2型糖尿病性视网膜病变全身危险因素的病理机制与综合治疗策略研究进展
Pathogenesis and Integrated Management of Systemic Risk Factors in Type 2 Diabetic Retinopathy: A Research Update
DOI: 10.12677/acm.2025.15123437, PDF, HTML, XML,   
作者: 严芷舒:吉首大学医学院,湖南 吉首;吉首大学第四临床学院,湖南 怀化;史 萍*:吉首大学临床学院,湖南 怀化
关键词: 2型糖尿病糖尿病性视网膜病变全身危险因素相关机制综合治疗Type 2 Diabetes Mellitus Diabetic Retinopathy Systemic Risk Factors Pathogenesis Integrated Management
摘要: 目的:系统综述2型糖尿病性视网膜病变(DR)的全身性危险因素及其作用机制,并总结相关治疗策略及研究进展。方法:检索并分析近年来国内外相关研究文献与临床指南,重点围绕高血糖、高血压、血脂异常、肥胖及代谢综合征等全身因素,探讨其在DR发生与发展中的病理生理机制及临床意义。结果:高血糖(激活PKC通路、氧化应激、HIF-VEGF信号)、高血压(RAAS激活、氧化应激与炎症)、血脂异常(LDL-C毒性及炎症介质释放)及肥胖(胰岛素抵抗与慢性炎症)是DR发生与进展的核心全身危险因素。综合管理包括严格控制血糖(HbA1c ≤ 7%)、血压(<130/80 mmHg)及血脂(LDL-C < 2.6 mmol/L),并联合眼部治疗(抗VEGF药物、激光及手术)。新兴疗法如Faricimab (抗VEGF/Ang-2双抗)显示出良好前景。结论:DR防治需采取以全身性危险因素控制为基础、适时眼科干预及多学科协作的综合策略,以延缓疾病进展并改善患者预后。
Abstract: Objective: To systematically review the systemic risk factors and their underlying mechanisms in type 2 diabetic retinopathy (DR) and to summarize relevant treatment strategies and research advances. Methods: A comprehensive literature search of recent research and clinical guidelines was conducted. The review focused on systemic factors, including hyperglycemia, hypertension, dyslipidemia, obesity, and metabolic syndrome, to explore their pathophysiological mechanisms and clinical significance in the onset and progression of DR. Results: Hyperglycemia (activating the PKC pathway, oxidative stress, HIF-VEGF signaling), hypertension (RAAS activation, oxidative stress, and inflammation), dyslipidemia (LDL-C toxicity and release of inflammatory mediators), and obesity (insulin resistance and chronic inflammation) are identified as core systemic risk factors for the development and progression of DR. Integrated management entails stringent control of blood glucose (HbA1c ≤ 7%), blood pressure (<130/80 mmHg), and blood lipids (LDL-C < 2.6 mmol/L), combined with ocular therapies such as intravitreal anti-VEGF agents, laser photocoagulation, and vitreoretinal surgery. Emerging therapies, notably Faricimab (a bispecific antibody targeting VEGF-A/Ang-2), show considerable promise. Conclusion: The prevention and management of DR require an integrated strategy founded on systemic risk factor control, timely ophthalmic intervention, and multidisciplinary collaboration to delay disease progression and improve patient outcomes.
文章引用:严芷舒, 史萍. 2型糖尿病性视网膜病变全身危险因素的病理机制与综合治疗策略研究进展[J]. 临床医学进展, 2025, 15(12): 496-505. https://doi.org/10.12677/acm.2025.15123437

1. 引言

糖尿病是世界范围内常见的慢性代谢性疾病,它代表了二十一世纪最具挑战性和最主要的公共卫生问题之一,已成为一种全球性的疾病。研究表明,糖尿病的患病率正在迅速上升,是发病率和死亡率的主要原因[1]。据国际糖尿病联盟(IDF) 2025年数据,2024年全球范围内20~79岁成人糖尿病患者达5.89亿,20~79岁糖尿病患者总数最多的国家是中国(1.48亿)、印度(8980万)、美国(3850万)。

糖尿病性视网膜病变(diabetic retinopathy, DR)是糖尿病最常见的微血管并发症之一,对患者视力有不可逆的影响。全球范围内,糖尿病患者中DR患病率为34.6%,严重威胁视力的增殖性糖尿病性视网膜病变(proliferative diabetic retinopathy, PDR)患病率为6.96%,影响中心视力的糖尿病性黄斑水肿(diabetic macular edema, DME)患病率为6.81% [2]。按照目前情况来看,占比仍在不断提升。在我国,一项基于2018年至2020年中国糖尿病并发症的全国调查中,在18~74岁的糖尿病患者中,DR的总体患病率为16.3%,大约有1950万被诊断为糖尿病的成年人分别患有DR [3]

2. 全身性危险因素及其机制

2.1. 高血糖

持续高血糖通过以下途径损伤视网膜:

高血糖通过激活蛋白激酶C (protein kinase C, PKC)通路诱导活性氧(reactive oxygen species, ROS),该通路被称为“糖尿病中的危险代谢途径”。在这条通路中,烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate, NADPH)氧化酶(NADPH Oxidases, NOX)的刺激和高级糖基化终产物(advanced glycation end products, AGE)介导的信号转导被认为是导致高血糖诱导的ROS过量产生的两种主要途径[4]。NOX家族的各种亚型会诱发过多的氧化应激,比如刺激炎症因子增加,使健康的内皮转化为异常状态以及血管钙化[5] [6];活性增加使ROS积累到胰岛素抵抗[7]还有常见的并发症2型糖尿病性肾病也和NOX亚型有紧密关联[8]。在另一条路径上,AGE与糖基化终产物受体(receptor for advanced glycation end products, RAGE)相互作用,激活了包括STAT3、MAPK/p38、MAPK/ERK、TGFβ、NFκB和GTP酶在内的众多信号通路。这一过程加剧了细胞内的氧化应激,并刺激了多个旁路葡萄糖代谢途径,从而在高血糖和氧化应激之间形成了一个正反馈循环[6]

其次,高血糖促进了细胞的凋亡,使胰岛β细胞显著减少[6]。已有研究表明,哺乳动物雷帕霉素靶标(mammalian target of rapamycin, mTOR)激酶由mTORC1和mTORC2复合物组成。其中mTORC1对胰腺β细胞的存活和增殖至关重要,mTOR信号的过度激活会导致β细胞功能受损,最终导致糖尿病和糖尿病并发症[9],有研究已证实高血糖能够在正常及转化的乳腺上皮细胞中激活mTOR信号传导,而转化细胞显示出更高的敏感性[10]

血管内皮生长因子(vascular endothelial growth factor, VEGF),是糖尿病视网膜病变进展的关键因子,在高血糖期间,体内会发生各种病理改变(如上面提到的氧化应激和蛋白激酶C过度激活),这些改变上调了VEGF的表达,从而使其偏离了其生理作用并导致各种病理改变,如新生血管形成、血管内皮细胞通透性增强、促凋亡蛋白抑制减少以及多种其他炎症介质的共同作用,破坏了血管的稳态[11]。而VEGF受缺氧诱导因子(hypoxia inducible factors, HIFs)的转录调控,HIF-1α是促血管生成的主要亚型。简单来说,在缺氧条件下,HIF-α稳定化,与HIF-1β形成二聚体,转位至细胞核,结合缺氧反应元件(HRE),上调VEGF等促血管生成基因[4]

而高血糖可直接增强HIF-1α信号,即使在没有明显缺氧的情况下,仍能促进VEGF表达[12]。同时,据报道,在高血糖血症下引发炎症和细胞生长的PKC和mTOR信号通路可上调HIFs信号传导,并促进缺氧,缺氧会诱导AGE的快速形成并激活RAGE信号传导[4],这揭示了高血糖与缺氧之间存在着双向的相互影响,以及一个复杂的信号网络在协调炎症、细胞增殖和血管生成之间的相互作用。

腺苷酸活化蛋白激酶(Adenosine 5’-monophosphate (AMP)-activated protein kinase, AMPK)是细胞能量传感器(响应AMP/ATP比例),细胞能量稳态调节中起到关键作用[13],正常情况下:抑制mTORC1减少蛋白质合成和细胞增殖[14]、抑制NOX4 (减少ROS)减轻氧化应激[15]。而高血糖抑制AMPK,从而增强HIF-1α的表达[16]。最终导致了氧化应激(ROS爆发)和炎症加剧。

综上所述,高血糖可以导致缺氧→HIF-VEGF→新生血管的恶性循环,同时受PKC通路、HIF-VEGF通路、AMPK-mTOR轴等代谢通路调节,所以早期控制血糖是预防PDR的基石,治疗需结合抗血管生成、代谢调节和抗炎策略。

2.2. 高血压

高血压的主要机制包括微血管重塑、自主神经系统(autonomic nervous system, ANS)失衡和肾素–血管紧张素–醛固酮系统(renin-angiotensin-aldosterone system, RAAS)激活[17],直径为100至300 μm的小动脉外周阻力的增加是高血压的核心机制和最显着的特征[18],因此视网膜血管也是受累的高风险区。高血压损伤视网膜血管的机制涵盖氧化应激、炎症、内皮功能障碍、血管重塑等关键病理过程。

在人类和实验模型中,ROS的产生失调(即氧化应激)是高血压的显著标志。在众多能够产生ROS的酶中,NOX在高血压的发展过程中扮演着至关重要的角色。高血压中氧化应激的主要成因之一是ROS的过量产生,这主要归因于NOX的激活。特别是NOX1、NOX2、NOX4和NOX5在心血管系统中发挥着关键作用。NOX的激活加剧了氧化应激和氧化还原敏感过程(包括内质网应激)的激活,进而导致细胞损伤、内皮功能障碍、血管损伤以及心血管炎症[19]

激活的RAAS是氧化应激的重要调节剂,可导致血管炎症损伤[20]。作为RAAS的主要成分,血管紧张素II (Angiotensin II, Ang II)通过激活NOX和增加内皮素-1 (Endothelin-1, ET-1)的表达来促进血管炎症,导致大量促炎介质的产生,从而导致内皮功能障碍[21]。此外,Ang II、ET-1和醛固酮可能通过上调血管平滑肌细胞和内皮细胞中趋化因子的表达,在很大程度上导致血管重塑受损[22]

最近的研究表明慢性炎症参与了高血压损伤血管的机制。在这一过程中,有大量的细胞因子参与了血管损伤的过程,如激活NOD样受体热蛋白结构域相关蛋白3 (NOD-like receptor thermal protein domain associated protein 3, NLRP3)炎性小体触发天冬氨酸特异性的半胱氨酸蛋白水解酶(cysteinyl aspartate specific proteinase, caspase)诱导无活性的促炎细胞因子前体(如pro-IL-1b、pro-IL-18和pro-IL 37)的裂解致血管内皮细胞损伤,除此之外,还有IL-17、IL-6、TNF-a、IFN-g和IL-1b参与其中,对视网膜血管产生不可逆的影响[23]

人体免疫系统包括免疫信息系统(Immunization Information System, IIS)和适应性免疫系统(Adaptive Immune System, AIS),作为先天免疫系统的重要组成部分,经典激活的巨噬细胞、中性粒细胞和树突状细胞通过分泌炎性细胞因子产生血管损伤。先天免疫细胞和gd T细胞直接或通过激活的AIS释放促炎细胞因子和自身抗体,特别是活化的T淋巴细胞产生的干扰素-γ (IFN-γ)和白细胞介素-17 (IL-17)诱导氧化应激损伤和内皮功能障碍[22]

在以上种种因素下,高血压和视网膜血管损伤紧密联系,尤其是在发生DR时,对DR的进展也起到了关键作用。近年来,越来越多的研究者通过深度机器学习、风险预测模型的构建以及英国Biobank等大样本库的表型和基因分析,揭示了高血压与DR之间的密切关系[24]-[26],Li等的一项大型队列研究表明,在糖尿病患者中,较高的与微血管病变风险增加之间存在非线性剂量反应关系[27]。研究表明,通过光学相干断层扫描(OCT)评估显示,合并高血压的2型糖尿病(Type 2 diabetes mellitus, T2DM)患者视网膜黄斑区微血管密度降低,提示高血压可能在临床DR出现前已损伤视网膜微血管,该研究还显示,合并高血压的T2DM患者黄斑中心凹(FAZ)面积和周长增大,提示高血压加剧T2DM患者黄斑区缺血,可能与高血压程度相关[28]

2.3. 高血脂

目前已经有大量研究认为高血脂是糖尿病性视网膜病变发病及进展的危险因素之一[29]。其机制可能是糖尿病患者的视网膜脂质清除异常,从而导致非酶氧化和糖基化增加[30],进一步激活炎症介质,导致血管通透性增加及DME中血视网膜屏障的破坏。研究表明,血清低密度脂蛋白(Low Density Lipoprotein, LDL)能够抑制体外内皮细胞的增殖和迁移[29],且高浓度的低密度脂蛋白胆固醇(low density lipoprotein cholesterol, LDL-C)会对血管内皮细胞产生细胞毒性作用,加剧血管床中的血管收缩,进而导致DR中非灌注区域的病情恶化。其主要机制是血脂异常促进炎症因子释放(如IL-6、TNF-α)和氧化应激,加速血管病变。

从影像学证据上,研究[31] [32]通过光学相干断层扫描(Optical Coherence Tomography, OCT)发现,三酰甘油的升高与中央视网膜厚度的增加呈正相关。此外,较高的总胆固醇和LDL-C水平与高反射灶的数量显著正相关。同时,眼底照相结果显示,总胆固醇和LDL水平与硬渗出物的存在及其面积大小亦呈正相关[33]

2.4. 肥胖与代谢综合征

肥胖是一种常见的内分泌及代谢性疾病,与DR密切相关,并通过多种途径影响DR的发生与发展。脂肪的蓄积和脂肪细胞的肥大引发炎症反应,从而导致胰岛素抵抗的发生[34]。脂肪细胞过量分泌炎症因子如肿瘤坏死因子-α (TNF-α)、白细胞介素-6 (IL-6)等,直接干扰骨骼肌、肝脏对葡萄糖的摄取利用,同时抑制胰岛素信号传导通路,导致肝脏糖原合成减少、糖异生增加,骨骼肌葡萄糖转运能力下降,最终引发空腹及餐后血糖升高。而在胰岛素抵抗初期,胰岛β细胞通过代偿性高分泌维持血糖稳态,但长期高负荷状态会导致β细胞凋亡增加、增殖减少,驱动T2DM发生及进展。另外,持续高血糖会加重胰岛素抵抗,糖代谢失衡,促使β细胞分泌更多的胰岛素,高胰岛素水平直接刺激脂肪细胞增殖和肥大,尤其在内脏脂肪堆积,从而导致肥胖[35]。脂肪在心脏、肝脏、骨骼肌、肾脏和胰腺等器官中积聚,形成异位脂肪库,该库被认为在代谢综合征、DM的发生发展中起着重要作用[36] [37]。有研究表明,对内脏肥胖患者的识别和治疗可能在改善血糖控制方面发挥作用,并在某些情况下诱导DM的缓解[38]

身体质量指数(Body Mass Index, BMI)在国际上常用以衡量人体胖瘦程度及健康状况的指标,BMI超过25为超重,超过30为肥胖。BMI增大与DR及其各个分期发病风险升高有关,而其中主要由异亮氨酸、糖蛋白、丙酮酸以及双烯基与双键的比例所介导[39]

2.5. 糖尿病肾病

糖尿病性血管病变分为大血管病和微血管病,视网膜和肾脏主要受微血管病变影响。这两个部位之间则有部分共同通路及生物因子损伤组织血管,如VEGF、炎性细胞因子和粘附分子、NF-κ信号通路及氧化应激等[40]。所以当肾脏损伤时,在共同的机制下,也存在视网膜血管损伤。

2.6. 病程

糖尿病病程是DR最重要的危险因素,有流行病学研究随访了病程超过25年的955例1型糖尿病患者,约有83%的患者并发DR,42%的患者发展为PDR [41]。一项纳入了4513例2型糖尿病患者并随访了28年的观察性研究发现,病程0~5年的2型糖尿病患者DR患病率为6.6%;病程10~15年者DR患病率上升到24.0%;病程20~25年者DR患病率进一步攀升至52.7%;病程超过30年者DR患病率达到63.0% [42]

2.7. 妊娠

怀孕本身是DR发生和进展的独立危险因素之一,会导致先前存在的DR恶化[43]。1型糖尿病更常与妊娠期新发DR相关,除了妊娠本身是DR进展的危险因素外,妊娠期间发生的各种生理变化,包括代谢、血管、免疫和激素波动的附加影响也可能导致DR的发生和恶化[44]

2.8. 新兴危险因素与未来研究方向

肠道细菌:DR中肠–视网膜轴有各种可能的机制:1):DM病人肠道杆菌细胞壁富含脂多糖(Lipopolysaccharide, LPS)导致内皮细胞损伤增加,肽聚糖在DM中通过可渗透的肠道屏障泄漏,发生内毒素血症,随后激活视网膜中的受体,导致视网膜中的泄漏[45] [46]。2):梭菌和其他细菌的减少会减少丁酸的产生,丁酸负责减少核因子-κB,这是一个众所周知的转录因子,参与多种炎症级联反应,可表现为DR的临床症状[47] [48]。3):乳酸杆菌增加DM肠道中的牛磺熊去氧胆酸(tauroursodeoxycholic acid, TUDCA),TUDCA的作用及其与视网膜神经节细胞G蛋白偶联胆汁酸受体1的相互作用对DR具有保护作用[49]。因此DM患者肠道菌群失调时,TUDCA缺失,最终引起视网膜损伤。4):t辅助细胞1 (Th1)和Th17淋巴细胞是参与眼部炎症性疾病的重要免疫细胞亚群。推测肠道菌群失调与肠道微生物群和葡萄膜炎一样影响DR。关于葡萄膜炎相关的潜在肠道微生物群对视网膜轴确切成分的影响,目前对糖尿病视网膜病变(DR)的了解尚不明确[50]。5):菌群失调可能通过调节VEGF在DR中发挥作用。肠绒毛巨噬细胞在识别微生物后分泌VEGF-C。因此,肠道微生物通过调节肠绒毛巨噬细胞在DM患者肠道局部产生VEGF发挥重要作用[51]。6):血管紧张素转化酶2 (Angiotensin-converting enzyme, ACE2)缺陷,促进肠道屏障完整性的破坏,并导致细菌产物泄漏到循环中,髓样血管生成细胞(MACs)减少,而没有伴随炎性单核细胞的增加,因此缺乏肠道屏障修复机制,从而支持了ACE2缺陷在糖尿病肠道局部的致病作用。因此,DM中局部ACE2下调似乎与肠道微生物组之间存在联系[52] [53]

3. 治疗策略

基于上述对危险因素的详细阐述,DR的治疗策略应涵盖全身因素的综合管理与眼部的针对性治疗。对于DR患者而言,全身系统性慢性疾病的管理尤为关键,具体管理措施包括科学调控血糖、血压及血脂水平[54]。DR的发生和发展,不仅与吸烟、饮酒等不良生活习惯密切相关,还与肾病、妊娠、肥胖、遗传因素等多种其他风险因素存在关联[55]。眼部的局部治疗有视网膜激光光凝治疗、玻璃体内注射抗VEGF药物和玻璃体切割手术等,应根据DR疾病阶段以及是否合并DME决定治疗方案。

3.1. 综合管理

合理的血糖控制有助于预防视网膜病变的发生,并减缓增殖期病变的进展。尤其是早期的血糖控制,对于DR的预后具有至关重要的作用。研究表明,糖化血红蛋白与DR的进展具有显著相关性[56]-[58],因此,建议在内分泌科医生指导下科学、平稳地控制血糖。相关药物比如GLP-1Ras (如司美格鲁肽)通过抑制炎症反应,保护血管内皮紧密连接减少渗漏,降低了DR的发生率及进展[59]。对于合并有高血压的病人,有大量研究表明,作用最强的降压药物为ACE抑制剂,ACE抑制剂治疗不但与糖尿病视网膜病变进展风险降低有关,还可提高疾病缓解的可能性,具有独立于降压的视网膜保护作用[60]

在血脂调节方面,调脂药物通过保护血视网膜屏障、改善血管内皮细胞功能、逆转视网膜血管渗漏以及减轻视网膜炎症反应,有效延缓糖尿病视网膜病变(DR)的进展。贝特类和他汀类药物作为目前最常用的调血脂药物,不仅具备确切的降血脂药理作用,近年来亦广泛应用于DR的治疗领域[61]。比如非诺贝特,它通过上调PPAR-α靶基因(如FGF21)和抑制miR-21减少视网膜神经元凋亡[62] [63]、抑制cGAS-STING通路和ICAM-1/MCP-1表达,减轻白细胞浸润和血管渗漏[64]、激活PPAR-α依赖的SOD/过氧化氢酶以及通过铁螯合作用抑制Wnt/β-catenin通路稳定血视网膜屏障[65] [66],非诺贝特治疗可使DR进展减少27%,DME也有所减少,早期开始非诺贝特治疗可以在延缓危及视力的变化方面发挥作用[67]

3.2. 眼部治疗

① 根据DR分期选择方案(参考国际临床分级ICDR标准):

分期

治疗策略

轻度NPDR

密切观察(每6~12月复查),强化全身管理

中重度NPDR

抗VEGF预防性治疗(如雷珠单抗PRN方案)或全视网膜光凝(PRP)高危患者

PDR

1. 一线:玻璃体内抗VEGF每月1次,连续3~6次

2. PRP:适用于活动性新生血管或玻璃体出血

DME

1. 抗VEGF (首选)

2. 激素植入物(如地塞米松缓释植入物):适用于抗VEGF无效/禁忌患者

PPV的适应证涵盖以下情况:不吸收的玻璃体积血、PDR所致的纤维增生膜、视网膜前出血、视网膜受牵拉及由此引起的牵拉性视网膜脱离、牵拉性孔源性视网膜脱离、玻璃体积血合并白内障、以及玻璃体积血合并虹膜新生血管等[55]

② 局部治疗新进展:Faricimab是一种针对血管生成素-2 (Ang-2)和血管内皮生长因子-A (VEGF-A)的双特异性抗体,且具有良好的安全性和耐受性,抑制这两种途径已被证明具有潜在的互补益处,可以稳定血管,从而比单独抑制VEGF-A途径更能减少血管渗漏和炎症[68] [69]

4. 总结

DR的综合治疗绝非单一科室的责任,而是一个系统性的工程,必须遵循“全身管控为基础,眼科干预抓时机,多学科协作保长效”的核心原则。首先,全身管控是遏制DR发生与发展的基石。这意味着必须指导患者建立健康的生活习惯,定期监测血糖,严格执行糖尿病饮食,根据患者血糖情况定期调整降糖方案,将血糖、血压、血脂及BMI等代谢指标长期稳定在目标范围内,从源头上减轻代谢紊乱对微血管的持续性损害。其次,眼科干预贵在抓住关键时机。应根据DR的国际临床分级和是否伴有DME制定精准的干预策略;除此之外,可以通过线上或者线下定期组织患者进行患者教育,让患者正确了解疾病,减少因认知不足导致的治疗延误,提升患者自我管理能力,建立积极的心态,养成眼科定期复查习惯。最后,多学科协作是保障患者长期获益的关键。需要建立以内分泌科、眼科为核心,并联合心内科、肾内科、营养科及全科医生的协作团队,为患者提供贯穿疾病全程、一体化的管理方案,从而在控制病情的同时改善其整体生活质量和远期预后。

NOTES

*通讯作者。

参考文献

[1] Chiu, T.T., Tsai, T.L., Su, M.Y., et al. (2021) The Related Risk Factors of Diabetic Retinopathy in Elderly Patients with Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health, 18, Artilce 307. [Google Scholar] [CrossRef] [PubMed]
[2] Yau, J.W.Y., Rogers, S.L., Kawasaki, R., Lamoureux, E.L., Kowalski, J.W., Bek, T., et al. (2012) Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care, 35, 556-564. [Google Scholar] [CrossRef] [PubMed]
[3] Hou, X., Wang, L., Zhu, D., Guo, L., Weng, J., Zhang, M., et al. (2023) Prevalence of Diabetic Retinopathy and Vision-Threatening Diabetic Retinopathy in Adults with Diabetes in China. Nature Communications, 14, Article No. 4296. [Google Scholar] [CrossRef] [PubMed]
[4] Dai, X., Hui, X. and Xi, M. (2025) Critical Factors Driving Diabetic Retinopathy Pathogenesis and a Promising Interventional Strategy. Biomedicine & Pharmacotherapy, 189, Article 18106. [Google Scholar] [CrossRef] [PubMed]
[5] Kay, A.M., Simpson, C.L. and Stewart, J.A. (2016) The Role of AGE/RAGE Signaling in Diabetes-Mediated Vascular Calcification. Journal of Diabetes Research, 2016, 1-8. [Google Scholar] [CrossRef] [PubMed]
[6] Schröder, K., Zhang, M., Benkhoff, S., Mieth, A., Pliquett, R., Kosowski, J., et al. (2012) Nox4 Is a Protective Reactive Oxygen Species Generating Vascular NADPH Oxidase. Circulation Research, 110, 1217-1225. [Google Scholar] [CrossRef] [PubMed]
[7] Tiganis, T. (2011) Reactive Oxygen Species and Insulin Resistance: The Good, the Bad and the Ugly. Trends in Pharmacological Sciences, 32, 82-89. [Google Scholar] [CrossRef] [PubMed]
[8] Rajaram, R.D., Dissard, R., Faivre, A., Ino, F., Delitsikou, V., Jaquet, V., et al. (2019) Tubular NOX4 Expression Decreases in Chronic Kidney Disease but Does Not Modify Fibrosis Evolution. Redox Biology, 26, Artilce 101234. [Google Scholar] [CrossRef] [PubMed]
[9] Ardestani, A., Lupse, B., Kido, Y., Leibowitz, G. and Maedler, K. (2018) mTORC1 Signaling: A Double-Edged Sword in Diabetic Β Cells. Cell Metabolism, 27, 314-331. [Google Scholar] [CrossRef] [PubMed]
[10] Capellen, C.C., Ortega-Rodas, J., Morwitzer, M.J., Tofilau, H.M.N., Dunworth, M., Casero, R.A., et al. (2021) Hyperglycemic Conditions Proliferate Triple Negative Breast Cancer Cells: Role of Ornithine Decarboxylase. Breast Cancer Research and Treatment, 190, 255-264. [Google Scholar] [CrossRef] [PubMed]
[11] Behl, T. and Kotwani, A. (2015) Exploring the Various Aspects of the Pathological Role of Vascular Endothelial Growth Factor (VEGF) in Diabetic Retinopathy. Pharmacological Research, 99, 137-148. [Google Scholar] [CrossRef] [PubMed]
[12] Li, J., Zhao, S., Wang, P., Yu, S., Zheng, Z. and Xu, X. (2012) Calcium Mediates High Glucose-Induced HIF-1α and VEGF Expression in Cultured Rat Retinal Müller Cells through CaMKII-CREB Pathway. Acta Pharmacologica Sinica, 33, 1030-1036. [Google Scholar] [CrossRef] [PubMed]
[13] Steinberg, G.R. and Hardie, D.G. (2022) New Insights into Activation and Function of the AMPK. Nature Reviews Molecular Cell Biology, 24, 255-272. [Google Scholar] [CrossRef] [PubMed]
[14] Gwinn, D.M., Shackelford, D.B., Egan, D.F., Mihaylova, M.M., Mery, A., Vasquez, D.S., et al. (2008) AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint. Molecular Cell, 30, 214-226. [Google Scholar] [CrossRef] [PubMed]
[15] Leprivier, G. and Rotblat, B. (2020) How Does mTOR Sense Glucose Starvation? AMPK Is the Usual Suspect. Cell Death Discovery, 6, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
[16] Treins, C., Murdaca, J., Obberghen, E.V. and Giorgetti-Peraldi, S. (2006) AMPK Activation Inhibits the Expression of HIF-1α Induced by Insulin and IGF-1. Biochemical and Biophysical Research Communications, 342, 1197-1202. [Google Scholar] [CrossRef] [PubMed]
[17] Li, Y., Wei, B., Liu, X., Shen, X.Z. and Shi, P. (2020) Microglia, Autonomic Nervous System, Immunity and Hypertension: Is There a Link? Pharmacological Research, 155, Article 104451. [Google Scholar] [CrossRef] [PubMed]
[18] Usui, T., Okada, M., Hara, Y. and Yamawaki, H. (2012) Death-Associated Protein Kinase 3 Mediates Vascular Inflammation and Development of Hypertension in Spontaneously Hypertensive Rats. Hypertension, 60, 1031-1039. [Google Scholar] [CrossRef] [PubMed]
[19] Camargo, L.L., Rios, F.J., Montezano, A.C. and Touyz, R.M. (2024) Reactive Oxygen Species in Hypertension. Nature Reviews Cardiology, 22, 20-37. [Google Scholar] [CrossRef] [PubMed]
[20] Schiffrin, E.L. (2012) Vascular Remodeling in Hypertension: Mechanisms and Treatment. Hypertension, 59, 367-374. [Google Scholar] [CrossRef] [PubMed]
[21] Zhang, Y., Murugesan, P., Huang, K. and Cai, H. (2020) NADPH Oxidases and Oxidase Crosstalk in Cardiovascular Diseases: Novel Therapeutic Targets. Nature Reviews Cardiology, 17, 170-194. [Google Scholar] [CrossRef] [PubMed]
[22] Zhang, Z., Zhao, L., Zhou, X., Meng, X. and Zhou, X. (2022) Role of Inflammation, Immunity, and Oxidative Stress in Hypertension: New Insights and Potential Therapeutic Targets. Frontiers in Immunology, 13, Article 1098725. [Google Scholar] [CrossRef] [PubMed]
[23] Olivares-Silva, F., De Gregorio, N., Espitia-Corredor, J., Espinoza, C., Vivar, R., Silva, D., et al. (2021) Resolvin-D1 Attenuation of Angiotensin II-Induced Cardiac Inflammation in Mice Is Associated with Prevention of Cardiac Remodeling and Hypertension. Biochimica et Biophysica ActaMolecular Basis of Disease, 1867, Article 166241. [Google Scholar] [CrossRef] [PubMed]
[24] Yang, Y., Tan, J., He, Y., Huang, H., Wang, T., Gong, J., et al. (2023) Predictive Model for Diabetic Retinopathy under Limited Medical Resources: A Multicenter Diagnostic Study. Frontiers in Endocrinology, 13, Article 1099302. [Google Scholar] [CrossRef] [PubMed]
[25] Zhu, C., Zhu, J., Wang, L., Xiong, S., Zou, Y., Huang, J., et al. (2023) Development and Validation of a Risk Prediction Model for Diabetic Retinopathy in Type 2 Diabetic Patients. Scientific Reports, 13, Article No. 5034. [Google Scholar] [CrossRef] [PubMed]
[26] Vyas, A., Raman, S., Sen, S., Ramasamy, K., Rajalakshmi, R., Mohan, V., et al. (2023) Machine Learning-Based Diagnosis and Ranking of Risk Factors for Diabetic Retinopathy in Population-Based Studies from South India. Diagnostics, 13, Article 2084. [Google Scholar] [CrossRef] [PubMed]
[27] Li, C., Yu, H., Zhu, Z., Shang, X., Huang, Y., Sabanayagam, C., et al. (2023) Association of Blood Pressure with Incident Diabetic Microvascular Complications among Diabetic Patients: Longitudinal Findings from the UK Biobank. Journal of Global Health, 13, Article 04027. [Google Scholar] [CrossRef] [PubMed]
[28] Wang, C.X., Li, Y., Guo, J.X., et al. (2024) Effect of Hypertension on Retinal Microvasculature in Type 2 Diabetic Patients without Diabetic Retinopathy by OCTA. Journal of Xuzhou Medical University, 44, 607-612.
[29] Chou, Y., Ma, J., Su, X. and Zhong, Y. (2020) Emerging Insights into the Relationship between Hyperlipidemia and the Risk of Diabetic Retinopathy. Lipids in Health and Disease, 19, Article No. 241. [Google Scholar] [CrossRef] [PubMed]
[30] Hammer, S.S. and Busik, J.V. (2017) The Role of Dyslipidemia in Diabetic Retinopathy. Vision Research, 139, 228-236. [Google Scholar] [CrossRef] [PubMed]
[31] Chung, Y.R., Lee, S.Y., Kim, Y.H., et al. (2020) Hyperreflective Foci in Diabetic Macular Edema with Serous Retinal Detachment: Association with Dyslipidemia. Acta Diabetologica, 57, 861-866. [Google Scholar] [CrossRef] [PubMed]
[32] Chung, Y.R., Park, S.W., Choi, S.Y., et al. (2017) Association of Statin Use and Hypertriglyceridemia with Diabetic Macular Edema in Patients with Type 2 Diabetes and Diabetic Retinopathy. Cardiovascular Diabetology, 16, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
[33] Papavasileiou, E., Davoudi, S., Roohipoor, R., Cho, H., Kudrimoti, S., Hancock, H., et al. (2017) Association of Serum Lipid Levels with Retinal Hard Exudate Area in African Americans with Type 2 Diabetes. Graefes Archive for Clinical and Experimental Ophthalmology, 255, 509-517. [Google Scholar] [CrossRef] [PubMed]
[34] Yousri, N.A., Suhre, K., Yassin, E., Al-Shakaki, A., Robay, A., Elshafei, M., et al. (2022) Metabolic and Metabo-Clinical Signatures of Type 2 Diabetes, Obesity, Retinopathy, and Dyslipidemia. Diabetes, 71, 184-205. [Google Scholar] [CrossRef] [PubMed]
[35] Kang, P.S. and Neeland, I.J. (2023) Body Fat Distribution, Diabetes Mellitus, and Cardiovascular Disease: An Update. Current Cardiology Reports, 25, 1555-1564. [Google Scholar] [CrossRef] [PubMed]
[36] Ibrahim, M.M. (2010) Subcutaneous and Visceral Adipose Tissue: Structural and Functional Differences. Obesity Reviews, 11, 11-18. [Google Scholar] [CrossRef] [PubMed]
[37] Mårin, P., Andersson, B., Ottosson, M., Olbe, L., Chowdhury, B., Kvist, H., et al. (1992) The Morphology and Metabolism of Intraabdominal Adipose Tissue in Men. Metabolism, 41, 1242-1248. [Google Scholar] [CrossRef] [PubMed]
[38] Schauer, P.R., Bhatt, D.L., Kirwan, J.P., Wolski, K., Aminian, A., Brethauer, S.A., et al. (2017) Bariatric Surgery versus Intensive Medical Therapy for Diabetes—5-Year Outcomes. New England Journal of Medicine, 376, 641-651. [Google Scholar] [CrossRef] [PubMed]
[39] 王爽, 吴树法, 令垚, 等. 基于代谢组学探究非脂质代谢物在肥胖与糖尿病视网膜病变间的中介作用: 孟德尔随机化研究[J]. 中国全科医学, 2025, 28(21): 2625-2634.
[40] Li, Y., Liu, Y., Liu, S., Gao, M., Wang, W., Chen, K., et al. (2023) Diabetic Vascular Diseases: Molecular Mechanisms and Therapeutic Strategies. Signal Transduction and Targeted Therapy, 8, Article No. 152. [Google Scholar] [CrossRef] [PubMed]
[41] Klein, R., Knudtson, M.D., Lee, K.E., Gangnon, R. and Klein, B.E.K. (2008) The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXII: The Twenty-Five-Year Progression of Retinopathy in Persons with Type 1 Diabetes. Ophthalmology, 115, 1859-1868. [Google Scholar] [CrossRef] [PubMed]
[42] Voigt, M., Schmidt, S., Lehmann, T., Köhler, B., Kloos, C., Voigt, U., et al. (2018) Prevalence and Progression Rate of Diabetic Retinopathy in Type 2 Diabetes Patients in Correlation with the Duration of Diabetes. Experimental and Clinical Endocrinology & Diabetes, 126, 570-576. [Google Scholar] [CrossRef] [PubMed]
[43] Varughese, M.S. and Jacob, S. (2025) Diabetic Retinopathy and Pregnancy: An Overview of the Predictive Risk Factors for Progressive Worsening of Eye Disease during the Antenatal Period. Eye, 39, 812-813. [Google Scholar] [CrossRef] [PubMed]
[44] Pushparani, D.S., Varalakshmi, J., Roobini, K., Hamshapriya, P. and Livitha, A. (2025) Diabetic Retinopathy—A Review. Current Diabetes Reviews, 21, 43-55. [Google Scholar] [CrossRef] [PubMed]
[45] Thakur, P.S., Aggarwal, D., Takkar, B., Shivaji, S. and Das, T. (2022) Evidence Suggesting the Role of Gut Dysbiosis in Diabetic Retinopathy. Investigative Opthalmology & Visual Science, 63, Article 21. [Google Scholar] [CrossRef] [PubMed]
[46] Vagaja, N.N., Binz, N., McLenachan, S., Rakoczy, E.P. and McMenamin, P.G. (2013) Influence of Endotoxin-Mediated Retinal Inflammation on Phenotype of Diabetic Retinopathy in Ins2 Akita Mice. British Journal of Ophthalmology, 97, 1343-1350. [Google Scholar] [CrossRef] [PubMed]
[47] Huang, Y., Wang, Z., Ma, H., Ji, S., Chen, Z., Cui, Z., et al. (2021) Dysbiosis and Implication of the Gut Microbiota in Diabetic Retinopathy. Frontiers in Cellular and Infection Microbiology, 11, Article 646348. [Google Scholar] [CrossRef] [PubMed]
[48] Gurung, M., Li, Z., You, H., Rodrigues, R., Jump, D.B., Morgun, A., et al. (2020) Role of Gut Microbiota in Type 2 Diabetes Pathophysiology. EBioMedicine, 51, Article 102590. [Google Scholar] [CrossRef] [PubMed]
[49] Beli, E., Yan, Y., Moldovan, L., Vieira, C.P., Gao, R., Duan, Y., et al. (2018) Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice. Diabetes, 67, 1867-1879. [Google Scholar] [CrossRef] [PubMed]
[50] Jayasudha, R., Das, T., Kalyana Chakravarthy, S., Sai Prashanthi, G., Bhargava, A., Tyagi, M., et al. (2020) Gut Mycobiomes Are Altered in People with Type 2 Diabetes Mellitus and Diabetic Retinopathy. PLOS ONE, 15, e0243077. [Google Scholar] [CrossRef] [PubMed]
[51] Suh, S.H., Choe, K., Hong, S.P., Jeong, S., Mäkinen, T., Kim, K.S., et al. (2019) Gut Microbiota Regulates Lacteal Integrity by Inducing VEGF-C in Intestinal Villus Macrophages. EMBO Reports, 20, e46927. [Google Scholar] [CrossRef] [PubMed]
[52] Dean, R.G. and Burrell, L.M. (2007) ACE2 and Diabetic Complications. Current Pharmaceutical Design, 13, 2730-2735. [Google Scholar] [CrossRef] [PubMed]
[53] Duan, Y., Prasad, R., Feng, D., Beli, E., Li Calzi, S., Longhini, A.L.F., et al. (2019) Bone Marrow-Derived Cells Restore Functional Integrity of the Gut Epithelial and Vascular Barriers in a Model of Diabetes and ACE2 Deficiency. Circulation Research, 125, 969-988. [Google Scholar] [CrossRef] [PubMed]
[54] Solomon, S.D., Chew, E., Duh, E.J., Sobrin, L., Sun, J.K., VanderBeek, B.L., et al. (2017) Diabetic Retinopathy: A Position Statement by the American Diabetes Association. Diabetes Care, 40, 412-418. [Google Scholar] [CrossRef] [PubMed]
[55] 中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2022年) [J]. 中华眼底病杂志, 2023, 39(2): 99-124.
[56] Kim, H.U., Park, S.P. and Kim, Y. (2021) Long-Term HbA1c Variability and the Development and Progression of Diabetic Retinopathy in Subjects with Type 2 Diabetes. Scientific Reports, 11, Article No. 4731. [Google Scholar] [CrossRef] [PubMed]
[57] Chew, E.Y., Ambrosius, W.T., Davis, M.D., et al. (2010) Effects of Medical Therapies on Retinopathy Progression in Type 2 Diabetes. New England Journal of Medicine, 363, 233-244. [Google Scholar] [CrossRef] [PubMed]
[58] Pan, J., Li, Q., Zhang, L., Jia, L., Tang, J., Bao, Y., et al. (2014) Serum Glycated Albumin Predicts the Progression of Diabetic Retinopathy—A Five Year Retrospective Longitudinal Study. Journal of Diabetes and Its Complications, 28, 772-778. [Google Scholar] [CrossRef] [PubMed]
[59] He, X., Wen, S., Tang, X., Wen, Z., Zhang, R., Li, S., et al. (2024) Glucagon-Like Peptide-1 Receptor Agonists Rescued Diabetic Vascular Endothelial Damage through Suppression of Aberrant STING Signaling. Acta Pharmaceutica Sinica B, 14, 2613-2630. [Google Scholar] [CrossRef] [PubMed]
[60] Wang, B., Wang, F., Zhang, Y., Zhao, S., Zhao, W., Yan, S., et al. (2015) Effects of RAS Inhibitors on Diabetic Retinopathy: A Systematic Review and Meta-Analysis. The Lancet Diabetes & Endocrinology, 3, 263-274. [Google Scholar] [CrossRef] [PubMed]
[61] 杨继玲, 邵毅, 裴重刚. 调脂药治疗糖尿病视网膜病变的研究进展[J]. 中华眼底病杂志, 2014, 30(2): 216-219.
[62] Matlock, H.G., Qiu, F., Malechka, V., Zhou, K., Cheng, R., Benyajati, S., et al. (2020) Pathogenic Role of PPARα Downregulation in Corneal Nerve Degeneration and Impaired Corneal Sensitivity in Diabetes. Diabetes, 69, 1279-1291. [Google Scholar] [CrossRef] [PubMed]
[63] Mansoor, H., Lee, I.X.Y., Lin, M.T., Ang, H.P., Xue, Y.C., Krishaa, L., et al. (2024) Topical and Oral Peroxisome Proliferator-Activated Receptor-α Agonist Ameliorates Diabetic Corneal Neuropathy. Scientific Reports, 14, Article No. 13435. [Google Scholar] [CrossRef] [PubMed]
[64] Chen, Y., Hu, Y., Lin, M., Jenkins, A.J., Keech, A.C., Mott, R., et al. (2013) Therapeutic Effects of PPARα Agonists on Diabetic Retinopathy in Type 1 Diabetes Models. Diabetes, 62, 261-272. [Google Scholar] [CrossRef] [PubMed]
[65] Liu, Q., Zhang, X., Cheng, R., Ma, J., Yi, J. and Li, J. (2019) Salutary Effect of Fenofibrate on Type 1 Diabetic Retinopathy via Inhibiting Oxidative Stress-Mediated Wnt/β-Catenin Pathway Activation. Cell and Tissue Research, 376, 165-177. [Google Scholar] [CrossRef] [PubMed]
[66] Mandala, A., Armstrong, A., Girresch, B., Zhu, J., Chilakala, A., Chavalmane, S., et al. (2020) Fenofibrate Prevents Iron Induced Activation of Canonical Wnt/β-Catenin and Oxidative Stress Signaling in the Retina. npj Aging and Mechanisms of Disease, 6, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
[67] Liu, M., Lim, S.T., Song, W., Coffman, T.M. and Wang, X. (2025) Beyond Lipids: Fenofibrate in Diabetic Retinopathy and Nephropathy. Trends in Pharmacological Sciences, 20, 1-17. [Google Scholar] [CrossRef] [PubMed]
[68] Sharma, A., Kumar, N., Parachuri, N., Karanam, D., Kuppermann, B.D., Bandello, F., et al. (2022) Faricimab Phase 3 DME Trial Significance of Personalized Treatment Intervals (PTI) Regime for Future DME Trials. Eye, 36, 679-680. [Google Scholar] [CrossRef] [PubMed]
[69] Heier, J.S., Singh, R.P., Wykoff, C.C., Csaky, K.G., Lai, T.Y.Y., Loewenstein, A., et al. (2021) The Angiopoietin/Tie Pathway in Retinal Vascular Diseases. Retina, 41, 1-19. [Google Scholar] [CrossRef] [PubMed]