthesis of Highly Dispersed Fe(II)-Doped G-C3N4 and Its Application in Fenton-Like Catalysis. Molecular Catalysis, 435, 156-165. [Google Scholar] [CrossRef]
|
|
[20]
|
An, S., Zhang, G., Wang, T., Zhang, W., Li, K., Song, C., et al. (2018) High-Density Ultra-Small Clusters and Single-Atom Fe Sites Embedded in Graphitic Carbon Nitride (G-C3N4) for Highly Efficient Catalytic Advanced Oxidation Processes. ACS Nano, 12, 9441-9450. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Huang, J., Zhang, Q., Ding, J. and Zhai, Y. (2022) Fe-N-C Single Atom Catalysts for the Electrochemical Conversion of Carbon, Nitrogen and Oxygen Elements. Materials Reports: Energy, 2, Article 100141. [Google Scholar] [CrossRef]
|
|
[22]
|
Dai, H., Hu, T., Zhu, S., Zhang, Y. and Zhou, W. (2025) Regulating the Fe-Nx Coordination Structure of Fe Single-Atom Catalysts for Efficient Catalytic Degradation of Methylparaben. Chemical Engineering Journal, 507, Article 160462. [Google Scholar] [CrossRef]
|
|
[23]
|
Gao, L., Wu, D., Li, S., Li, H. and Ma, D. (2024) Graphene-Supported MN4 Single-Atom Catalysts for Multifunctional Electrocatalysis Enabled by Axial Fe Tetramer Coordination. Journal of Colloid and Interface Science, 676, 261-271. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Di Vizio, B., Mosconi, D., Blanco, M., Tang, P., Nodari, L., Tomanec, O., et al. (2024) Enhanced Selective Oxidation of Ethylarenes Using Iron Single Atom Catalysts Embedded in Nitrogen-Rich Graphene. Chemical Engineering Journal, 499, Article 156299. [Google Scholar] [CrossRef]
|
|
[25]
|
Cheng, J., Tu, X., Zhang, L., Han, M., Zhou, R., Luo, S., et al. (2024) A Novel Bifunctional Particle Electrode with Abundant Fe/Fe3C and Fe-N-C Sites to Enhance the Performance of Electro-Fenton in Degrading Organic Pollutant. Journal of Environmental Chemical Engineering, 12, Article 112902. [Google Scholar] [CrossRef]
|
|
[26]
|
Hou, C., Zhao, J., Yang, L., Chen, J., Xia, X., Zhou, X., et al. (2023) A Single-Atom Fe-N-C Catalyst with Superior Fenton-Like Reaction Performance Prepared Facilely Using Microalgae: Key Roles of Oxygen and Interactions between Fe-Nx and Fe/Fe Compounds. Applied Catalysis B: Environmental, 339, Article 123135. [Google Scholar] [CrossRef]
|
|
[27]
|
Li, B., Feng, C., Wang, T., et al. (2025) Unveiling the Overlooked Role of Structural Heterogeneity within Fe-N-C Single Atom Catalysts for Fenton-Like Reactions: Efficient Decontamination of Pharmaceuticals from Wastewater and Source-separated Urine. Separation and Purification Technology, 354, Article 128955. [Google Scholar] [CrossRef]
|
|
[28]
|
Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Delley, B. (1990) An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. The Journal of Chemical Physics, 92, 508-517. [Google Scholar] [CrossRef]
|
|
[30]
|
Tkatchenko, A. and Scheffler, M. (2009) Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Physical Review Letters, 102, Article 073005. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Henkelman, G. and Jónsson, H. (2000) Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. The Journal of Chemical Physics, 113, 9978-9985. [Google Scholar] [CrossRef]
|
|
[32]
|
Kroke, E., Schwarz, M., Horath-Bordon, E., Kroll, P., Noll, B. and Norman, A.D. (2002) Tri-S-Triazine Derivatives. Part I. From Trichloro-Tri-S-Triazine to Graphitic C3N4 Structures. New Journal of Chemistry, 26, 508-512.
|