|
[1]
|
Nielsen, T.M., Andersen, N.H., Torp-Pedersen, C., Søgaard, P. and Kragholm, K.H. (2020) Kawasaki Disease, Autoimmune Disorders, and Cancer: A Register-Based Study. European Journal of Pediatrics, 180, 717-723. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kainth, R. and Shah, P. (2019) Kawasaki Disease: Origins and Evolution. Archives of Disease in Childhood, 106, 413-414. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Tsuda, E. and Hashimoto, S. (2021) Time Course of Coronary Artery Aneurysms in Kawasaki Disease. The Journal of Pediatrics, 230, 133-139.e2. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Luo, L., Feng, S., Wu, Y., Su, Y., Jing, F. and Yi, Q. (2019) Serum Levels of Syndecan-1 in Patients with Kawasaki Disease. Pediatric Infectious Disease Journal, 38, 89-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ohnishi, Y., Yasudo, H., Suzuki, Y., Furuta, T., Matsuguma, C., Azuma, Y., et al. (2019) Circulating Endothelial Glycocalyx Components as a Predictive Marker of Coronary Artery Lesions in Kawasaki Disease. International Journal of Cardiology, 292, 236-240. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
王静, 史恪勤, 逯雪敏. 川崎病患儿血清IL-41、Chemerin、TIMP3水平的变化及临床意义[J]. 中国现代医药杂志. 2025, 27(2): 60-64.
|
|
[7]
|
何方园, 何学华, 袁勇华, 朱柳蓉, 吴意, 夏晓辉. 川崎病急性期血脂与年龄、冠状动脉病变及严重程度的关系[J]. 临床儿科杂志, 2023, 41(6): 455-458.
|
|
[8]
|
Baranovicova, E., Kalenska, D., Kaplan, P., Kovalska, M., Tatarkova, Z. and Lehotsky, J. (2023) Blood and Brain Metabolites after Cerebral Ischemia. International Journal of Molecular Sciences, 24, Article 17302. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Du, Y., Chen, L., Li, X., Li, X., Xu, X., Tai, S., et al. (2020) Metabolomic Identification of Exosome-Derived Biomarkers for Schizophrenia: A Large Multicenter Study. Schizophrenia Bulletin, 47, 615-623. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Burgess, S. and Thompson, S.G. (2015) Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects. American Journal of Epidemiology, 181, 251-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Walker, V.M., Zheng, J., Gaunt, T.R. and Smith, G.D. (2022) Phenotypic Causal Inference Using Genome-Wide Association Study Data: Mendelian Randomization and Beyond. Annual Review of Biomedical Data Science, 5, 1-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, Y., Lu, T., Pettersson-Kymmer, U., Stewart, I.D., Butler-Laporte, G., Nakanishi, T., et al. (2023) Genomic Atlas of the Plasma Metabolome Prioritizes Metabolites Implicated in Human Diseases. Nature Genetics, 55, 44-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Nakamura, Y. (2018) Kawasaki Disease: Epidemiology and the Lessons from It. International Journal of Rheumatic Diseases, 21, 16-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Nakashima, Y., Sakai, Y., Mizuno, Y., Furuno, K., Hirono, K., Takatsuki, S., et al. (2021) Lipidomics Links Oxidized Phosphatidylcholines and Coronary Arteritis in Kawasaki Disease. Cardiovascular Research, 117, 96-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kawasaki, T. and Naoe, S. (2014) History of Kawasaki Disease. Clinical and Experimental Nephrology, 18, 301-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Agarwal, S. and Agrawal, D.K. (2017) Kawasaki Disease: Etiopathogenesis and Novel Treatment Strategies. Expert Review of Clinical Immunology, 13, 247-258. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Fan, X., Li, K., Guo, X., Liao, S., Zhang, Q., Xu, Y., et al. (2023) Metabolic Profiling Reveals Altered Tryptophan Metabolism in Patients with Kawasaki Disease. Frontiers in Molecular Biosciences, 10, Article ID: 1180537. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Chen, X., Zhao, Z., Li, L., Chen, X., Xu, H., Lou, J., et al. (2015) Hypercoagulation and Elevation of Blood Triglycerides Are Characteristics of Kawasaki Disease. Lipids in Health and Disease, 14, Article No. 166. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kim, K., Kim, H.Y., Chun, J., Cha, B.H., Namgoong, M.K., Kwon, W., et al. (2010) Relationship between Gallbladder Distension and Lipid Profiles in Kawasaki Disease. Korean Circulation Journal, 40, 137-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zoeller, R.A., Lake, A.C., Nagan, N., Gaposchkin, D.P., Legner, M.A. and Lieberthal, W. (1999) Plasmalogens as Endogenous Antioxidants: Somatic Cell Mutants Reveal the Importance of the Vinyl Ether. Biochemical Journal, 338, 769-776. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Mandel, H., Sharf, R., Berant, M., Wanders, R.J.A., Vreken, P. and Aviram, M. (1998) Plasmalogen Phospholipids Are Involved in HDL-Mediated Cholesterol Efflux: Insights from Investigations with Plasmalogen-Deficient Cells. Biochemical and Biophysical Research Communications, 250, 369-373. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Park, H., He, A., Tan, M., Johnson, J.M., Dean, J.M., Pietka, T.A., et al. (2019) Peroxisome-Derived Lipids Regulate Adipose Thermogenesis by Mediating Cold-Induced Mitochondrial Fission. Journal of Clinical Investigation, 129, 694-711. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Rong, P., Wang, J., Angelova, A., Almsherqi, Z.A. and Deng, Y. (2022) Plasmalogenic Lipid Analogs as Platelet-Activating Factor Antagonists: A Potential Novel Class of Anti-Inflammatory Compounds. Frontiers in Cell and Developmental Biology, 10, Article ID: 859421. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sejimo, S., Hossain, M.S. and Akashi, K. (2018) Scallop-Derived Plasmalogens Attenuate the Activation of PKCδ Associated with the Brain Inflammation. Biochemical and Biophysical Research Communications, 503, 837-842. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ali, F., Hossain, M.S., Sejimo, S. and Akashi, K. (2019) Plasmalogens Inhibit Endocytosis of Toll-Like Receptor 4 to Attenuate the Inflammatory Signal in Microglial Cells. Molecular Neurobiology, 56, 3404-3419. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liu, X., Wang, L., Shao, S., Zhang, N., Wu, M., Liu, L., et al. (2022) Sterile Pyuria in Kawasaki Disease: A Large Prospective Cohort Study. Frontiers in Cardiovascular Medicine, 9, Article ID: 856144. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Dai, L., Zhang, L., He, J., Huang, R., Tang, W., Guo, H., et al. (2024) Diagnostic Value of Syndecan-1 for Coronary Artery Lesions and Correlation Analysis of Laboratory Indicators in Kawasaki Disease Patients. Italian Journal of Pediatrics, 50, Article No. 209. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ford, D.A. (2010) Lipid Oxidation by Hypochlorous Acid: Chlorinated Lipids in Atherosclerosis and Myocardial Ischemia. Clinical Lipidology, 5, 835-852. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chen, H., Wang, Z., Qin, M., Zhang, B., Lin, L., Ma, Q., et al. (2021) Comprehensive Metabolomics Identified the Prominent Role of Glycerophospholipid Metabolism in Coronary Artery Disease Progression. Frontiers in Molecular Biosciences, 8, Article ID: 632950. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Rubic, T., Lametschwandtner, G., Jost, S., Hinteregger, S., Kund, J., Carballido-Perrig, N., et al. (2008) Triggering the Succinate Receptor GPR91 on Dendritic Cells Enhances Immunity. Nature Immunology, 9, 1261-1269. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Kohlhauer, M., Pell, V.R., Burger, N., Spiroski, A.M., Gruszczyk, A., Mulvey, J.F., et al. (2019) Protection against Cardiac Ischemia-Reperfusion Injury by Hypothermia and by Inhibition of Succinate Accumulation and Oxidation Is Additive. Basic Research in Cardiology, 114, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Matsubara, T., Furukawa, S. and Yabuta, K. (1990) Serum Levels of Tumor Necrosis Factor, Interleukin 2 Receptor, and Interferon-Γ in Kawasaki Disease Involved Coronary-Artery Lesions. Clinical Immunology and Immunopathology, 56, 29-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Qian, G., Xu, L., Qin, J., Huang, H., Zhu, L., Tang, Y., et al. (2021) Leukocyte Proteomics Coupled with Serum Metabolomics Identifies Novel Biomarkers and Abnormal Amino Acid Metabolism in Kawasaki Disease. Journal of Proteomics, 239, Article 104183. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Adams, E. (1970) Metabolism of Proline and of Hydroxyproline. International Review of Connective Tissue Research, 5, 1-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Phang, J.M. (1985) The Regulatory Functions of Proline and Pyrroline-5-Carboxylic Acid. Current Topics in Cell Regulation, 25, 91-132.
|
|
[36]
|
Phang, J.M., Liu, W., Hancock, C. and Christian, K.J. (2012) The Proline Regulatory Axis and Cancer. Frontiers in Oncology, 2, Article No. 60. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Phang, J.M. (2019) Proline Metabolism in Cell Regulation and Cancer Biology: Recent Advances and Hypotheses. Antioxidants & Redox Signaling, 30, 635-649. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Suzuki, C., Nakamura, A., Miura, N., Fukai, K., Ohno, N., Yahata, T., et al. (2017) Non-Receptor Type, Proline-Rich Protein Tyrosine Kinase 2 (Pyk2) Is a Possible Therapeutic Target for Kawasaki Disease. Clinical Immunology, 179, 17-24. [Google Scholar] [CrossRef] [PubMed]
|