通过孟德尔随机化研究评估代谢生物标志物与川崎病之间的因果关系
Assessing the Causal Relationship between Metabolic Biomarkers and Kawasaki Disease by Mendelian Randomization Studies
摘要: 目的:本研究旨在通过双样本孟德尔随机化(MR)分析,探讨血液代谢物与川崎病之间的因果关系,为识别川崎病的潜在生物标志物提供可能的科学依据。方法:采用双样本孟德尔随机化分析方法,评估血液代谢物与川崎病的关联性。为估算因果关系,我们运用了逆方差加权(IVW)方法。此外,进行敏感性分析时,采用了MR-Egger、加权中位数和MR-PRESSO等方法。同时,利用MR-Egger回归和Cochran’s Q统计量评估潜在的异质性和多效性。结果:研究揭示三种代谢物与川崎病之间可能存在关联。其中,X-17654 (IVW:OR = 2.078, 95%CI: 1.157~3.732, P < 0.05)与川崎病风险呈正相关;而1-(1-烯基-棕榈酰)-2-棕榈油酰-GPC (IVW:OR = 0.476, 95%CI: 0.260~0.874, P < 0.05)和琥珀酸与脯氨酸比值(IVW:OR = 0.184, 95%CI: 0.064~0.530, P < 0.05)两种代谢物与川崎病呈负相关。敏感性分析未发现显著的异质性和多效性。结论:本MR研究凸显了代谢物在川崎病发病中的因果作用,并鉴定出具有潜在风险或保护效应的代谢物。这些发现为川崎病的发病机制研究、早期预防及治疗策略的制定提供了可能。文章也存在一些局限和不足之处,由于当前研究所依赖的数据库资源和样本量有限,所得结果可能存在一定的偏倚性。
Abstract: Objective: This study aimed to investigate the causal relationship between blood metabolites and Kawasaki disease through a two-sample Mendelian randomization (MR) analysis, thereby providing a potential scientific basis for identifying potential biomarkers of Kawasaki disease. Methods: A two-sample Mendelian randomization analysis was employed to assess the association between blood metabolites and Kawasaki disease. The inverse-variance weighted (IVW) method was used to estimate causal effects. Sensitivity analyses were conducted using MR-Egger, weighted median, and MR-PRESSO methods. Additionally, MR-Egger regression and Cochran’s Q statistic were applied to evaluate potential heterogeneity and pleiotropy. Results: The study reveals that three metabolites may be associated with Kawasaki disease. Among them, metabolite X-17654 showed a positive correlation with Kawasaki disease risk (IVW:OR = 2.078, 95% CI: 1.157~3.732, P < 0.05). In contrast, two metabolites 1-(1-enyl-palmitoyl)-2-palmitoleoyl-GPC (IVW:OR = 0.476, 95%CI: 0.260~0.874, P < 0.05) and the succinate-to-proline ratio (IVW:OR = 0.184, 95%CI: 0.064~0.530, P < 0.05) were negatively correlated with Kawasaki disease. Sensitivity analyses revealed no significant heterogeneity or pleiotropy. Conclusion: This MR study highlights the causal role of metabolites in the pathogenesis of Kawasaki disease and identifies specific metabolites with potential risk or protective effects. These findings may provide insights into the pathogenesis of Kawasaki disease, as well as its early prevention and treatment strategies. However, the study also has certain limitations and shortcomings, as the current research is constrained by the limited database resources and sample size, which may introduce potential bias in the results.
文章引用:陈梁玥, 魏佳, 陈芳, 申汉俊. 通过孟德尔随机化研究评估代谢生物标志物与川崎病之间的因果关系[J]. 临床医学进展, 2025, 15(12): 470-478. https://doi.org/10.12677/acm.2025.15123434

1. 引言

川崎病(Kawasaki Disease, KD)最初被定义为皮肤黏膜淋巴结综合征,是一种以发热性血管炎为主要表现的急性自身免疫性疾病[1] [2]。川崎病发病机制的主流学说从遗传易感性、感染和免疫系统3个角度提出。KD常常影响冠状血管系统,导致冠状动脉管壁增厚、管腔扩张等明显改变,严重时会形成冠状动脉瘤,称为冠状动脉病变(CAL) [3]。既往研究提出了川崎病患者可能存在多项代谢物指标异常的假设,以及这些异常是否与川崎病患者的预后相关[4]-[7]。血液代谢物反映了身体的生理状态,代谢物不仅是中间体,而且还是重要的介质、信号和调节分子、神经递质、渗透调节剂、免疫反应的调节剂以及表观遗传变化的信号传导物。此外,单个代谢物在寻找假定疾病生物标志物的鉴别分析中具有很高的潜力[8] [9]

孟德尔随机化研究方法是流行病学研究中一种强有力的工具,它利用基因变异来评估危险因素与特定疾病之间的因果关系[10]。在孟德尔随机化研究中,基因变异遵循随机等位基因分配给后代的原则,类似于随机对照实验。这种方法有效地减少了观察性研究中经常遇到的混杂因素和逆转因果关系[11]。尽管孟德尔随机化在探索危险因素方面被广泛应用,但目前尚无研究采用该方法调查代谢物与KD之间的因果关系。因此,本研究旨在采用双向双样本孟德尔随机化研究,揭示代谢物与KD之间的潜在因果关系,以期为KD的防治提供策略。

2. 材料与方法

2.1. 数据来源

本研究中涉及的与代谢物相关的单核苷酸多态性(SNPs)及其遗传效应,源自近期对加拿大衰老纵向研究(Canadian Longitudinal Study on Aging, CLSA)队列进行的一项全面的全基因组关联研究(GWAS),该研究涵盖了8299名老年参与者(平均年龄为62.4岁,标准差为9.9岁,均具有欧洲血统),包括8299名欧洲个体的1091种血浆代谢物和309种代谢物比率作为代谢物工具变量[12]。血浆代谢物是指血浆样品中测定的代谢物,其中大部分是酶催化反应产生的底物或产物。这些代谢物反映了全身的代谢状态,用于识别各种疾病的潜在生物标志物。代谢物比率是使用人类代谢组数据库(Human Metabolome Database, HMDB)中记录的代谢物-蛋白质关联共享酶或转运蛋白的代谢物对应的代谢物水平的比率,这是具有更高生物相容性的代谢物的比率。这使其成为迄今为止对血浆代谢物全基因组数据最全面的研究在测试的1091种血浆代谢物中,有850种已知属于八个超途径,包括脂质、氨基酸、外源物质、核苷酸、辅因子、维生素、碳水化合物、肽和能量。剩下的241个被归类为未知或部分具有特征的分子。

川崎病数据来源于芬兰数据库R10 (https://www.finngen.fi/en/access_results)发布的汇总数据,数据均来自欧洲个体,研究对象包括64例病例和399,355名对照组。文章中使用的汇总数据均源自公开发表的数据库,可免费下载,并已获得相应的伦理批准。

2.2. 工具变量的选择

MR 是一种仅使用独立研究的汇总统计数据来确定暴露与结果之间因果关系的方法。MR使用遗传变异作为工具变量(IV),根据三个假设计算因果关联。所使用的IV应与暴露密切相关,仅通过暴露影响结果,并且与任何混杂因素无关。首先使用P < 1.0 × 105作为全基因组显著阈值提取遗传变异,以确保包含更显著的变异。将连锁不平衡阈值设定为r2 = 0.001,kb = 10,000,以解释连锁不平衡(LD)效应。为排除弱工具变量,最后将F值 > 10的工具变量纳入MR分析。

2.3. MR

所有数据分析均使用R软件,本研究使用逆方差加权法(inverse-variance, IVW)方法评估双样本MR分析中的因果效应。IVW是MR研究中常用的主要方法,是最有效的MR估计方法,但也容易产生多效性偏差,所以,本研究还使用MR-Egger分析、加权中位数、简单模型和加权模型等作为MR分析的补充方法。

2.4. 敏感性分析

本研究采用多重敏感性分析策略,以最大程度降低违反MR假设和出现假阳性结果的风险。为了确保分析的稳健性,本研究执行了一系列敏感性分析,包括异质性检验、水平多效性评估以及留一分析。Cochran’s Q检验被用于评估工具变量的异质性,而MR-Egger回归和MR多效性残差和与异常值(MR-PRESSO)检验则用于检测多效性。若MR-Egger回归截距与零存在显著偏差(P < 0.05),则提示存在多效性问题。此外,通过逐一排除每个单核苷酸多态性(Single Nucleotide Polymorphism, SNP),并运用留一法重新评估结果,本研究检验了数据的稳定性,旨在最小化结果的变异。

3. 结果

3.1. 工具变量的筛选

通过F检验,SNPs的最小F值为21.67,符合F值 > 10的要求,提示研究受弱工具变量影响的可能较小。

3.2. MR分析

采用五种研究方法(IVW,MR-Egger回归、加权中位数法、简单模型法及加权模型法)确定血液代谢物与川崎病之间的因果关系。共有51种代谢物与川崎病显著相关(满足其一P < 0.05),该结果用circos图可视化(见图1)。

Figure 1. Circle diagram preliminary screening of metabolites that meet one of the five research methods of KD

1. 圈图,初步筛选满足与川崎病5种研究方法之一的代谢物

本研究采用最严格的IVW来评估与川崎病更密切相关的危险因素,并根据错误发现率(FDR) (P < 0.1)进行校正后筛选得到了3种血液代谢物,见图2,分别为1-(1-烯基-棕榈酰)-2-棕榈油酰-GPC(P-1-(1-enyl-palmitoyl)-2-palmitoleoyl-GPC (P-16:0/16:1) levels,id为GCST90200070),X-17654 (id为GCST90200547),琥珀酸与脯氨酸比值(Succinate to proline ratio,id为GCST90200936)。其中与川崎病呈负相关的有1-(1-烯基–棕榈酰)-2-棕榈油酰-GPC (IVW:OR = 0.476, 95%CI: 0.260~0.874, P < 0.05)和琥珀酸与脯氨酸比值(IVW:OR = 0.184, 95%CI: 0.064~0.530, P < 0.05),而X-17654水平(IVW:OR = 2.078, 95%CI: 1.157~3.732, P < 0.05)和川崎病具有正向因果关系。三种代谢物对川崎病的孟德尔随机化分析的散点图中,结果显示MR-Egger、WM法、IVW法、Simple Mode法、Weighted Mode法分析结果方法一致,表明所纳入研究的SNPs具有稳定性(见图3)。

Figure 2. Scatter plot of Mendelian randomization analysis for the 3 metabolites and KD

2. 3种代谢物对川崎病风险因果影响的森林图

Figure 3. Scatterplot of causal association between 3 metabolites and KD

3. 3种代谢物与KD之间因果关系的散点图

3.3. 敏感性分析

Cochran Q检验结果(P > 0.05)和MR-Egger回归结果(P > 0.05)表明SNP不存在异质性;Egger-intercept结果(P > 0.05)表明不存在水平多效性;MR-PRESSO综合检验结果(P > 0.05)表明纳入的工具变量没有明显的离群值,以上几种方法的相互印证,进一步增强了本MR分析结果的可靠性(见图4)。留一法检验提示单个SNPs不影响整体的结果(见图5)。漏斗图显示纳入的SNPs基本对称分布,提示MR分析无多效性和异质性(见图6)。

Figure 4. Sensitivity analysis of MR study

4. MR研究敏感性分析

Figure 5. Forest map of the results of 3 metabolites leave-one-out test

5. 三种代谢物留一法检验分析结果森林图

Figure 6. 3 metabolites funnel plot for Mendelian randomization analysis

6. 三种代谢物孟德尔随机化分析漏斗图

4. 讨论

川崎病(Kawasaki Disease, KD),亦称粘膜皮肤淋巴结综合征,是一种以免疫细胞浸润导致的慢性炎症和血管组织持续重塑为特征的发热性血管炎[13] [14],是一种多系统疾病,在KD急性期,可发生冠状动脉病变(CAL),并诱发动脉壁损伤和血流动力学紊乱。目前,关于川崎病的病因,普遍认为是遗传易感性与环境因素或感染诱因相互作用后引发的异常免疫反应,但其确切的病因及相关的炎症机制尚未完全明了[15] [16]。多项临床前瞻性研究提示,合并CAL的KD患儿存在脂质分布异常、氨基酸代谢代谢紊乱、内皮功能障碍和类似动脉粥样硬化的低度炎症,这些因素可能促使个体在成年后发展为动脉粥样硬化[17]-[19]。因此,本研究推测代谢紊乱在合并CAL的KD发病机制中起扮演着关键角色。为了揭示血液代谢物对KD进展的潜在影响,本研究中运用MR分析识别出了特定的代谢物,包括1-(1-烯基-棕榈酰)-2-棕榈油酰-GPC (P-16:0/16:1)、琥珀酸与脯氨酸的比值以及未命名的X-17654。其中,1-(1-烯基-棕榈酰)-2-棕榈油酰-GPC (P-16:0/16:1)水平及琥珀酸与脯氨酸的比值与KD存在负向因果关系,被视为KD的保护因素,而X-17654由于未命名,故未纳入讨论范围。

1-(1-烯基-棕榈酰)-2-棕榈油酰-GPC (P-16:0/16:1)属于缩醛磷脂类化合物。缩醛磷脂是醚类脂质中含量最为丰富的类别,其特征是在sn-1位上通过乙烯基醚键连接。这类化学键的存在赋予了缩醛磷脂强大的抗氧化特性,研究显示,缩醛磷脂在促进线粒体分裂与融合、胆固醇转运、免疫细胞信号传导以及维持膜动力学方面发挥着重要作用[20]-[22],此外,有证据表明缩醛磷脂的缺乏与多种氧化应激相关的慢性炎症性疾病的发生有关[23]-[25]。而川崎病作为一种以血小板计数和血小板活化增多为特征的系统性血管炎,缩醛磷脂通过与血小板活化因子(PAF)或PAF样分子(PAF激动剂)竞争性结合而有效抑制PAF诱导的血小板聚集,从而作为血小板活化因子拮抗剂发挥抗炎作用[23]。由于炎症反应、氧化应激、脂质代谢紊乱、凝血纤溶系统异常以及内皮功能受损等原因,KD患者并发冠状动脉病变(CAL)的风险显著增加[26] [27]。鉴于缩醛磷脂在人类心肌中作为乙醇胺和胆碱甘油磷脂的主要分子亚类[28],以及其抗氧化特性、高比例的多不饱和脂肪酸和烷基/烯基连接脂肪酸的存在,缩醛磷脂被认为具有预防动脉粥样硬化的能力[29]

在川崎病(KD)患者血清中,参与三羧酸循环(TCA循环)的关键代谢物琥珀酸显著升高。由于琥珀酸可以增强树突状细胞的抗原呈递功能,并促进促炎细胞因子如肿瘤坏死因子α (TNF-α)和干扰素γ (IFN-γ)的分泌[30],因此琥珀酸还可以诱发适应性反应和炎症聚集,从而引起心肌缺血再灌注损伤[31],另一方面,伴冠状动脉病变(CAL)的川崎病患者血清TNF-α和IFN-γ水平显著高于未合并CAL的患者[32]。因此,KD血清中琥珀酸的增加可能表明该分子可以通过促进促炎细胞因子的释放来促进CAL的发生并加剧炎症反应[33]。与其他氨基酸不同,脯氨酸的α-氨基位于吡咯烷环内,使其成为唯一的蛋白原性二级(亚氨基)氨基酸,并拥有独立的代谢途径[34]。脯氨酸代谢途径和脯氨酸循环不仅能够产生用于蛋白质合成的脯氨酸,还能够通过副代谢机制参与氧化还原调节[35]-[37]。同时,有研究指出非受体型富含脯氨酸的蛋白酪氨酸激酶2 (Pyk2)是川崎病(KD)中一个很有前途的治疗分子靶点[38]

综上所述,在可获取的血浆代谢物范围内,通过MR分析,本研究提供了1-(1-烯基-棕榈酰)-2-棕榈油酰-GPC (P-16:0/16:1)、琥珀酸与脯氨酸比值与KD可能存在潜在的因果关系,且均为保护因素。孟德尔随机化为揭示血液代谢物与KD之间因果关系方面提供了可能,并为KD的发病机制研究、早期预防及治疗策略的制定提供了可能的参考。

文章也存在一些局限和不足之处。由于当前研究所依赖的数据库资源和样本量有限,包括可获得数据的年龄并非均为儿童标本且所使用的样本数据来源于欧洲,所得结果可能存在一定的偏倚性。因此,未来的研究需要进一步扩大数据源,并在年龄匹配的儿科队列中深入探究这些代谢物在KD中的具体作用机制,并通过临床试验来验证其临床应用的实际价值。

NOTES

*通讯作者。

参考文献

[1] Nielsen, T.M., Andersen, N.H., Torp-Pedersen, C., Søgaard, P. and Kragholm, K.H. (2020) Kawasaki Disease, Autoimmune Disorders, and Cancer: A Register-Based Study. European Journal of Pediatrics, 180, 717-723. [Google Scholar] [CrossRef] [PubMed]
[2] Kainth, R. and Shah, P. (2019) Kawasaki Disease: Origins and Evolution. Archives of Disease in Childhood, 106, 413-414. [Google Scholar] [CrossRef] [PubMed]
[3] Tsuda, E. and Hashimoto, S. (2021) Time Course of Coronary Artery Aneurysms in Kawasaki Disease. The Journal of Pediatrics, 230, 133-139.e2. [Google Scholar] [CrossRef] [PubMed]
[4] Luo, L., Feng, S., Wu, Y., Su, Y., Jing, F. and Yi, Q. (2019) Serum Levels of Syndecan-1 in Patients with Kawasaki Disease. Pediatric Infectious Disease Journal, 38, 89-94. [Google Scholar] [CrossRef] [PubMed]
[5] Ohnishi, Y., Yasudo, H., Suzuki, Y., Furuta, T., Matsuguma, C., Azuma, Y., et al. (2019) Circulating Endothelial Glycocalyx Components as a Predictive Marker of Coronary Artery Lesions in Kawasaki Disease. International Journal of Cardiology, 292, 236-240. [Google Scholar] [CrossRef] [PubMed]
[6] 王静, 史恪勤, 逯雪敏. 川崎病患儿血清IL-41、Chemerin、TIMP3水平的变化及临床意义[J]. 中国现代医药杂志. 2025, 27(2): 60-64.
[7] 何方园, 何学华, 袁勇华, 朱柳蓉, 吴意, 夏晓辉. 川崎病急性期血脂与年龄、冠状动脉病变及严重程度的关系[J]. 临床儿科杂志, 2023, 41(6): 455-458.
[8] Baranovicova, E., Kalenska, D., Kaplan, P., Kovalska, M., Tatarkova, Z. and Lehotsky, J. (2023) Blood and Brain Metabolites after Cerebral Ischemia. International Journal of Molecular Sciences, 24, Article 17302. [Google Scholar] [CrossRef] [PubMed]
[9] Du, Y., Chen, L., Li, X., Li, X., Xu, X., Tai, S., et al. (2020) Metabolomic Identification of Exosome-Derived Biomarkers for Schizophrenia: A Large Multicenter Study. Schizophrenia Bulletin, 47, 615-623. [Google Scholar] [CrossRef] [PubMed]
[10] Burgess, S. and Thompson, S.G. (2015) Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects. American Journal of Epidemiology, 181, 251-260. [Google Scholar] [CrossRef] [PubMed]
[11] Walker, V.M., Zheng, J., Gaunt, T.R. and Smith, G.D. (2022) Phenotypic Causal Inference Using Genome-Wide Association Study Data: Mendelian Randomization and Beyond. Annual Review of Biomedical Data Science, 5, 1-17. [Google Scholar] [CrossRef] [PubMed]
[12] Chen, Y., Lu, T., Pettersson-Kymmer, U., Stewart, I.D., Butler-Laporte, G., Nakanishi, T., et al. (2023) Genomic Atlas of the Plasma Metabolome Prioritizes Metabolites Implicated in Human Diseases. Nature Genetics, 55, 44-53. [Google Scholar] [CrossRef] [PubMed]
[13] Nakamura, Y. (2018) Kawasaki Disease: Epidemiology and the Lessons from It. International Journal of Rheumatic Diseases, 21, 16-19. [Google Scholar] [CrossRef] [PubMed]
[14] Nakashima, Y., Sakai, Y., Mizuno, Y., Furuno, K., Hirono, K., Takatsuki, S., et al. (2021) Lipidomics Links Oxidized Phosphatidylcholines and Coronary Arteritis in Kawasaki Disease. Cardiovascular Research, 117, 96-108. [Google Scholar] [CrossRef] [PubMed]
[15] Kawasaki, T. and Naoe, S. (2014) History of Kawasaki Disease. Clinical and Experimental Nephrology, 18, 301-304. [Google Scholar] [CrossRef] [PubMed]
[16] Agarwal, S. and Agrawal, D.K. (2017) Kawasaki Disease: Etiopathogenesis and Novel Treatment Strategies. Expert Review of Clinical Immunology, 13, 247-258. [Google Scholar] [CrossRef] [PubMed]
[17] Fan, X., Li, K., Guo, X., Liao, S., Zhang, Q., Xu, Y., et al. (2023) Metabolic Profiling Reveals Altered Tryptophan Metabolism in Patients with Kawasaki Disease. Frontiers in Molecular Biosciences, 10, Article ID: 1180537. [Google Scholar] [CrossRef] [PubMed]
[18] Chen, X., Zhao, Z., Li, L., Chen, X., Xu, H., Lou, J., et al. (2015) Hypercoagulation and Elevation of Blood Triglycerides Are Characteristics of Kawasaki Disease. Lipids in Health and Disease, 14, Article No. 166. [Google Scholar] [CrossRef] [PubMed]
[19] Kim, K., Kim, H.Y., Chun, J., Cha, B.H., Namgoong, M.K., Kwon, W., et al. (2010) Relationship between Gallbladder Distension and Lipid Profiles in Kawasaki Disease. Korean Circulation Journal, 40, 137-140. [Google Scholar] [CrossRef] [PubMed]
[20] Zoeller, R.A., Lake, A.C., Nagan, N., Gaposchkin, D.P., Legner, M.A. and Lieberthal, W. (1999) Plasmalogens as Endogenous Antioxidants: Somatic Cell Mutants Reveal the Importance of the Vinyl Ether. Biochemical Journal, 338, 769-776. [Google Scholar] [CrossRef] [PubMed]
[21] Mandel, H., Sharf, R., Berant, M., Wanders, R.J.A., Vreken, P. and Aviram, M. (1998) Plasmalogen Phospholipids Are Involved in HDL-Mediated Cholesterol Efflux: Insights from Investigations with Plasmalogen-Deficient Cells. Biochemical and Biophysical Research Communications, 250, 369-373. [Google Scholar] [CrossRef] [PubMed]
[22] Park, H., He, A., Tan, M., Johnson, J.M., Dean, J.M., Pietka, T.A., et al. (2019) Peroxisome-Derived Lipids Regulate Adipose Thermogenesis by Mediating Cold-Induced Mitochondrial Fission. Journal of Clinical Investigation, 129, 694-711. [Google Scholar] [CrossRef] [PubMed]
[23] Rong, P., Wang, J., Angelova, A., Almsherqi, Z.A. and Deng, Y. (2022) Plasmalogenic Lipid Analogs as Platelet-Activating Factor Antagonists: A Potential Novel Class of Anti-Inflammatory Compounds. Frontiers in Cell and Developmental Biology, 10, Article ID: 859421. [Google Scholar] [CrossRef] [PubMed]
[24] Sejimo, S., Hossain, M.S. and Akashi, K. (2018) Scallop-Derived Plasmalogens Attenuate the Activation of PKCδ Associated with the Brain Inflammation. Biochemical and Biophysical Research Communications, 503, 837-842. [Google Scholar] [CrossRef] [PubMed]
[25] Ali, F., Hossain, M.S., Sejimo, S. and Akashi, K. (2019) Plasmalogens Inhibit Endocytosis of Toll-Like Receptor 4 to Attenuate the Inflammatory Signal in Microglial Cells. Molecular Neurobiology, 56, 3404-3419. [Google Scholar] [CrossRef] [PubMed]
[26] Liu, X., Wang, L., Shao, S., Zhang, N., Wu, M., Liu, L., et al. (2022) Sterile Pyuria in Kawasaki Disease: A Large Prospective Cohort Study. Frontiers in Cardiovascular Medicine, 9, Article ID: 856144. [Google Scholar] [CrossRef] [PubMed]
[27] Dai, L., Zhang, L., He, J., Huang, R., Tang, W., Guo, H., et al. (2024) Diagnostic Value of Syndecan-1 for Coronary Artery Lesions and Correlation Analysis of Laboratory Indicators in Kawasaki Disease Patients. Italian Journal of Pediatrics, 50, Article No. 209. [Google Scholar] [CrossRef] [PubMed]
[28] Ford, D.A. (2010) Lipid Oxidation by Hypochlorous Acid: Chlorinated Lipids in Atherosclerosis and Myocardial Ischemia. Clinical Lipidology, 5, 835-852. [Google Scholar] [CrossRef] [PubMed]
[29] Chen, H., Wang, Z., Qin, M., Zhang, B., Lin, L., Ma, Q., et al. (2021) Comprehensive Metabolomics Identified the Prominent Role of Glycerophospholipid Metabolism in Coronary Artery Disease Progression. Frontiers in Molecular Biosciences, 8, Article ID: 632950. [Google Scholar] [CrossRef] [PubMed]
[30] Rubic, T., Lametschwandtner, G., Jost, S., Hinteregger, S., Kund, J., Carballido-Perrig, N., et al. (2008) Triggering the Succinate Receptor GPR91 on Dendritic Cells Enhances Immunity. Nature Immunology, 9, 1261-1269. [Google Scholar] [CrossRef] [PubMed]
[31] Kohlhauer, M., Pell, V.R., Burger, N., Spiroski, A.M., Gruszczyk, A., Mulvey, J.F., et al. (2019) Protection against Cardiac Ischemia-Reperfusion Injury by Hypothermia and by Inhibition of Succinate Accumulation and Oxidation Is Additive. Basic Research in Cardiology, 114, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
[32] Matsubara, T., Furukawa, S. and Yabuta, K. (1990) Serum Levels of Tumor Necrosis Factor, Interleukin 2 Receptor, and Interferon-Γ in Kawasaki Disease Involved Coronary-Artery Lesions. Clinical Immunology and Immunopathology, 56, 29-36. [Google Scholar] [CrossRef] [PubMed]
[33] Qian, G., Xu, L., Qin, J., Huang, H., Zhu, L., Tang, Y., et al. (2021) Leukocyte Proteomics Coupled with Serum Metabolomics Identifies Novel Biomarkers and Abnormal Amino Acid Metabolism in Kawasaki Disease. Journal of Proteomics, 239, Article 104183. [Google Scholar] [CrossRef] [PubMed]
[34] Adams, E. (1970) Metabolism of Proline and of Hydroxyproline. International Review of Connective Tissue Research, 5, 1-91. [Google Scholar] [CrossRef] [PubMed]
[35] Phang, J.M. (1985) The Regulatory Functions of Proline and Pyrroline-5-Carboxylic Acid. Current Topics in Cell Regulation, 25, 91-132.
[36] Phang, J.M., Liu, W., Hancock, C. and Christian, K.J. (2012) The Proline Regulatory Axis and Cancer. Frontiers in Oncology, 2, Article No. 60. [Google Scholar] [CrossRef] [PubMed]
[37] Phang, J.M. (2019) Proline Metabolism in Cell Regulation and Cancer Biology: Recent Advances and Hypotheses. Antioxidants & Redox Signaling, 30, 635-649. [Google Scholar] [CrossRef] [PubMed]
[38] Suzuki, C., Nakamura, A., Miura, N., Fukai, K., Ohno, N., Yahata, T., et al. (2017) Non-Receptor Type, Proline-Rich Protein Tyrosine Kinase 2 (Pyk2) Is a Possible Therapeutic Target for Kawasaki Disease. Clinical Immunology, 179, 17-24. [Google Scholar] [CrossRef] [PubMed]