|
[1]
|
Chiu, T.T., Tsai, T.L., Su, M.Y., et al. (2021) The Related Risk Factors of Diabetic Retinopathy in Elderly Patients with Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health, 18, Artilce 307. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Yau, J.W.Y., Rogers, S.L., Kawasaki, R., Lamoureux, E.L., Kowalski, J.W., Bek, T., et al. (2012) Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care, 35, 556-564. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hou, X., Wang, L., Zhu, D., Guo, L., Weng, J., Zhang, M., et al. (2023) Prevalence of Diabetic Retinopathy and Vision-Threatening Diabetic Retinopathy in Adults with Diabetes in China. Nature Communications, 14, Article No. 4296. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Dai, X., Hui, X. and Xi, M. (2025) Critical Factors Driving Diabetic Retinopathy Pathogenesis and a Promising Interventional Strategy. Biomedicine & Pharmacotherapy, 189, Article 18106. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kay, A.M., Simpson, C.L. and Stewart, J.A. (2016) The Role of AGE/RAGE Signaling in Diabetes-Mediated Vascular Calcification. Journal of Diabetes Research, 2016, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Schröder, K., Zhang, M., Benkhoff, S., Mieth, A., Pliquett, R., Kosowski, J., et al. (2012) Nox4 Is a Protective Reactive Oxygen Species Generating Vascular NADPH Oxidase. Circulation Research, 110, 1217-1225. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tiganis, T. (2011) Reactive Oxygen Species and Insulin Resistance: The Good, the Bad and the Ugly. Trends in Pharmacological Sciences, 32, 82-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Rajaram, R.D., Dissard, R., Faivre, A., Ino, F., Delitsikou, V., Jaquet, V., et al. (2019) Tubular NOX4 Expression Decreases in Chronic Kidney Disease but Does Not Modify Fibrosis Evolution. Redox Biology, 26, Artilce 101234. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ardestani, A., Lupse, B., Kido, Y., Leibowitz, G. and Maedler, K. (2018) mTORC1 Signaling: A Double-Edged Sword in Diabetic Β Cells. Cell Metabolism, 27, 314-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Capellen, C.C., Ortega-Rodas, J., Morwitzer, M.J., Tofilau, H.M.N., Dunworth, M., Casero, R.A., et al. (2021) Hyperglycemic Conditions Proliferate Triple Negative Breast Cancer Cells: Role of Ornithine Decarboxylase. Breast Cancer Research and Treatment, 190, 255-264. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Behl, T. and Kotwani, A. (2015) Exploring the Various Aspects of the Pathological Role of Vascular Endothelial Growth Factor (VEGF) in Diabetic Retinopathy. Pharmacological Research, 99, 137-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Li, J., Zhao, S., Wang, P., Yu, S., Zheng, Z. and Xu, X. (2012) Calcium Mediates High Glucose-Induced HIF-1α and VEGF Expression in Cultured Rat Retinal Müller Cells through CaMKII-CREB Pathway. Acta Pharmacologica Sinica, 33, 1030-1036. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Steinberg, G.R. and Hardie, D.G. (2022) New Insights into Activation and Function of the AMPK. Nature Reviews Molecular Cell Biology, 24, 255-272. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Gwinn, D.M., Shackelford, D.B., Egan, D.F., Mihaylova, M.M., Mery, A., Vasquez, D.S., et al. (2008) AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint. Molecular Cell, 30, 214-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Leprivier, G. and Rotblat, B. (2020) How Does mTOR Sense Glucose Starvation? AMPK Is the Usual Suspect. Cell Death Discovery, 6, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Treins, C., Murdaca, J., Obberghen, E.V. and Giorgetti-Peraldi, S. (2006) AMPK Activation Inhibits the Expression of HIF-1α Induced by Insulin and IGF-1. Biochemical and Biophysical Research Communications, 342, 1197-1202. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, Y., Wei, B., Liu, X., Shen, X.Z. and Shi, P. (2020) Microglia, Autonomic Nervous System, Immunity and Hypertension: Is There a Link? Pharmacological Research, 155, Article 104451. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Usui, T., Okada, M., Hara, Y. and Yamawaki, H. (2012) Death-Associated Protein Kinase 3 Mediates Vascular Inflammation and Development of Hypertension in Spontaneously Hypertensive Rats. Hypertension, 60, 1031-1039. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Camargo, L.L., Rios, F.J., Montezano, A.C. and Touyz, R.M. (2024) Reactive Oxygen Species in Hypertension. Nature Reviews Cardiology, 22, 20-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Schiffrin, E.L. (2012) Vascular Remodeling in Hypertension: Mechanisms and Treatment. Hypertension, 59, 367-374. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, Y., Murugesan, P., Huang, K. and Cai, H. (2020) NADPH Oxidases and Oxidase Crosstalk in Cardiovascular Diseases: Novel Therapeutic Targets. Nature Reviews Cardiology, 17, 170-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhang, Z., Zhao, L., Zhou, X., Meng, X. and Zhou, X. (2022) Role of Inflammation, Immunity, and Oxidative Stress in Hypertension: New Insights and Potential Therapeutic Targets. Frontiers in Immunology, 13, Article 1098725. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Olivares-Silva, F., De Gregorio, N., Espitia-Corredor, J., Espinoza, C., Vivar, R., Silva, D., et al. (2021) Resolvin-D1 Attenuation of Angiotensin II-Induced Cardiac Inflammation in Mice Is Associated with Prevention of Cardiac Remodeling and Hypertension. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1867, Article 166241. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yang, Y., Tan, J., He, Y., Huang, H., Wang, T., Gong, J., et al. (2023) Predictive Model for Diabetic Retinopathy under Limited Medical Resources: A Multicenter Diagnostic Study. Frontiers in Endocrinology, 13, Article 1099302. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhu, C., Zhu, J., Wang, L., Xiong, S., Zou, Y., Huang, J., et al. (2023) Development and Validation of a Risk Prediction Model for Diabetic Retinopathy in Type 2 Diabetic Patients. Scientific Reports, 13, Article No. 5034. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Vyas, A., Raman, S., Sen, S., Ramasamy, K., Rajalakshmi, R., Mohan, V., et al. (2023) Machine Learning-Based Diagnosis and Ranking of Risk Factors for Diabetic Retinopathy in Population-Based Studies from South India. Diagnostics, 13, Article 2084. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Li, C., Yu, H., Zhu, Z., Shang, X., Huang, Y., Sabanayagam, C., et al. (2023) Association of Blood Pressure with Incident Diabetic Microvascular Complications among Diabetic Patients: Longitudinal Findings from the UK Biobank. Journal of Global Health, 13, Article 04027. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, C.X., Li, Y., Guo, J.X., et al. (2024) Effect of Hypertension on Retinal Microvasculature in Type 2 Diabetic Patients without Diabetic Retinopathy by OCTA. Journal of Xuzhou Medical University, 44, 607-612.
|
|
[29]
|
Chou, Y., Ma, J., Su, X. and Zhong, Y. (2020) Emerging Insights into the Relationship between Hyperlipidemia and the Risk of Diabetic Retinopathy. Lipids in Health and Disease, 19, Article No. 241. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hammer, S.S. and Busik, J.V. (2017) The Role of Dyslipidemia in Diabetic Retinopathy. Vision Research, 139, 228-236. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chung, Y.R., Lee, S.Y., Kim, Y.H., et al. (2020) Hyperreflective Foci in Diabetic Macular Edema with Serous Retinal Detachment: Association with Dyslipidemia. Acta Diabetologica, 57, 861-866. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Chung, Y.R., Park, S.W., Choi, S.Y., et al. (2017) Association of Statin Use and Hypertriglyceridemia with Diabetic Macular Edema in Patients with Type 2 Diabetes and Diabetic Retinopathy. Cardiovascular Diabetology, 16, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Papavasileiou, E., Davoudi, S., Roohipoor, R., Cho, H., Kudrimoti, S., Hancock, H., et al. (2017) Association of Serum Lipid Levels with Retinal Hard Exudate Area in African Americans with Type 2 Diabetes. Graefe’s Archive for Clinical and Experimental Ophthalmology, 255, 509-517. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Yousri, N.A., Suhre, K., Yassin, E., Al-Shakaki, A., Robay, A., Elshafei, M., et al. (2022) Metabolic and Metabo-Clinical Signatures of Type 2 Diabetes, Obesity, Retinopathy, and Dyslipidemia. Diabetes, 71, 184-205. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kang, P.S. and Neeland, I.J. (2023) Body Fat Distribution, Diabetes Mellitus, and Cardiovascular Disease: An Update. Current Cardiology Reports, 25, 1555-1564. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ibrahim, M.M. (2010) Subcutaneous and Visceral Adipose Tissue: Structural and Functional Differences. Obesity Reviews, 11, 11-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Mårin, P., Andersson, B., Ottosson, M., Olbe, L., Chowdhury, B., Kvist, H., et al. (1992) The Morphology and Metabolism of Intraabdominal Adipose Tissue in Men. Metabolism, 41, 1242-1248. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Schauer, P.R., Bhatt, D.L., Kirwan, J.P., Wolski, K., Aminian, A., Brethauer, S.A., et al. (2017) Bariatric Surgery versus Intensive Medical Therapy for Diabetes—5-Year Outcomes. New England Journal of Medicine, 376, 641-651. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
王爽, 吴树法, 令垚, 等. 基于代谢组学探究非脂质代谢物在肥胖与糖尿病视网膜病变间的中介作用: 孟德尔随机化研究[J]. 中国全科医学, 2025, 28(21): 2625-2634.
|
|
[40]
|
Li, Y., Liu, Y., Liu, S., Gao, M., Wang, W., Chen, K., et al. (2023) Diabetic Vascular Diseases: Molecular Mechanisms and Therapeutic Strategies. Signal Transduction and Targeted Therapy, 8, Article No. 152. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Klein, R., Knudtson, M.D., Lee, K.E., Gangnon, R. and Klein, B.E.K. (2008) The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXII: The Twenty-Five-Year Progression of Retinopathy in Persons with Type 1 Diabetes. Ophthalmology, 115, 1859-1868. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Voigt, M., Schmidt, S., Lehmann, T., Köhler, B., Kloos, C., Voigt, U., et al. (2018) Prevalence and Progression Rate of Diabetic Retinopathy in Type 2 Diabetes Patients in Correlation with the Duration of Diabetes. Experimental and Clinical Endocrinology & Diabetes, 126, 570-576. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Varughese, M.S. and Jacob, S. (2025) Diabetic Retinopathy and Pregnancy: An Overview of the Predictive Risk Factors for Progressive Worsening of Eye Disease during the Antenatal Period. Eye, 39, 812-813. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Pushparani, D.S., Varalakshmi, J., Roobini, K., Hamshapriya, P. and Livitha, A. (2025) Diabetic Retinopathy—A Review. Current Diabetes Reviews, 21, 43-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Thakur, P.S., Aggarwal, D., Takkar, B., Shivaji, S. and Das, T. (2022) Evidence Suggesting the Role of Gut Dysbiosis in Diabetic Retinopathy. Investigative Opthalmology & Visual Science, 63, Article 21. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Vagaja, N.N., Binz, N., McLenachan, S., Rakoczy, E.P. and McMenamin, P.G. (2013) Influence of Endotoxin-Mediated Retinal Inflammation on Phenotype of Diabetic Retinopathy in Ins2 Akita Mice. British Journal of Ophthalmology, 97, 1343-1350. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Huang, Y., Wang, Z., Ma, H., Ji, S., Chen, Z., Cui, Z., et al. (2021) Dysbiosis and Implication of the Gut Microbiota in Diabetic Retinopathy. Frontiers in Cellular and Infection Microbiology, 11, Article 646348. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Gurung, M., Li, Z., You, H., Rodrigues, R., Jump, D.B., Morgun, A., et al. (2020) Role of Gut Microbiota in Type 2 Diabetes Pathophysiology. EBioMedicine, 51, Article 102590. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Beli, E., Yan, Y., Moldovan, L., Vieira, C.P., Gao, R., Duan, Y., et al. (2018) Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice. Diabetes, 67, 1867-1879. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Jayasudha, R., Das, T., Kalyana Chakravarthy, S., Sai Prashanthi, G., Bhargava, A., Tyagi, M., et al. (2020) Gut Mycobiomes Are Altered in People with Type 2 Diabetes Mellitus and Diabetic Retinopathy. PLOS ONE, 15, e0243077. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Suh, S.H., Choe, K., Hong, S.P., Jeong, S., Mäkinen, T., Kim, K.S., et al. (2019) Gut Microbiota Regulates Lacteal Integrity by Inducing VEGF-C in Intestinal Villus Macrophages. EMBO Reports, 20, e46927. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Dean, R.G. and Burrell, L.M. (2007) ACE2 and Diabetic Complications. Current Pharmaceutical Design, 13, 2730-2735. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Duan, Y., Prasad, R., Feng, D., Beli, E., Li Calzi, S., Longhini, A.L.F., et al. (2019) Bone Marrow-Derived Cells Restore Functional Integrity of the Gut Epithelial and Vascular Barriers in a Model of Diabetes and ACE2 Deficiency. Circulation Research, 125, 969-988. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Solomon, S.D., Chew, E., Duh, E.J., Sobrin, L., Sun, J.K., VanderBeek, B.L., et al. (2017) Diabetic Retinopathy: A Position Statement by the American Diabetes Association. Diabetes Care, 40, 412-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2022年) [J]. 中华眼底病杂志, 2023, 39(2): 99-124.
|
|
[56]
|
Kim, H.U., Park, S.P. and Kim, Y. (2021) Long-Term HbA1c Variability and the Development and Progression of Diabetic Retinopathy in Subjects with Type 2 Diabetes. Scientific Reports, 11, Article No. 4731. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Chew, E.Y., Ambrosius, W.T., Davis, M.D., et al. (2010) Effects of Medical Therapies on Retinopathy Progression in Type 2 Diabetes. New England Journal of Medicine, 363, 233-244. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Pan, J., Li, Q., Zhang, L., Jia, L., Tang, J., Bao, Y., et al. (2014) Serum Glycated Albumin Predicts the Progression of Diabetic Retinopathy—A Five Year Retrospective Longitudinal Study. Journal of Diabetes and Its Complications, 28, 772-778. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
He, X., Wen, S., Tang, X., Wen, Z., Zhang, R., Li, S., et al. (2024) Glucagon-Like Peptide-1 Receptor Agonists Rescued Diabetic Vascular Endothelial Damage through Suppression of Aberrant STING Signaling. Acta Pharmaceutica Sinica B, 14, 2613-2630. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Wang, B., Wang, F., Zhang, Y., Zhao, S., Zhao, W., Yan, S., et al. (2015) Effects of RAS Inhibitors on Diabetic Retinopathy: A Systematic Review and Meta-Analysis. The Lancet Diabetes & Endocrinology, 3, 263-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
杨继玲, 邵毅, 裴重刚. 调脂药治疗糖尿病视网膜病变的研究进展[J]. 中华眼底病杂志, 2014, 30(2): 216-219.
|
|
[62]
|
Matlock, H.G., Qiu, F., Malechka, V., Zhou, K., Cheng, R., Benyajati, S., et al. (2020) Pathogenic Role of PPARα Downregulation in Corneal Nerve Degeneration and Impaired Corneal Sensitivity in Diabetes. Diabetes, 69, 1279-1291. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Mansoor, H., Lee, I.X.Y., Lin, M.T., Ang, H.P., Xue, Y.C., Krishaa, L., et al. (2024) Topical and Oral Peroxisome Proliferator-Activated Receptor-α Agonist Ameliorates Diabetic Corneal Neuropathy. Scientific Reports, 14, Article No. 13435. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Chen, Y., Hu, Y., Lin, M., Jenkins, A.J., Keech, A.C., Mott, R., et al. (2013) Therapeutic Effects of PPARα Agonists on Diabetic Retinopathy in Type 1 Diabetes Models. Diabetes, 62, 261-272. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Liu, Q., Zhang, X., Cheng, R., Ma, J., Yi, J. and Li, J. (2019) Salutary Effect of Fenofibrate on Type 1 Diabetic Retinopathy via Inhibiting Oxidative Stress-Mediated Wnt/β-Catenin Pathway Activation. Cell and Tissue Research, 376, 165-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Mandala, A., Armstrong, A., Girresch, B., Zhu, J., Chilakala, A., Chavalmane, S., et al. (2020) Fenofibrate Prevents Iron Induced Activation of Canonical Wnt/β-Catenin and Oxidative Stress Signaling in the Retina. npj Aging and Mechanisms of Disease, 6, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Liu, M., Lim, S.T., Song, W., Coffman, T.M. and Wang, X. (2025) Beyond Lipids: Fenofibrate in Diabetic Retinopathy and Nephropathy. Trends in Pharmacological Sciences, 20, 1-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Sharma, A., Kumar, N., Parachuri, N., Karanam, D., Kuppermann, B.D., Bandello, F., et al. (2022) Faricimab Phase 3 DME Trial Significance of Personalized Treatment Intervals (PTI) Regime for Future DME Trials. Eye, 36, 679-680. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Heier, J.S., Singh, R.P., Wykoff, C.C., Csaky, K.G., Lai, T.Y.Y., Loewenstein, A., et al. (2021) The Angiopoietin/Tie Pathway in Retinal Vascular Diseases. Retina, 41, 1-19. [Google Scholar] [CrossRef] [PubMed]
|