|
[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ley, C., Bauer, H.M., Reingold, A., et al. (1991) Determinants of Genital Human Papillomavirus Infection in Young Women. Journal of the National Cancer Institute, 83, 997-1003.
|
|
[3]
|
Lorusso, D., Petrelli, F., Coinu, A., Raspagliesi, F. and Barni, S. (2014) A Systematic Review Comparing Cisplatin and Carboplatin Plus Paclitaxel-Based Chemotherapy for Recurrent or Metastatic Cervical Cancer. Gynecologic Oncology, 133, 117-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Park, D.C., Suh, M.J. and Yeo, S.G. (2009) Neoadjuvant Paclitaxel and Cisplatin in Uterine Cervical Cancer. International Journal of Gynecological Cancer, 19, 943-947. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Klyuchko, K.O. and Gargin, V.V. (2020) Influence of Neoadjuvant Chemoradiotherapy for Locally Advanced Cervical Cancer. Polski Merkuriusz Lekarski, 48, 406-409.
|
|
[6]
|
刘红, 张国楠. 宫颈癌化疗耐药相关问题[J]. 中国实用妇科与产科杂志, 2015, 31(3): 198-201.
|
|
[7]
|
杜春双, 马亚妮, 王帅, 张飞, 张洁, 桑广健. 左旋紫草素对顺铂耐药人宫颈癌HeLa细胞的逆转作用研究[J]. 中国药房, 2020, 31(15): 1867-1873.
|
|
[8]
|
Zhang, T. and Xiaohan, C. (2025) Unveiling the Role of JAK2/STAT3 Signaling in Chemoresistance of Gynecological Cancers: From Mechanisms to Therapeutic Implications. Critical Reviews in Oncology/Hematology, 211, Article 104712. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bhattacharjee, R., Dey, T., Kumar, L., Kar, S., Sarkar, R., Ghorai, M., et al. (2022) Cellular Landscaping of Cisplatin Resistance in Cervical Cancer. Biomedicine & Pharmacotherapy, 153, Article 113345. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Martinho, O., Pinto, F., Granja, S., Miranda-Gonçalves, V., Moreira, M.A.R., Ribeiro, L.F.J., et al. (2013) RKIP Inhibition in Cervical Cancer Is Associated with Higher Tumor Aggressive Behavior and Resistance to Cisplatin Therapy. PLOS ONE, 8, e59104. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Luo, F., Wen, Y., Zhou, H. and Li, Z. (2020) Roles of Long Non-Coding RNAs in Cervical Cancer. Life Sciences, 256, Article 117981. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, W., Wu, Q., Liu, Y., Wang, X., Ma, C. and Zhu, W. (2022) LncRNA HOTAIR Promotes Chemoresistance by Facilitating Epithelial to Mesenchymal Transition through miR-29b/PTEN/PI3K Signaling in Cervical Cancer. Cells Tissues Organs, 211, 16-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, Q., Cheng, N., Li, X., Pan, H., Li, C., Ren, S., et al. (2017) Correlation of Long Non-Coding RNA h19 Expression with Cisplatin-Resistance and Clinical Outcome in Lung Adenocarcinoma. Oncotarget, 8, 2558-2567. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhou, C., Yi, C., Yi, Y., Qin, W., Yan, Y., Dong, X., et al. (2020) LncRNA PVT1 Promotes Gemcitabine Resistance of Pancreatic Cancer via Activating Wnt/β-Catenin and Autophagy Pathway through Modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 Axes. Molecular Cancer, 19, Article No. 118. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
王程, 朱逸飞, 郑世康, 等. 长链非编码RNA pot1-as1在宫颈癌顺铂耐药中的作用研究[J]. 解放军医学院学报, 2024, 45(3): 302-309.
|
|
[16]
|
Wen, K., Wang, L., Su, H., Yu, L., Zhang, S., Wei, M., et al. (2025) Development of a m6A-and Ferroptosis-Related LncRNA Signature for Forecasting Prognosis and Treatment Response in Cervical Cancer. BMC Cancer, 25, Article No. 580. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wang, X.W. and Zhang, W. (2019) Long Non-Coding RNA Cancer Susceptibility Candidate 2 Inhibits the Cell Proliferation, Invasion and Angiogenesis of Cervical Cancer through the MAPK Pathway. European Review for Medical and Pharmacological Sciences, 23, 3261-3269.
|
|
[18]
|
Feng, Y., Zou, W., Hu, C., Li, G., Zhou, S., He, Y., et al. (2017) Modulation of CASC2/miR-21/PTEN Pathway Sensitizes Cervical Cancer to Cisplatin. Archives of Biochemistry and Biophysics, 623, 20-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Jin, S., Wang, W., Xu, X., Yu, Z., Feng, Z., Xie, J., et al. (2024) miR-34b-3p-Mediated Regulation of STC2 and FN1 Enhances Chemosensitivity and Inhibits Proliferation in Cervical Cancer. Acta Biochimica et Biophysica Sinica, 56, 740-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, Y., Zhou, Z., Qu, J., Gong, P., Wei, Y. and Sun, Y. (2024) Role of MicroRNA-4739 in Enhancing Cisplatin Chemosensitivity by Negative Regulation of RHBDD2 in Human Cervical Cancer Cells. Cellular & Molecular Biology Letters, 29, Article No. 20. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Nishi, H., Ono, M., Ohno, S., Yamanaka, Z., Sasaki, T., Ohyashiki, K., et al. (2023) Hypoxia-Induced Paclitaxel Resistance in Cervical Cancer Modulated by miR-100 Targeting of USP15. Gynecologic Oncology Reports, 45, Article 101138. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
王虎年, 柴克霞, 张莉. 铁死亡通路中ACSL4、LPCAT3蛋白表达在特发性炎性肌病中的研究[J]. 系统医学, 2023, 8(11): 190-193+198.
|
|
[23]
|
Tang, D. and Kroemer, G. (2020) Ferroptosis. Current Biology, 30, R1292-R1297. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yang, X., Yin, F., Liu, Q., Ma, Y., Zhang, H., Guo, P., et al. (2022) Ferroptosis-related Genes Identify Tumor Immune Microenvironment Characterization for the Prediction of Prognosis in Cervical Cancer. Annals of Translational Medicine, 10, 123-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Köberle, B. and Schoch, S. (2021) Platinum Complexes in Colorectal Cancer and Other Solid Tumors. Cancers, 13, Article No. 2073. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lamberti, M.J., Nigro, A., Casolaro, V., Rumie Vittar, N.B. and Dal Col, J. (2021) Damage-Associated Molecular Patterns Modulation by MicroRNA: Relevance on Immunogenic Cell Death and Cancer Treatment Outcome. Cancers, 13, Article No. 2566. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yu, S., Wang, Y., Jing, L., Claret, F.X., Li, Q., Tian, T., et al. (2017) Autophagy in the “Inflammation-Carcinogenesis” Pathway of Liver and HCC Immunotherapy. Cancer Letters, 411, 82-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
张鹏, 葛亮, 孔令国, 等. 咪达唑仑通过调节Nrf2/HO-1信号通路对宫颈癌细胞铁死亡的作用及机制研究[J]. 实用医学杂志, 2023, 39(14): 1740-1745.
|
|
[29]
|
Qi, X.L., Fu, Y.P., Sheng, J., Zhang, M., Zhang, M., Wang, Y., et al. (2021) A Novel Ferroptosis-Related Gene Signature for Predicting Outcomes in Cervical Cancer. Bioengineered, 12, 1813-1825. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Yong, X., Zhang, Y., Tang, H., Hu, H., Song, R. and Wu, Q. (2024) CDKN2A Inhibited Ferroptosis through Activating JAK2/STAT3 Pathway to Modulate Cisplatin Resistance in Cervical Squamous Cell Carcinoma. Anti-Cancer Drugs, 35, 698-708. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, X.F., Sui, S.Y., Wang, L.L., Li, H., Zhang, L., Xu, S., et al. (2020) Inhibition of Tumor Propellant Glutathione Peroxidase 4 Induces Ferroptosis in Cancer Cells and Enhances Anticancer Effect of Cisplatin. Journal of Cellular Physiology, 235, 3425-3437. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Yun, C.W. and Lee, S.H. (2018) The Roles of Autophagy in Cancer. International Journal of Molecular Sciences, 19, Article 3466. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yun, C.W., Jeon, J., Go, G., Lee, J.H. and Lee, S.H. (2020) The Dual Role of Autophagy in Cancer Development and a Therapeutic Strategy for Cancer by Targeting Autophagy. International Journal of Molecular Sciences, 22, Article 179. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, Y., Shen, F., Zhou, J., Fang, Y., Qi, Y. and Chen, Y. (2022) Overexpression of ARHI Increases the Sensitivity of Cervical Cancer Cells to Paclitaxel through Inducing Apoptosis and Autophagy. Drug Development Research, 83, 142-149. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
高朋, 徐丹丹, 张斌, 等. 氯喹对人宫颈癌细胞系HeLa增殖、凋亡及自噬的影响[J]. 基础医学与临床, 2023, 43(10): 1512-1517.
|
|
[36]
|
杨铠菲, 朱静格, 张洋洋, 等. 索拉菲尼诱导的细胞凋亡和自噬对HeLa细胞耐药性的影响[J]. 基础医学与临床, 2024, 44(4): 467-473.
|
|
[37]
|
Mubthasima, P.P., Singh, S.A. and Kannan, A. (2024) Sesamol-Mediated Targeting of EPHA2 Sensitises Cervical Cancer for Cisplatin Treatment by Regulating Mitochondrial Dynamics, Autophagy, and Mitophagy. Molecular Biology Reports, 51, Article No. 949. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Moore, G., Annett, S., McClements, L. and Robson, T. (2020) Top Notch Targeting Strategies in Cancer: A Detailed Overview of Recent Insights and Current Perspectives. Cells, 9, Article 1503. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wang, M., Qiu, R., Yu, S.R., et al. (2019) Paclitaxel-Resistant Gastric Cancer MGC-803 Cells Promote Epithelial-to-Mesenchymal Transition and Chemoresistance in Paclitaxel-Sensitive Cells via Exosomal Delivery of miR-155-5p. International Journal of Oncology, 54, 326-338.
|
|
[40]
|
Sun, T., Zhang, D., Wang, Z., Zhao, B., Li, Y., Sun, X., et al. (2021) Inhibition of the Notch Signaling Pathway Overcomes Resistance of Cervical Cancer Cells to Paclitaxel through Retardation of the Epithelial-Mesenchymal Transition Process. Environmental Toxicology, 36, 1758-1764. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
李平. KAT6B促进宫颈癌恶性生物学行为的作用及其分子机制研究[D]: [博士学位论文]. 苏州: 苏州大学, 2019.
|
|
[42]
|
陆菁菁. miR-487b靶向负调控KAT6B在宫颈癌进展中的作用机制研究[D]: [硕士学位论文]. 镇江: 江苏大学, 2020.
|
|
[43]
|
Mou, J., Zheng, W., Wei, D., Li, D., Fan, R. and Tang, Q. (2023) CD200-CD200R Affects Cisplatin and Paclitaxel Sensitivity by Regulating Cathepsin K-Mediated P65 NF-κB Signaling in Cervical Cancer. Heliyon, 9, e19220. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Shen, N.N., Lin, J.H. and Liu, P.P. (2023) EBF1 Promotes the Sensitivity of Cervical Cancer Cells to Cisplatin via Activating FBN1 Transcription. Молекулярная биология, 57, 503-504. [Google Scholar] [CrossRef]
|
|
[45]
|
Yokosuka, T., Takamatsu, M., Kobayashi-Imanishi, W., Hashimoto-Tane, A., Azuma, M. and Saito, T. (2012) Programmed Cell Death 1 Forms Negative Costimulatory Microclusters That Directly Inhibit T Cell Receptor Signaling by Recruiting Phosphatase SHP2. Journal of Experimental Medicine, 209, 1201-1217. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
徐月, 田永巍, 李宁. PD-1/pd-l1抑制剂联合化疗对晚期宫颈癌的疗效及预后分析[J]. 实用癌症杂志, 2024, 39(7): 1167-1170.
|
|
[47]
|
Chen, J., Jiang, C.C., Jin, L. and Zhang, X.D. (2016) Regulation of PD-L1: A Novel Role of Pro-Survival Signalling in Cancer. Annals of Oncology, 27, 409-416. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zhang, L., Zhao, Y., Tu, Q., Xue, X., Zhu, X. and Zhao, K. (2021) The Roles of Programmed Cell Death Ligand-1/ Programmed Cell Death-1 (PD-L1/PD-1) in HPV-Induced Cervical Cancer and Potential for Their Use in Blockade Therapy. Current Medicinal Chemistry, 28, 893-909. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Zhu, Z., Nie, X., Deng, L., Ding, J., Chen, J., Zhu, J., et al. (2024) Regulation of Cervical Cancer via G15-Mediated Inhibition of G Protein-Coupled Estrogen Receptor. Anti-Cancer Drugs, 35, 817-829. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Cory, T.J., He, H., Winchester, L.C., Kumar, S. and Fletcher, C.V. (2016) Alterations in P-Glycoprotein Expression and Function between Macrophage Subsets. Pharmaceutical Research, 33, 2713-2721. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Roy, M. and Mukherjee, S. (2014) Reversal of Resistance towards Cisplatin by Curcumin in Cervical Cancer Cells. Asian Pacific Journal of Cancer Prevention, 15, 1403-1410. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
赵林, 刘四清, 汪强. 星形孢菌素通过PI3K/Akt信号途径影响人宫颈癌细胞增殖与侵袭能力的研究[J]. 临床和实验医学杂志, 2018, 17(1): 47-50.
|
|
[53]
|
Liu, Z., Yang, Z. and Ablise, M. (2024) Design and Synthesis of Novel Imidazole-Chalcone Derivatives as Microtubule Protein Polymerization Inhibitors to Treat Cervical Cancer and Reverse Cisplatin Resistance. Bioorganic Chemistry, 147, Article 107310. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Tang, Q., Xu, A., Yang, Y., Zhang, Y. and Sun, J. (2023) FOXM1 Contributes to Chemotherapy Sensitivity in Cervical Cancer by Regulating TTK. Discovery Medicine, 35, 208-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Chen, Z., Xiao, Z., Tian, W., Li, Z. and Wu, T. (2023) Two Enhances the Cisplatin Sensitivity of Cervical Cancer Cells via Suppression of C-MET Expression. Iranian Journal of Public Health, 52, 1476-1486. [Google Scholar] [CrossRef] [PubMed]
|