|
[1]
|
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71, 7-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Rahib, L., Smith, B.D., Aizenberg, R., Rosenzweig, A.B., Fleshman, J.M. and Matrisian, L.M. (2014) Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Research, 74, 2913-2921. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zheng, Z.Y., Chen, T. and Liu, Y.B. (2023) Application and Prospect of Artificial Intelligence in Pancreatic Cancer. Chinese Journal of Surgery, 61, 76-80.
|
|
[4]
|
LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 521, 436-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Mollberg, N., Rahbari, N.N., Koch, M., Hartwig, W., Hoeger, Y., Büchler, M.W., et al. (2011) Arterial Resection during Pancreatectomy for Pancreatic Cancer. Annals of Surgery, 254, 882-893. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kwon, J., Shin, S.H., Yoo, D., Hong, S., Lee, J.W., Youn, W.Y., et al. (2020) Arterial Resection during Pancreatectomy for Pancreatic Ductal Adenocarcinoma with Arterial Invasion: A Single-Center Experience with 109 Patients. Medicine, 99, e22115. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Campbell, N.M., Katz, S.S., Escalon, J.G. and Do, R.K. (2015) Imaging Patterns of Intraductal Papillary Mucinous Neoplasms of the Pancreas: An Illustrated Discussion of the International Consensus Guidelines for the Management of IPMN. Abdominal Imaging, 40, 663-677. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kuwahara, T., Hara, K., Mizuno, N., Okuno, N., Matsumoto, S., Obata, M., et al. (2019) Usefulness of Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Clinical and Translational Gastroenterology, 10, e00045. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sharma, A., Kandlakunta, H., Nagpal, S.J.S., Feng, Z., Hoos, W., Petersen, G.M., et al. (2018) Model to Determine Risk of Pancreatic Cancer in Patients with New-Onset Diabetes. Gastroenterology, 155, 730-739.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hsieh, M.H., Sun, L., Lin, C., Hsieh, M., Hsu, C. and Kao, C. (2018) Development of a Prediction Model for Pancreatic Cancer in Patients with Type 2 Diabetes Using Logistic Regression and Artificial Neural Network Models. Cancer Management and Research, 10, 6317-6324. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Boursi, B., Finkelman, B., Giantonio, B.J., Haynes, K., Rustgi, A.K., Rhim, A.D., et al. (2017) A Clinical Prediction Model to Assess Risk for Pancreatic Cancer among Patients with New-Onset Diabetes. Gastroenterology, 152, 840-850.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cui, J., Jiao, F., Li, Q., Wang, Z., Fu, D., Liang, J., et al. (2022) Chinese Society of Clinical Oncology (CSCO): Clinical Guidelines for the Diagnosis and Treatment of Pancreatic Cancer. Journal of the National Cancer Center, 2, 205-215. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Javed, N., Ghazanfar, H., Balar, B. and Patel, H. (2024) Role of Artificial Intelligence in Endoscopic Intervention: A Clinical Review. Journal of Community Hospital Internal Medicine Perspectives, 14, 37-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Seufferlein, T., Bachet, J.B., Van Cutsem, E. and Rougier, P. (2012) Pancreatic Adenocarcinoma: ESMO-ESDO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 23, vii33-vii40. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Bartoli, M., Barat, M., Dohan, A., Gaujoux, S., Coriat, R., Hoeffel, C., et al. (2020) CT and MRI of Pancreatic Tumors: An Update in the Era of Radiomics. Japanese Journal of Radiology, 38, 1111-1124. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Si, K., Xue, Y., Yu, X., Zhu, X., Li, Q., Gong, W., et al. (2021) Fully End-to-End Deep-Learning-Based Diagnosis of Pancreatic Tumors. Theranostics, 11, 1982-1990. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ma, H., Liu, Z., Zhang, J., Wu, F., Xu, C., Shen, Z., et al. (2020) Construction of a Convolutional Neural Network Classifier Developed by Computed Tomography Images for Pancreatic Cancer Diagnosis. World Journal of Gastroenterology, 26, 5156-5168. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Marya, N.B., Powers, P.D., Chari, S.T., Gleeson, F.C., Leggett, C.L., Abu Dayyeh, B.K., et al. (2021) Utilisation of Artificial Intelligence for the Development of an EUS-Convolutional Neural Network Model Trained to Enhance the Diagnosis of Autoimmune Pancreatitis. Gut, 70, 1335-1344. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Karunakaran, M. and Barreto, S.G. (2021) Surgery for Pancreatic Cancer: Current Controversies and Challenges. Future Oncology, 17, 5135-5162. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Augustinus, S., Schafrat, P.J.M., Janssen, B.V., Bonsing, B.A., Brosens, L.A.A., Busch, O.R., et al. (2023) Nationwide Impact of Centralization, Neoadjuvant Therapy, Minimally Invasive Surgery, and Standardized Pathology Reporting on R0 Resection and Overall Survival in Pancreatoduodenectomy for Pancreatic Cancer. Annals of Surgical Oncology, 30, 5051-5060. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Janssen, B.V., Theijse, R., van Roessel, S., de Ruiter, R., Berkel, A., Huiskens, J., et al. (2021) Artificial Intelligence-Based Segmentation of Residual Tumor in Histopathology of Pancreatic Cancer after Neoadjuvant Treatment. Cancers, 13, Article 5089. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Nasief, H., Zheng, C., Schott, D., Hall, W., Tsai, S., Erickson, B., et al. (2019) A Machine Learning Based Delta-Radiomics Process for Early Prediction of Treatment Response of Pancreatic Cancer. npj Precision Oncology, 3, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Fang, C., Zhu, W., Wang, H., Xiang, N., Fan, Y., Yang, J., et al. (2012) A New Approach for Evaluating the Resectability of Pancreatic and Periampullary Neoplasms. Pancreatology, 12, 364-371. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Volonté, F., Pugin, F., Bucher, P., Sugimoto, M., Ratib, O. and Morel, P. (2011) Augmented Reality and Image Overlay Navigation with Osirix in Laparoscopic and Robotic Surgery: Not Only a Matter of Fashion. Journal of Hepato-Biliary-Pancreatic Sciences, 18, 506-509. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Tang, R., Yang, W., Hou, Y., Yu, L., Wu, G., Tong, X., et al. (2021) Augmented Reality-Assisted Pancreaticoduodenectomy with Superior Mesenteric Vein Resection and Reconstruction. Gastroenterology Research and Practice, 2021, Article ID: 9621323. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Pulvirenti, A., Ramera, M. and Bassi, C. (2017) Modifications in the International Study Group for Pancreatic Surgery (ISGPS) Definition of Postoperative Pancreatic Fistula. Translational Gastroenterology and Hepatology, 2, 107-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Callery, M.P., Pratt, W.B., Kent, T.S., Chaikof, E.L. and Vollmer, C.M. (2013) A Prospectively Validated Clinical Risk Score Accurately Predicts Pancreatic Fistula after Pancreatoduodenectomy. Journal of the American College of Surgeons, 216, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Han, I.W., Cho, K., Ryu, Y., Shin, S.H., Heo, J.S., Choi, D.W., et al. (2020) Risk Prediction Platform for Pancreatic Fistula after Pancreatoduodenectomy Using Artificial Intelligence. World Journal of Gastroenterology, 26, 4453-4464. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhang, Y., Zhu, S., Yuan, Z., Li, Q., Ding, R., Bao, X., et al. (2020) Risk Factors and Socio-Economic Burden in Pancreatic Ductal Adenocarcinoma Operation: A Machine Learning Based Analysis. BMC Cancer, 20, Article No. 1161. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lee, K., Jang, J., Yu, Y., Heo, J.S., Han, H., Yoon, Y., et al. (2021) Usefulness of Artificial Intelligence for Predicting Recurrence Following Surgery for Pancreatic Cancer: Retrospective Cohort Study. International Journal of Surgery, 93, Article 106050. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Tong, Z., Liu, Y., Ma, H., Zhang, J., Lin, B., Bao, X., et al. (2020) Development, Validation and Comparison of Artificial Neural Network Models and Logistic Regression Models Predicting Survival of Unresectable Pancreatic Cancer. Frontiers in Bioengineering and Biotechnology, 8, Article No. 196. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Shin, H., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., et al. (2016) Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Transactions on Medical Imaging, 35, 1285-1298. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Shah, P., Mishra, D., Shanmugam, M., Doshi, B., Jayaraj, H. and Ramanjulu, R. (2020) Validation of Deep Convolutional Neural Network-Based Algorithm for Detection of Diabetic Retinopathy—Artificial Intelligence versus Clinician for Screening. Indian Journal of Ophthalmology, 68, 398-405. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Liu, H., Seedat, N. and Ive, J. (2024) Modeling Disagreement in Automatic Data Labeling for Semi-Supervised Learning in Clinical Natural Language Processing. Frontiers in Artificial Intelligence, 7, Article ID: 1374162. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., et al. (2017) Artificial Intelligence in Healthcare: Past, Present and Future. Stroke and Vascular Neurology, 2, 230-243. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Manickam, P., Mariappan, S.A., Murugesan, S.M., Hansda, S., Kaushik, A., Shinde, R., et al. (2022) Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors, 12, Article 562. [Google Scholar] [CrossRef] [PubMed]
|