|
[1]
|
Wu, W., Lin, J., Qiu, Y., Dong, W., Wan, J., Li, S., et al. (2023) The Role of Epigenetic Modification in Postoperative Cognitive Dysfunction. Ageing Research Reviews, 89, Article 101983. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhang, Y., Yin, Z., Zou, Z., Feng, S. and Xu, H. (2025) Nanopathways Modulating Postoperative Cognitive Dysfunction: Extracellular Vesicles. Frontiers in Cell and Developmental Biology, 13, Article ID: 1613378. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ren, S., Yuan, F., Yuan, S., Zang, C., Zhang, Y. and Lang, B. (2022) Early Cognitive Dysfunction in Elderly Patients after Total Knee Arthroplasty: An Analysis of Risk Factors and Cognitive Functional Levels. BioMed Research International, 2022, Article ID: 5372603. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Campbell, E. and Figueiro, M.G. (2024) Postoperative Cognitive Dysfunction: Spotlight on Light, Circadian Rhythms, and Sleep. Frontiers in Neuroscience, 18, Article ID: 1390216. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Nešković, N., Budrovac, D., Kristek, G., Kovačić, B. and Škiljić, S. (2025) Postoperative Cognitive Dysfunction: Review of Pathophysiology, Diagnostics and Preventive Strategies. Journal of Perioperative Practice, 35, 47-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhao, W., Zhang, H. and Li, J. (2023) Effect of Dexmedetomidine on Postoperative Cognitive Dysfunction in Elderly Patients Undergoing Orthopaedic Surgery: Study Protocol for a Randomized Controlled Trial. Trials, 24, Article No. 62. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Li, Z., Yao, S., Cheng, M. and Chen, J. (2021) Evaluation of the Effect of Dexmedetomidine on Postoperative Cognitive Dysfunction through Aβ and Cytokines Analysis. Iranian Journal of Pharmaceutical Research, 20, 515-522.
|
|
[8]
|
Wang, D., He, X., Li, Z., Tao, H. and Bi, C. (2024) The Role of Dexmedetomidine Administered via Intravenous Infusion as Adjunctive Therapy to Mitigate Postoperative Delirium and Postoperative Cognitive Dysfunction in Elderly Patients Undergoing Regional Anesthesia: A Meta-Analysis of Randomized Controlled Trials. BMC Anesthesiology, 24, Article No. 73. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Jiménez-Pastor, J.M., Morales-Cané, I., Rodríguez-Cortés, F.J., López-Coleto, L., Valverde-León, R., Arévalo-Buitrago, P., et al. (2025) Interaction between Clock Genes, Melatonin and Cardiovascular Outcomes from ICU Patients. Intensive Care Medicine Experimental, 13, Article No. 19. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Cui, Y., Zheng, Z., Zhou, Q., Han, X., Liu, S., Xia, T., et al. (2025) The Role of Clock Control of DRP1 Activity Involved in Postoperative Cognitive Dysfunction. Experimental Neurology, 385, Article 115140. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wei, Y., Zhang, C., Wang, D., Wang, C., Sun, L. and Chen, P. (2022) Progress in Research on the Effect of Melatonin on Postoperative Cognitive Dysfunction in Older Patients. Frontiers in Aging Neuroscience, 14, Article ID: 782358. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhu, H., Zhang, L., Xiao, F., Wu, L., Guo, Y., Zhang, Z., Xiao, Y., Sun, G., Yang, Q. and Guo, H. (2023) Melatonin-Driven NLRP3 Inflammation Inhibition Via Regulation of NF-κB Nucleocytoplasmic Transport: Implications for Postoperative Cognitive Dysfunction. Inflammation, 46, 1471-1492. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Oberman, K., van Leeuwen, B.L., Nabben, M., Villafranca, J.E. and Schoemaker, R.G. (2024) J147 Affects Cognition and Anxiety after Surgery in Zucker Rats. Physiology & Behavior, 273, Article 114413. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Birnie, M.T., Claydon, M.D.B., Flynn, B.P., Yoshimura, M., Kershaw, Y.M., Demski-Allen, R.C.R., Barker, G.R.I., Warburton, E.C., Bortolotto, Z.A., Lightman, S.L. and Conway-Campbell, B.L. (2022) Circadian Regulation of Hippocampal Function Is Disrupted with Chronic Corticosteroid Treatment. bioRxiv.
|
|
[15]
|
Sun, Z., Yang, N., Jia, X., Song, Y., Han, D., Wang, X., et al. (2022) Nobiletin Attenuates Anesthesia/Surgery-Induced Neurocognitive Decline by Preserving the Expression of Clock Genes in Mice. Frontiers in Neuroscience, 16, Article ID: 938874. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Song, C., Suo, Z., Wang, Z., Cao, J., Dong, Y. and Chen, Y. (2024) Melatonin Modulates Neuroinflammatory Response and Microglial Activation in Mice Exposed to Dim Blue Light at Night. Frontiers in Pharmacology, 15, Article ID: 1416350. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Tavares, C., Memória, C.M., da Costa, L.G.V., Quintão, V.C., Antunes, A.A., Teodoro, D., et al. (2025) Effect of Melatonin on Postoperative Cognitive Function in Elderly Patients Submitted to Transurethral Resection of the Prostate under Spinal Anesthesia. Clinics, 80, Article 100562. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, Y., Long, S., Yu, J., Feng, J., Meng, S., Li, Y., et al. (2025) Preoperative Sleep Deprivation Exacerbates Anesthesia/Surgery-Induced Abnormal Gabaergic Neurotransmission and Neuronal Damage in the Hippocampus in Aged Mice. Molecular Neurobiology, 62, 9385-9398. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Markovic, A., Kaess, M. and Tarokh, L. (2022) Heritability of REM Sleep Neurophysiology in Adolescence. Translational Psychiatry, 12, Article No. 399. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mendoza-Alvarez, M., Balthasar, Y., Verbraecken, J., Claes, L., van Someren, E., van Marle, H.J.F., et al. (2025) Systematic Review: REM Sleep, Dysphoric Dreams and Nightmares as Transdiagnostic Features of Psychiatric Disorders with Emotion Dysregulation-Clinical Implications. Sleep Medicine, 127, 1-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Glosemeyer, R.W., Diekelmann, S., Cassel, W., Kesper, K., Koehler, U., Westermann, S., et al. (2020) Selective Suppression of Rapid Eye Movement Sleep Increases Next-Day Negative Affect and Amygdala Responses to Social Exclusion. Scientific Reports, 10, Article No. 17325. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Puech, C., Badran, M., Runion, A.R., Barrow, M.B., Cataldo, K. and Gozal, D. (2023) Cognitive Impairments, Neuroinflammation and Blood-Brain Barrier Permeability in Mice Exposed to Chronic Sleep Fragmentation during the Daylight Period. International Journal of Molecular Sciences, 24, Article 9880. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Rios, R.L., Kafashan, M., Hyche, O., Lenard, E., Lucey, B.P., Lenze, E.J., et al. (2023) Targeting Slow Wave Sleep Deficiency in Late-Life Depression: A Case Series with Propofol. The American Journal of Geriatric Psychiatry, 31, 643-652. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Keihani, A., Mayeli, A. and Ferrarelli, F. (2023) Circadian Rhythm Changes in Healthy Aging and Mild Cognitive Impairment. Advanced Biology, 7, e2200237. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Cordone, S., Scarpelli, S., Alfonsi, V., De Gennaro, L. and Gorgoni, M. (2021) Sleep-Based Interventions in Alzheimer’s Disease: Promising Approaches from Prevention to Treatment along the Disease Trajectory. Pharmaceuticals, 14, Article 383. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Hou, T., Yang, C., Lai, T., Wu, Y. and Yang, C. (2024) Light Therapy in Chronic Migraine. Current Pain and Headache Reports, 28, 621-626. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Knudsen-Clark, A.M., Mwangi, D., Cazarin, J., Morris, K., Baker, C., Hablitz, L.M., et al. (2024) Circadian Rhythms of Macrophages Are Altered by the Acidic Tumor Microenvironment. EMBO Reports, 25, 5080-5112. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Roy, J., Wong, K.Y., Aquili, L., Uddin, M.S., Heng, B.C., Tipoe, G.L., et al. (2022) Role of Melatonin in Alzheimer’s Disease: From Preclinical Studies to Novel Melatonin-Based Therapies. Frontiers in Neuroendocrinology, 65, Article 100986. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bohlman, C., McLaren, C., Ezzati, A., Vial, P., Ibrahim, D. and Anton, S.D. (2024) The Effects of Time-Restricted Eating on Sleep in Adults: A Systematic Review of Randomized Controlled Trials. Frontiers in Nutrition, 11, Article ID: 1419811. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ezzati, A., McLaren, C., Bohlman, C., Tamargo, J.A., Lin, Y. and Anton, S.D. (2024) Does Time‐Restricted Eating Add Benefits to Calorie Restriction? a Systematic Review. Obesity, 32, 640-654. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Kim, J.Y., Kim, W. and Lee, K. (2023) The Role of Micrornas in the Molecular Link between Circadian Rhythm and Autism Spectrum Disorder. Animal Cells and Systems, 27, 38-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
张野, 宋家乐, 路建. 围手术期睡眠障碍在术后认知功能障碍中作用的研究进展[J]. 中国现代医生, 2023, 61(27): 137-140.
|
|
[33]
|
王烨. 整形外科手术患者围术期睡眠障碍评估与术后睡眠障碍治疗[D]: [博士学位论文]. 北京: 北京协和医学院, 2022.
|
|
[34]
|
Pettit, R.J., Gregory, B., Stahl, S., Buller, L.T. and Deans, C. (2024) Total Joint Arthroplasty and Sleep: The State of the Evidence. Arthroplasty Today, 27, Article 101383. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Ong, J.C. and Gamaldo, C. (2020) Optimizing Behavioral Sleep Strategies. Continuum, 26, 1075-1081. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Vital-Lopez, F.G., Doty, T.J. and Reifman, J. (2021) Optimal Sleep and Work Schedules to Maximize Alertness. Sleep, 44, zsab144. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Shin, M., Crouse, J.J., Byrne, E.M., Mitchell, B.L., Lind, P., Parker, R., et al. (2024) Changes in Sleep Patterns in People with a History of Depression during the COVID-19 Pandemic: A Natural Experiment. BMJ Mental Health, 27, e301067. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Li, Y., Lu, L. and Androulakis, I.P. (2024) The Physiological and Pharmacological Significance of the Circadian Timing of the HPA Axis: A Mathematical Modeling Approach. Journal of Pharmaceutical Sciences, 113, 33-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Park, M., Cao, Y. and Hong, C.I. (2024) Methods for Assessing Circadian Rhythms and Cell Cycle in Intestinal Enteroids. In: Solanas, G. and Welz, P.S., Eds., Methods in Molecular Biology, Springer, 105-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Verde, L., Galasso, M., Savastano, S., Colao, A., Barrea, L. and Muscogiuri, G. (2025) “Time” for Obesity-Related Cancers: The Role of Chrononutrition in Cancer Prevention and Treatment. Seminars in Cancer Biology, 114, 15-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Li, D., Zhou, T., Gao, J., Wu, G. and Yang, G. (2024) Circadian Rhythms and Breast Cancer: From Molecular Level to Therapeutic Advancements. Journal of Cancer Research and Clinical Oncology, 150, Article No. 419. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Mercadante, S. and Bellastella, A. (2024) Chrono-Endocrinology in Clinical Practice: A Journey from Pathophysiological to Therapeutic Aspects. Life, 14, Article 546. [Google Scholar] [CrossRef] [PubMed]
|