宫颈癌化疗药物耐药性逆转分子机制
The Molecular Mechanism for Reversing Chemotherapy Drug Resistance in Cervical Cancer
摘要: 宫颈癌是常见的女性生殖系统恶性肿瘤之一,早期筛查以及预防性注射HPV疫苗如今虽有一定进展,但宫颈癌的发病率和死亡率仍呈上升趋势且呈年轻化。紫杉醇与顺铂属于宫颈癌治疗的一线化疗药物,但其易产生化疗耐药,严重影响患者治疗效果及预后,因此了解宫颈癌化疗药物耐药性逆转分子机制具有相当重要意义,以期为攻克宫颈癌化疗耐药提供新的临床诊疗思路。
Abstract: Cervical cancer is one of the common malignant tumors of the female reproductive system. Although there have been certain advancements in early screening and preventive HPV vaccination, the incidence and mortality rates of cervical cancer are still on the rise and showing a trend towards younger patients. Paclitaxel and cisplatin are first-line chemotherapy drugs for the treatment of cervical cancer, but they are prone to chemotherapy resistance, which seriously affects the treatment effect and prognosis of patients. Therefore, understanding the molecular mechanism of chemotherapy drug resistance reversal in cervical cancer is of great significance, with the aim of providing new clinical treatment ideas for overcoming chemotherapy resistance in cervical cancer.
文章引用:周笑跃, 刘文康, 姜向阳, 梁汝棋. 宫颈癌化疗药物耐药性逆转分子机制[J]. 临床医学进展, 2025, 15(12): 161-169. https://doi.org/10.12677/acm.2025.15123392

1. 引言

2022年,宫颈癌(CC)成为全球重要的健康问题,在女性中排名第四,也是女性癌症死亡的第四大原因,高发年龄为50~55岁,目前呈现年轻化趋势,严重威胁女性的生命安全[1]。宫颈癌是由HPV感染、免疫功能低下、性生活活跃或性行为过早、存在多个性伴侣、吸烟、长期生殖道感染或阴道菌群失调等因素共同或独立作用下形成的恶性肿瘤[2]。化疗是晚期宫颈癌(cervical cancer, CC)和复发宫颈癌的治疗方法,紫杉醇与顺铂为治疗宫颈癌一线化疗药物,两者联合使用在宫颈癌治疗中有较好的作用效果[3] [4],交叉耐药现象较少,且紫杉醇能在一定程度上降低顺铂所致的药物不良反应,能有效提高治疗总有效率以及降低血清肿瘤特异性生长因子(TSGF)水平,降低HPV感染率,减轻对肝肾功能的损伤,改善免疫功能,从而提升生存质量,然而长期使用化疗药物会出现耐药性,降低化疗疗效[5]。研究寻找降低肿瘤细胞耐药性的基因调控表达从而提高化疗药物的疗效,为宫颈癌临床治疗提供新的潜在靶点,现就逆转宫颈癌紫杉醇顺铂化疗耐药机制研究进展展开综述。

2. 紫杉醇与顺铂的作用机制

紫杉醇是作用于微血管的细胞周期性特异性药物,具有稳定聚合微管和促进微管聚合的作用,且该药物仅与聚合微管结合,并不会与未聚合的微管二聚体结合,通过干扰肿瘤细胞的分裂和生长来抑制肿瘤的发展,能促使机体聚合细胞微管蛋白,抑制微管解聚使纺锤体失去正常功能,阻断癌细胞分裂、增殖,其还能作用于巨噬细胞,促使机体释放能够灭杀癌细胞的因子[6]。顺铂的抗癌谱较为广泛,是细胞周期非特异性药物,通过干扰肿瘤细胞的DNA复制和修复来抑制肿瘤的生长,其有效成分能和肿瘤细胞的DNA有效结合,形成交叉键,破坏肿瘤组织DNA的正常功能,使其不能完成DNA的复制及转录,诱导肿瘤细胞凋亡[7]

3. 紫杉醇与顺铂的耐药机制

宫颈癌化疗药物产生耐药性有多方面原因:紫杉醇耐药是一个多因素参与的复杂过程[8]。① ABC转体上调;② 微管系统的改变;③ 非编码RNA失调过度表达;④ 多种活性信号通路例如PI3K/Akt信号通路,Notch信号通路;⑤ 上皮–间充质转化(epithelial-mesenchymeal transition, EMT),紫杉醇耐药的发生与EMT过程呈正相关;⑥ 细胞的自噬及凋亡。顺铂耐药主要有以下几个方面:① 减少顺铂的细胞内积累:摄取减少、外排增强、含巯基蛋白的失活;② 增加受损DNA的修复;③ 凋亡途径失活;④ 上皮–间质转化(EMT)的激活;⑤ DNA甲基化,microRNA谱的改变,癌症干细胞特征和应激反应伴侣的表达[9]。此外宫颈癌中RKIP (Raf激酶抑制蛋白;也称为PEBP1,磷脂酰乙醇胺结合蛋白1)抑制与较高的肿瘤侵袭行为和对顺铂治疗的耐药性有关[10]

4. 耐药性逆转分子机制

4.1. lnc RNA和miRNA

多项研究表明,长链非编码RNA (long non-coding RNA, lnc RNA)是宫颈癌化疗耐药的关键调控因子[11] [12],lnc RNA可通过介导细胞凋亡[13]、自噬[14]、铁死亡等程序性细胞死亡方式参与肿瘤化疗耐药[15]。n6-甲基腺苷(m6A)和铁死亡通过长非编码RNA (lnc RNA)参与各种癌症的发展和预后,长非编码RNAn6-甲基腺苷(6-mfrlncRNA)信号是预测宫颈癌预后和治疗反应的新生物标志物[16]。癌症易感候选物2 (Cancer susceptibility candidate 2, CASC2)高度表达可以降低宫颈癌细胞对顺铂的耐药性[17]。CASC2是一种长链非编码RNA,在顺铂耐药的宫颈癌细胞中,lncRNA CASC2与PTEN (抑癌基因,第10号染色体上缺失的磷酸酶和张力蛋白同源基因)呈正相关,与miR-21 (miR-21可通过调节磷脂酰肌醇-3-激酶(PI3K)/蛋白激酶B信号通路,促进肿瘤细胞增殖,抑制细胞凋亡,并可促进上皮–间质转化,增强宫颈癌细胞侵袭性,进而诱发预后不良)呈负相关,上调lncRNA CASC2可以通过直接抑制miR-21、上调PTEN、下调p-Akt蛋白(P-AKT蛋白可能参与宫颈癌的发生、发展并影响其预后)来提高宫颈癌细胞对顺铂的化学敏感性。lncRNA CASC2可以作为miR-21的竞争性内源RNA (ceRNA)并上调PTEN表达从而提高顺铂的疗效[18]。癌症中微小RNA (miRNA)表达失调也是导致化疗耐药进展的重要因素,金[19]的研究发现STC2或FN1的过表达可以部分逆转miR-34b-3p过表达对CC细胞的耐药性、增殖、迁移和侵袭的抑制作用,支持miR-34b-3p作为CC肿瘤抑制因子的作用,研究表明靶向miR-34b-3p/STC2或FN1轴对于克服CC患者的化疗耐药具有潜在的治疗意义。体外和体内实验证明,过表达miR-4739通过靶向RHBDD2克服了宫颈癌细胞中的顺铂耐药性。此外,RHBDD2过表达逆转了miR-4739模拟物对HeLa/DDP细胞中耐药相关蛋白(P-gP和MRP1)以及裂解的caspase-3和E-cadherin表达的影响,表明miR-4739可以通过调节CC细胞中的RHBDD2逆转DDP耐药性[20]

研究发现人泛素特异性蛋白酶15 (USP15)是miR-100的靶蛋白之一,宫颈癌细胞在缺氧反应中过度表达miR-100,miR-100是USP15下调和失活的促进因素,靶向USP15的miR-100调控缺氧诱导的宫颈癌紫杉醇耐药[21]

4.2. 铁死亡

研究发现铁死亡在肿瘤中的作用是复杂的且依赖于环境的,在肿瘤发生中具有促进和抑制作用,铁死亡在宫颈癌耐药性调节上有重要作用。铁死亡在多种疾病的发病中起到重要作用,有着复杂的网状结构,其中铁代谢,脂质代谢,氨基酸代谢为最重要的三条通路,相互影响,共同促进铁死亡的发生[22]。铁死亡是一个适应性过程,对消除肿瘤细胞至关重要[23]。癌细胞的增殖过度依赖铁,铁死亡是一种依赖铁的程序性死亡方式[24]。研究表明宫颈癌化疗药物顺铂可以引起宫颈癌细胞的铁死亡[25],通过诱导铁死亡产生炎症反应激活肿瘤相关巨噬细胞提高对化疗药物的敏感性,进而达到有效杀伤肿瘤细胞的效果[26]。化疗药物诱发铁死亡产生的炎症反应是一把双刃剑,一方面铁死亡使细胞受损产生炎症可以抑制肿瘤生长同时提高了化疗药物敏感性,另一方面炎症也会促进癌症的发生[27]。咪达唑仑是一种短效的苯二氮卓类衍生物,临床上用于镇静,可能通过抑制核因子E2相关因子2 (nuclear factor E2-related factor 2, Nrf2)/血红素氧合酶-1 (heme oxygenase-1, HO-1)信号通路以剂量依赖性方式抑制HeLa细胞增殖,诱导其铁死亡[28]。转铁蛋白受体(TFRC)是细胞铁吸收过程中不可或缺的铁转运蛋白,其在肿瘤发生和发展过程中促进铁死亡,TFRC在宫颈癌中表达上调,是患者预后的危险因素。SLC7AA11、ACSL4与宫颈癌铁死亡密切相关[29]。齐墩果酸是一种植物中的天然抗癌剂,其可通过促进ACSL4表达诱导铁死亡,进而抑制宫颈癌细胞的生长和增殖。环状RNAcircEPSTI1通过与miR-375、miR409-3p和miR-515-5p相互作用促进SLC7A11表达,从而通过抑制铁死亡来促进宫颈癌细胞增殖[29]。项[30]等人的研究发现靶向JAK2/STAT3通路增强了顺铂耐药细胞的铁死亡。细胞周期蛋白依赖激酶抑制剂2A (CDKN2A)可通过激活JAK2/STAT3通路调节顺铂耐药性。谷胱甘肽过氧化物酶4 (GPX4)已被证实可抑制癌细胞中的铁死亡,通过RSL3抑制GPX4可以增强顺铂在体内外的抗癌作用,GPX4作为癌基因并抑制癌细胞中的铁死亡,顺铂的抗癌作用可通过GPX4抑制而增强[31]。靶向铁死亡的研究或可为我们临床治疗宫颈癌提供新的诊疗思路。

4.3. 细胞自噬

细胞自噬是一种程序性死亡方式,通过溶酶体降解体内衰老、损伤的细胞器以达到稳态,自噬的调节在许多癌症中起着抑制肿瘤和促进肿瘤的双重作用[32]。在癌细胞中有三种自噬途径(如图1所示),分别是大自噬、线粒体自噬和伴侣介导的自噬[33]。研究表明自噬通过调节细胞代谢使宫颈癌细胞产生耐药性,抑制自噬可使耐药癌细胞增敏,增强化疗药物的疗效,了解自噬的分子调控机制寻找靶向自噬可为临床治疗宫颈癌提供的新的治疗靶点[32]。ARHI基因是公认的抑癌基因,在肿瘤细胞的增殖、凋亡和迁移等多种生物学功能中发挥作用,在多种恶性肿瘤的发生发展过程中具有显著的抑制作用。ARHI是与自噬相关的重要基因,ARHI可通过抑制Akt/mTOR信号通路的方式促进紫杉醇耐药宫颈癌细胞的凋亡和自噬,从而增加其对紫杉醇的敏感性[34]。在一定程度下,药物诱导的细胞自噬能激活耐药细胞的凋亡信号通路,促进细胞耐药逆转。例如高的[35]实验发现自噬抑制剂氯喹可能通过PI3K/AKT/MDM2通路抑制宫颈癌HeLa细胞的增殖诱导细胞凋亡;血管内皮细胞生长因子受体2 (VEGFR-2)抑制剂索拉菲尼(sorafenib)可通过抑制宫颈癌HeLa细胞的增殖诱导自噬并降低宫颈癌细胞耐药性[36]。此外肝配蛋白A型受体2 (EPHA2)在宫颈癌中显著过表达,研究发现EPHA2敲低(EPHA2-KD)导致线粒体融合增强,线粒体裂变,线粒体自噬和自噬减少。EPHA2-KD和芝麻酚治疗显着增加了细胞对顺铂诱导的细胞毒性的敏感性,通过敲除或芝麻酚治疗靶向EPHA2通过调节线粒体动力学、自噬和丝裂吞噬增强宫颈癌顺铂敏感性,提示有希望的治疗策略来克服化疗耐药[37] (见图1)。

4.4. Notch信号通路

Notch信号通路是一种进化上保守的途径,调节多种组织的正常发育和维持稳态,在肿瘤细胞中起着促进和抑制的双重作用[38]。研究表明Notch信号通路高度参与宫颈癌化疗药物紫杉醇耐药性过程中[39]。上皮-间质转化(EMT)的激活与癌症干细胞的耐药性之间呈正相关,Notch1信号的下调可以抑制EMT过程,并增加宫颈癌细胞对紫杉醇的敏感性[16] [40]。研究证明,使用γ-分泌酶抑制剂(DAPT)抑制Notch信号通路,也增强细胞对顺铂的敏感性[16]。因此抑制Notch1信号,或者使用γ-分泌酶抑制剂(DAPT)治疗宫颈癌,可降低化疗药耐药性,提高化疗药物治疗效果。

4.5. KAT6B、CD200-CD200R及FBN1

KAT6B,又名单细胞白血病锌指蛋白相关因子(monocytic leukemia zinc finger proteinrelated factor, MORF),Li等通过实验发现KAT6B通过AMPKα-AKT-mTOR信号通路调控宫颈癌细胞增殖、迁移、侵袭等作用[41]。miR-487b靶点是KAT6B,靶向结合KAT6B从而调控宫颈癌细胞的增殖。miR-487b的表达与宫颈癌细胞的增殖成反比,miR-487b低表达会促进宫颈癌细胞的增殖,从而降低了宫颈癌细胞对化疗药物的敏感性[42]。抑制KAT6B基因表达或者提高miR-487b表达,有望成为新的治疗靶点。牟[43]的研究发现宫颈癌组织中CD200和组织蛋白酶K (CTSK)的表达显著降低,CD200-CD200R通过调节CTSK介导的p65 NF-κB通路影响宫颈癌细胞对顺铂或紫杉醇的敏感性,为晚期宫颈癌提供了一个可能的免疫治疗靶点和联合策略。沈[44]的研究发现原纤维蛋白-1 (FBN1)沉默逆转了体内早期B细胞因子1 (EBF1)过表达对CC细胞化学敏感性的促进作用,EBF1通过激活FBN1转录促进CC细胞的化学敏感性。

Figure 1. Illustration of different autophagy pathways in cancer cells. Macroautophagy is a common autophagy pathway, mitophagy is a specific autophagy that acts on mitochondria, and chaperone-mediated autophagy is a selective autophagy with a unique mechanism. Black arrows indicate autophagy pathways, and red arrows indicate autophagy signaling pathways [10]

1. 图解说明癌细胞中不同的自噬途径。大自噬是常见的自噬途径,线粒体自噬是一种特异性自噬,作用于线粒体,伴侣介导的自噬是一种具有独特机制的选择性自噬。黑色箭头显示了自噬途径。红色箭头显示的是自噬信号通路[10]

4.6. PD-1/PD-L1

在肿瘤的免疫逃逸过程中,肿瘤细胞表面的程序性死亡配体-1 (programmed death-1 ligand1, PD-L1)与在T细胞上表达的程序性死亡受体-1 (programmed death-1receptor, PD-1)结合,抑制了T细胞的抗肿瘤活性[45]。PD-1/PD-L1抑制剂可通过抑制PD-1/PD-L1信号通路,解除肿瘤细胞对机体免疫系统的抑制,激活免疫系统,从而达到清除肿瘤细胞的作用[46]。研究发现PD-1/PD-L1信号通路参与宫颈癌化疗耐药,使用PD-1/PD-L1抑制剂治疗可降低宫颈癌耐药性[47],帕博利珠单抗、纳武单抗、西米普利单抗、阿特珠单抗等PD-1/PD-L1抑制剂在治疗宫颈癌的临床试验中均有良好的效果,进一步研究评估使用PD-1/PD-L1抑制剂为临床宫颈癌治疗提供更有效的诊疗方案[48]。GPER的抑制剂G15通过调节GPER/PI3K/AKT/PD-L1信号通路起作用,并可用作治疗宫颈癌患者的新免疫疗法[49]

4.7. P-糖蛋白

P-糖蛋白(P-gp, ABCB1, MDR1)是一种由多药耐药相关蛋白1 (MDR1)编码的跨膜糖蛋白,将顺铂逆浓度梯度转运至细胞外,从而导致细胞内药物浓度减少,顺铂杀灭肿瘤细胞能力减弱,肿瘤细胞对顺铂产生耐药[50] [51]。在宫颈癌中P-gp是高表达,当顺铂作用于HeLa细胞时,P-gp表达上调,顺铂诱导HeLa细胞凋亡能力减弱,即产生顺铂化疗耐药。通过抑制P-gp的活性,可以减少药物外排,增加细胞内药物浓度和生物利用度,从而提高化疗药物的疗效。例如蛋白激酶C (PKC)抑制剂星形孢菌素(STS)可通过降低P-gp表达抑制人宫颈癌细胞Hela增殖与侵袭能力,提高宫颈癌细胞对紫杉醇的耐药性[52]。此外目前已有多种P-gp抑制剂应用于宫颈癌的治疗中,如维拉帕米、依科立达、他立喹达等。然而这些药物在临床应用中仍有其局限性,如毒副作用较大、药物动力学特性不佳等。刘[53]的研究表明化合物5a具有抗癌作用并显著逆转宫颈癌对顺铂的耐药性,这可能与其抑制微管和P-糖蛋白(P-gp)活性有关。可继续研制高效低毒的P-gp抑制剂,以满足宫颈癌治疗的需要。

4.8. FOXM1和FOXP2

[54]的研究发现叉头盒蛋白M1 (FOXM1)和苏氨酸酪氨酸激酶(TTK)与癌症药物敏感性密切相关,FOXM1调节TTK并影响顺铂和紫杉醇在宫颈癌中的疗效。FOXP2 (叉头框P2基因)在肿瘤的发生、发展及药物的耐药性中均发挥着重要的调节作用。FOXP2低表达及c-MET (肝细胞生长因子受体)过表达与宫颈癌细胞产生耐药性相关,陈[55]的研究发现FOXP2/c-MET信号轴可能成为CC顺铂耐药的一个新的治疗靶点,FOXP2可作为转录因子抑制宫颈癌细胞中c-MET的表达,通过对c-MET的负调控降低宫颈癌细胞对顺铂的耐药性。FOXP2的表达增加会增强宫颈癌细胞对顺铂的敏感性。目前并无关于FOXP2表达的抑制剂及激动剂的药物使用。

综上所述,宫颈癌化疗药物耐性逆转的分子机制涉及多个层面的调控,包括诱导lnc RNA或miRNA高表达,靶向铁死亡、细胞自噬,靶向信号通路,调控凋亡相关蛋白,抑制P-gp活性以及增加FOXP2表达。这些机制相互关联、相互影响,共同构成了宫颈癌化疗药物耐性逆转的复杂网络。此外根据宫颈癌患者的基因图谱发现糖脂转运蛋白(glycolipid transfer protein, GLTP)可能成为预测宫颈癌预后和免疫治疗效果的标志物[12]。进一步探索研究为临床宫颈癌化疗提供更多的理论基础。目前临床对于提高宫颈癌化疗药物敏感性的需求亟待解决,但药物研发及临床使用是一个漫长的过程。

NOTES

*通讯作者。

参考文献

[1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
[2] Ley, C., Bauer, H.M., Reingold, A., et al. (1991) Determinants of Genital Human Papillomavirus Infection in Young Women. Journal of the National Cancer Institute, 83, 997-1003.
[3] Lorusso, D., Petrelli, F., Coinu, A., Raspagliesi, F. and Barni, S. (2014) A Systematic Review Comparing Cisplatin and Carboplatin Plus Paclitaxel-Based Chemotherapy for Recurrent or Metastatic Cervical Cancer. Gynecologic Oncology, 133, 117-123. [Google Scholar] [CrossRef] [PubMed]
[4] Park, D.C., Suh, M.J. and Yeo, S.G. (2009) Neoadjuvant Paclitaxel and Cisplatin in Uterine Cervical Cancer. International Journal of Gynecological Cancer, 19, 943-947. [Google Scholar] [CrossRef] [PubMed]
[5] Klyuchko, K.O. and Gargin, V.V. (2020) Influence of Neoadjuvant Chemoradiotherapy for Locally Advanced Cervical Cancer. Polski Merkuriusz Lekarski, 48, 406-409.
[6] 刘红, 张国楠. 宫颈癌化疗耐药相关问题[J]. 中国实用妇科与产科杂志, 2015, 31(3): 198-201.
[7] 杜春双, 马亚妮, 王帅, 张飞, 张洁, 桑广健. 左旋紫草素对顺铂耐药人宫颈癌HeLa细胞的逆转作用研究[J]. 中国药房, 2020, 31(15): 1867-1873.
[8] Zhang, T. and Xiaohan, C. (2025) Unveiling the Role of JAK2/STAT3 Signaling in Chemoresistance of Gynecological Cancers: From Mechanisms to Therapeutic Implications. Critical Reviews in Oncology/Hematology, 211, Article 104712. [Google Scholar] [CrossRef] [PubMed]
[9] Bhattacharjee, R., Dey, T., Kumar, L., Kar, S., Sarkar, R., Ghorai, M., et al. (2022) Cellular Landscaping of Cisplatin Resistance in Cervical Cancer. Biomedicine & Pharmacotherapy, 153, Article 113345. [Google Scholar] [CrossRef] [PubMed]
[10] Martinho, O., Pinto, F., Granja, S., Miranda-Gonçalves, V., Moreira, M.A.R., Ribeiro, L.F.J., et al. (2013) RKIP Inhibition in Cervical Cancer Is Associated with Higher Tumor Aggressive Behavior and Resistance to Cisplatin Therapy. PLOS ONE, 8, e59104. [Google Scholar] [CrossRef] [PubMed]
[11] Luo, F., Wen, Y., Zhou, H. and Li, Z. (2020) Roles of Long Non-Coding RNAs in Cervical Cancer. Life Sciences, 256, Article 117981. [Google Scholar] [CrossRef] [PubMed]
[12] Zhang, W., Wu, Q., Liu, Y., Wang, X., Ma, C. and Zhu, W. (2022) LncRNA HOTAIR Promotes Chemoresistance by Facilitating Epithelial to Mesenchymal Transition through miR-29b/PTEN/PI3K Signaling in Cervical Cancer. Cells Tissues Organs, 211, 16-29. [Google Scholar] [CrossRef] [PubMed]
[13] Wang, Q., Cheng, N., Li, X., Pan, H., Li, C., Ren, S., et al. (2017) Correlation of Long Non-Coding RNA h19 Expression with Cisplatin-Resistance and Clinical Outcome in Lung Adenocarcinoma. Oncotarget, 8, 2558-2567. [Google Scholar] [CrossRef] [PubMed]
[14] Zhou, C., Yi, C., Yi, Y., Qin, W., Yan, Y., Dong, X., et al. (2020) LncRNA PVT1 Promotes Gemcitabine Resistance of Pancreatic Cancer via Activating Wnt/β-Catenin and Autophagy Pathway through Modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 Axes. Molecular Cancer, 19, Article No. 118. [Google Scholar] [CrossRef] [PubMed]
[15] 王程, 朱逸飞, 郑世康, 等. 长链非编码RNA pot1-as1在宫颈癌顺铂耐药中的作用研究[J]. 解放军医学院学报, 2024, 45(3): 302-309.
[16] Wen, K., Wang, L., Su, H., Yu, L., Zhang, S., Wei, M., et al. (2025) Development of a m6A-and Ferroptosis-Related LncRNA Signature for Forecasting Prognosis and Treatment Response in Cervical Cancer. BMC Cancer, 25, Article No. 580. [Google Scholar] [CrossRef] [PubMed]
[17] Wang, X.W. and Zhang, W. (2019) Long Non-Coding RNA Cancer Susceptibility Candidate 2 Inhibits the Cell Proliferation, Invasion and Angiogenesis of Cervical Cancer through the MAPK Pathway. European Review for Medical and Pharmacological Sciences, 23, 3261-3269.
[18] Feng, Y., Zou, W., Hu, C., Li, G., Zhou, S., He, Y., et al. (2017) Modulation of CASC2/miR-21/PTEN Pathway Sensitizes Cervical Cancer to Cisplatin. Archives of Biochemistry and Biophysics, 623, 20-30. [Google Scholar] [CrossRef] [PubMed]
[19] Jin, S., Wang, W., Xu, X., Yu, Z., Feng, Z., Xie, J., et al. (2024) miR-34b-3p-Mediated Regulation of STC2 and FN1 Enhances Chemosensitivity and Inhibits Proliferation in Cervical Cancer. Acta Biochimica et Biophysica Sinica, 56, 740-752. [Google Scholar] [CrossRef] [PubMed]
[20] Li, Y., Zhou, Z., Qu, J., Gong, P., Wei, Y. and Sun, Y. (2024) Role of MicroRNA-4739 in Enhancing Cisplatin Chemosensitivity by Negative Regulation of RHBDD2 in Human Cervical Cancer Cells. Cellular & Molecular Biology Letters, 29, Article No. 20. [Google Scholar] [CrossRef] [PubMed]
[21] Nishi, H., Ono, M., Ohno, S., Yamanaka, Z., Sasaki, T., Ohyashiki, K., et al. (2023) Hypoxia-Induced Paclitaxel Resistance in Cervical Cancer Modulated by miR-100 Targeting of USP15. Gynecologic Oncology Reports, 45, Article 101138. [Google Scholar] [CrossRef] [PubMed]
[22] 王虎年, 柴克霞, 张莉. 铁死亡通路中ACSL4、LPCAT3蛋白表达在特发性炎性肌病中的研究[J]. 系统医学, 2023, 8(11): 190-193+198.
[23] Tang, D. and Kroemer, G. (2020) Ferroptosis. Current Biology, 30, R1292-R1297. [Google Scholar] [CrossRef] [PubMed]
[24] Yang, X., Yin, F., Liu, Q., Ma, Y., Zhang, H., Guo, P., et al. (2022) Ferroptosis-related Genes Identify Tumor Immune Microenvironment Characterization for the Prediction of Prognosis in Cervical Cancer. Annals of Translational Medicine, 10, 123-123. [Google Scholar] [CrossRef] [PubMed]
[25] Köberle, B. and Schoch, S. (2021) Platinum Complexes in Colorectal Cancer and Other Solid Tumors. Cancers, 13, Article No. 2073. [Google Scholar] [CrossRef] [PubMed]
[26] Lamberti, M.J., Nigro, A., Casolaro, V., Rumie Vittar, N.B. and Dal Col, J. (2021) Damage-Associated Molecular Patterns Modulation by MicroRNA: Relevance on Immunogenic Cell Death and Cancer Treatment Outcome. Cancers, 13, Article No. 2566. [Google Scholar] [CrossRef] [PubMed]
[27] Yu, S., Wang, Y., Jing, L., Claret, F.X., Li, Q., Tian, T., et al. (2017) Autophagy in the “Inflammation-Carcinogenesis” Pathway of Liver and HCC Immunotherapy. Cancer Letters, 411, 82-89. [Google Scholar] [CrossRef] [PubMed]
[28] 张鹏, 葛亮, 孔令国, 等. 咪达唑仑通过调节Nrf2/HO-1信号通路对宫颈癌细胞铁死亡的作用及机制研究[J]. 实用医学杂志, 2023, 39(14): 1740-1745.
[29] Qi, X.L., Fu, Y.P., Sheng, J., Zhang, M., Zhang, M., Wang, Y., et al. (2021) A Novel Ferroptosis-Related Gene Signature for Predicting Outcomes in Cervical Cancer. Bioengineered, 12, 1813-1825. [Google Scholar] [CrossRef] [PubMed]
[30] Yong, X., Zhang, Y., Tang, H., Hu, H., Song, R. and Wu, Q. (2024) CDKN2A Inhibited Ferroptosis through Activating JAK2/STAT3 Pathway to Modulate Cisplatin Resistance in Cervical Squamous Cell Carcinoma. Anti-Cancer Drugs, 35, 698-708. [Google Scholar] [CrossRef] [PubMed]
[31] Zhang, X.F., Sui, S.Y., Wang, L.L., Li, H., Zhang, L., Xu, S., et al. (2020) Inhibition of Tumor Propellant Glutathione Peroxidase 4 Induces Ferroptosis in Cancer Cells and Enhances Anticancer Effect of Cisplatin. Journal of Cellular Physiology, 235, 3425-3437. [Google Scholar] [CrossRef] [PubMed]
[32] Yun, C.W. and Lee, S.H. (2018) The Roles of Autophagy in Cancer. International Journal of Molecular Sciences, 19, Article 3466. [Google Scholar] [CrossRef] [PubMed]
[33] Yun, C.W., Jeon, J., Go, G., Lee, J.H. and Lee, S.H. (2020) The Dual Role of Autophagy in Cancer Development and a Therapeutic Strategy for Cancer by Targeting Autophagy. International Journal of Molecular Sciences, 22, Article 179. [Google Scholar] [CrossRef] [PubMed]
[34] Wang, Y., Shen, F., Zhou, J., Fang, Y., Qi, Y. and Chen, Y. (2022) Overexpression of ARHI Increases the Sensitivity of Cervical Cancer Cells to Paclitaxel through Inducing Apoptosis and Autophagy. Drug Development Research, 83, 142-149. [Google Scholar] [CrossRef] [PubMed]
[35] 高朋, 徐丹丹, 张斌, 等. 氯喹对人宫颈癌细胞系HeLa增殖、凋亡及自噬的影响[J]. 基础医学与临床, 2023, 43(10): 1512-1517.
[36] 杨铠菲, 朱静格, 张洋洋, 等. 索拉菲尼诱导的细胞凋亡和自噬对HeLa细胞耐药性的影响[J]. 基础医学与临床, 2024, 44(4): 467-473.
[37] Mubthasima, P.P., Singh, S.A. and Kannan, A. (2024) Sesamol-Mediated Targeting of EPHA2 Sensitises Cervical Cancer for Cisplatin Treatment by Regulating Mitochondrial Dynamics, Autophagy, and Mitophagy. Molecular Biology Reports, 51, Article No. 949. [Google Scholar] [CrossRef] [PubMed]
[38] Moore, G., Annett, S., McClements, L. and Robson, T. (2020) Top Notch Targeting Strategies in Cancer: A Detailed Overview of Recent Insights and Current Perspectives. Cells, 9, Article 1503. [Google Scholar] [CrossRef] [PubMed]
[39] Wang, M., Qiu, R., Yu, S.R., et al. (2019) Paclitaxel-Resistant Gastric Cancer MGC-803 Cells Promote Epithelial-to-Mesenchymal Transition and Chemoresistance in Paclitaxel-Sensitive Cells via Exosomal Delivery of miR-155-5p. International Journal of Oncology, 54, 326-338.
[40] Sun, T., Zhang, D., Wang, Z., Zhao, B., Li, Y., Sun, X., et al. (2021) Inhibition of the Notch Signaling Pathway Overcomes Resistance of Cervical Cancer Cells to Paclitaxel through Retardation of the Epithelial-Mesenchymal Transition Process. Environmental Toxicology, 36, 1758-1764. [Google Scholar] [CrossRef] [PubMed]
[41] 李平. KAT6B促进宫颈癌恶性生物学行为的作用及其分子机制研究[D]: [博士学位论文]. 苏州: 苏州大学, 2019.
[42] 陆菁菁. miR-487b靶向负调控KAT6B在宫颈癌进展中的作用机制研究[D]: [硕士学位论文]. 镇江: 江苏大学, 2020.
[43] Mou, J., Zheng, W., Wei, D., Li, D., Fan, R. and Tang, Q. (2023) CD200-CD200R Affects Cisplatin and Paclitaxel Sensitivity by Regulating Cathepsin K-Mediated P65 NF-κB Signaling in Cervical Cancer. Heliyon, 9, e19220. [Google Scholar] [CrossRef] [PubMed]
[44] Shen, N.N., Lin, J.H. and Liu, P.P. (2023) EBF1 Promotes the Sensitivity of Cervical Cancer Cells to Cisplatin via Activating FBN1 Transcription. Молекулярная биология, 57, 503-504. [Google Scholar] [CrossRef
[45] Yokosuka, T., Takamatsu, M., Kobayashi-Imanishi, W., Hashimoto-Tane, A., Azuma, M. and Saito, T. (2012) Programmed Cell Death 1 Forms Negative Costimulatory Microclusters That Directly Inhibit T Cell Receptor Signaling by Recruiting Phosphatase SHP2. Journal of Experimental Medicine, 209, 1201-1217. [Google Scholar] [CrossRef] [PubMed]
[46] 徐月, 田永巍, 李宁. PD-1/pd-l1抑制剂联合化疗对晚期宫颈癌的疗效及预后分析[J]. 实用癌症杂志, 2024, 39(7): 1167-1170.
[47] Chen, J., Jiang, C.C., Jin, L. and Zhang, X.D. (2016) Regulation of PD-L1: A Novel Role of Pro-Survival Signalling in Cancer. Annals of Oncology, 27, 409-416. [Google Scholar] [CrossRef] [PubMed]
[48] Zhang, L., Zhao, Y., Tu, Q., Xue, X., Zhu, X. and Zhao, K. (2021) The Roles of Programmed Cell Death Ligand-1/ Programmed Cell Death-1 (PD-L1/PD-1) in HPV-Induced Cervical Cancer and Potential for Their Use in Blockade Therapy. Current Medicinal Chemistry, 28, 893-909. [Google Scholar] [CrossRef] [PubMed]
[49] Zhu, Z., Nie, X., Deng, L., Ding, J., Chen, J., Zhu, J., et al. (2024) Regulation of Cervical Cancer via G15-Mediated Inhibition of G Protein-Coupled Estrogen Receptor. Anti-Cancer Drugs, 35, 817-829. [Google Scholar] [CrossRef] [PubMed]
[50] Cory, T.J., He, H., Winchester, L.C., Kumar, S. and Fletcher, C.V. (2016) Alterations in P-Glycoprotein Expression and Function between Macrophage Subsets. Pharmaceutical Research, 33, 2713-2721. [Google Scholar] [CrossRef] [PubMed]
[51] Roy, M. and Mukherjee, S. (2014) Reversal of Resistance towards Cisplatin by Curcumin in Cervical Cancer Cells. Asian Pacific Journal of Cancer Prevention, 15, 1403-1410. [Google Scholar] [CrossRef] [PubMed]
[52] 赵林, 刘四清, 汪强. 星形孢菌素通过PI3K/Akt信号途径影响人宫颈癌细胞增殖与侵袭能力的研究[J]. 临床和实验医学杂志, 2018, 17(1): 47-50.
[53] Liu, Z., Yang, Z. and Ablise, M. (2024) Design and Synthesis of Novel Imidazole-Chalcone Derivatives as Microtubule Protein Polymerization Inhibitors to Treat Cervical Cancer and Reverse Cisplatin Resistance. Bioorganic Chemistry, 147, Article 107310. [Google Scholar] [CrossRef] [PubMed]
[54] Tang, Q., Xu, A., Yang, Y., Zhang, Y. and Sun, J. (2023) FOXM1 Contributes to Chemotherapy Sensitivity in Cervical Cancer by Regulating TTK. Discovery Medicine, 35, 208-220. [Google Scholar] [CrossRef] [PubMed]
[55] Chen, Z., Xiao, Z., Tian, W., Li, Z. and Wu, T. (2023) Two Enhances the Cisplatin Sensitivity of Cervical Cancer Cells via Suppression of C-MET Expression. Iranian Journal of Public Health, 52, 1476-1486. [Google Scholar] [CrossRef] [PubMed]