|
[1]
|
Tuncer, O. and Cirpan, H.A. (2023) Adaptive Fuzzy Based Threat Evaluation Method for Air and Missile Defense Systems. Information Sciences, 643, Article 119191. [Google Scholar] [CrossRef]
|
|
[2]
|
Bajjani-Gebara, J., Hopkins, D., Wasserman, J., Landoll, R. and Keller, M. (2025) Modification of the Adjustment Disorder New Module20 (ADNM-20) for Use in Military Environments (ADNM-20-MIL): A Delphi and Pilot Study. International Journal of Methods in Psychiatric Research, 34, e70021. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wang, J., Pan, C. and Zhang, Q. (2025) Double Weighted Combat Data Quality Evaluation Method Based on CVF Optimized FAHP. Scientific Reports, 15, Article No. 2516. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sam’an, M., Dasril, Y. and Muslim, M.A. (2021) The New Fuzzy Analytical Hierarchy Process with Interval Type-2 Trapezoidal Fuzzy Sets and Its Application. Fuzzy Information and Engineering, 13, 391-419. [Google Scholar] [CrossRef]
|
|
[5]
|
李智强, 王少成, 柴华, 等. 基于AHP和熵权法组合赋权的空间目标威胁评估方法[J]. 信息工程大学学报, 2024, 25(6): 751-756.
|
|
[6]
|
刘涛, 刘宇畅, 胡文权, 等. 基于CRITIC-VIKOR的空域辐射源威胁目标评估[J]. 电子信息对抗技术, 2024, 39(6): 6-14.
|
|
[7]
|
强裕功, 宋贵宝, 刘铁, 等. 基于组合赋权逼近理想解法的岸-海联合防空目标威胁评估[J]. 兵工自动化, 2024, 43(5): 60-65.
|
|
[8]
|
高杨, 李东生. 基于ANP指标权重的相对威胁度评估模型[C]//中国指挥与控制学会. 第三届中国指挥控制大会论文集(下册). 北京: 国防工业出版社, 2015: 314-318.
|
|
[9]
|
王光源, 李浩民, 祝大程, 等. 基于熵权法-灰色关联法的海面目标威胁度评估[J]. 指挥控制与仿真, 2023, 45(4): 57-61.
|
|
[10]
|
赵烨南, 杜伟伟, 陈铁健, 等. 基于集对分析的坦克多目标威胁评估方法[J]. 火力与指挥控制, 2020, 45(6): 108-112.
|
|
[11]
|
苏倩, 钟元芾, 曹志钦, 等. 基于作战态势和改进CRITIC-TOPSIS的目标威胁评估模型[J]. 系统工程与电子技术, 2023, 45(8): 2343-2352.
|
|
[12]
|
宋宝军, 冯卉, 林畅宏. 基于直觉模糊距离测度和VIKOR的反导系统作战效能评估[J]. 弹箭与制导学报, 2021, 41(6): 118-123.
|
|
[13]
|
奚之飞, 徐安, 寇英信, 等. 基于改进GRA-TOPSIS的空战威胁评估[J]. 北京航空航天大学学报, 2020, 46(2): 388-397.
|
|
[14]
|
靳崇, 孙娟, 王永佳, 等. 基于直觉模糊TOPSIS和变权VIKOR的防空目标威胁综合评估[J]. 系统工程与电子技术, 2022, 44(1): 172-180.
|
|
[15]
|
孔德鹏, 常天庆, 郝娜, 等. 地面作战目标威胁评估多属性指标处理方法[J]. 自动化学报, 2021, 47(1): 161-172.
|
|
[16]
|
麻士东, 韩亮, 龚光红, 等. 基于云模型的目标威胁等级评估[J]. 北京航空航天大学学报, 2010, 36(2): 150-153+179.
|
|
[17]
|
汪涛, 周文雅, 郭继唐, 等. 改进高斯云模型及其在装备保障体系能力评估中的应用[J]. 系统工程与电子技术, 2024, 46(5): 1673-1681.
|
|
[18]
|
杨爱武, 李战武, 徐安, 奚之飞, 常一哲. 基于加权动态云贝叶斯网络空战目标威胁评估[J]. 飞行力学, 2020, 38(4): 87-94.
|
|
[19]
|
王昱, 章卫国, 傅莉, 等. 基于不确定性信息的空战威胁评估方法[J]. 西北工业大学学报, 2016, 34(2): 299-305.
|
|
[20]
|
曲宗华, 魏春岭. 一种空间目标异动威胁评估的贝叶斯网络模型[J]. 航天控制, 2023, 41(4): 67-76.
|
|
[21]
|
杨远志, 周中良, 刘宏强, 等. 基于信息熵和粗糙集的空中目标威胁评估方法[J]. 北京航空航天大学学报, 2018, 44(10): 2071-2077.
|
|
[22]
|
杨爱武, 李战武, 徐安, 等. 基于RS-CRITIC的空战目标威胁评估[J]. 北京航空航天大学学报, 2020, 46(12): 2357-2365.
|
|
[23]
|
郭辉, 徐浩军, 刘凌. 基于回归型支持向量机的空战目标威胁评估[J]. 北京航空航天大学学报, 2010, 36(1): 123-126.
|
|
[24]
|
王永坤, 郑世友, 邓晓波. 基于极限学习机的目标智能威胁感知技术[J]. 雷达科学与技术, 2020, 18(4): 387-393.
|
|
[25]
|
宋波涛, 许广亮. 基于LSTM与1DCNN的导弹轨迹预测方法[J]. 系统工程与电子技术, 2023, 45(2): 504-512.
|
|
[26]
|
滕飞, 刘曙, 宋亚飞. BiLSTM-Attention: 一种空中目标战术意图识别模型[J]. 航空兵器, 2021, 28(5): 24-32.
|
|
[27]
|
邵正途, 许登荣, 徐文利, 等. 基于LSTM和残差网络的雷达有源干扰识别[J]. 系统工程与电子技术, 2023, 45(2): 416-423.
|
|
[28]
|
张一凡, 张双辉, 刘永祥, 等. 基于注意力机制的堆叠LSTM网络雷达HRRP序列目标识别方法[J]. 系统工程与电子技术, 2021, 43(10): 2775-2781.
|
|
[29]
|
李文娜, 张顺生, 王文钦. 基于Transformer网络的机载雷达多目标跟踪方法[J]. 雷达学报, 2022, 11(3): 469-478.
|
|
[30]
|
吴冯国, 陶伟, 李辉, 等. 基于深度强化学习算法的无人机智能规避决策[J]. 系统工程与电子技术, 2023, 45(6): 1702-1711.
|
|
[31]
|
Luo, R., Huang, S., Zhao, Y. and Song, Y. (2021) Threat Assessment Method of Low Altitude Slow Small (LSS) Targets Based on Information Entropy and AHP. Entropy, 23, Article 1292. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhao, R., Yang, F., Ji, L. and Bai, Y. (2021) Dynamic Air Target Threat Assessment Based on Interval-Valued Intuitionistic Fuzzy Sets, Game Theory, and Evidential Reasoning Methodology. Mathematical Problems in Engineering, 2021, 1-13. [Google Scholar] [CrossRef]
|
|
[33]
|
Kong, D., Chang, T., Wang, Q., Sun, H. and Dai, W. (2018) A Threat Assessment Method of Group Targets Based on Interval-Valued Intuitionistic Fuzzy Multi-Attribute Group Decision-Making. Applied Soft Computing, 67, 350-369. [Google Scholar] [CrossRef]
|
|
[34]
|
Krishnan, A.R., Kasim, M.M., Hamid, R. and Ghazali, M.F. (2021) A Modified CRITIC Method to Estimate the Objective Weights of Decision Criteria. Symmetry, 13, Article 973. [Google Scholar] [CrossRef]
|
|
[35]
|
Gao, Y. and Lyu, N. (2024) A New Multi-Target Three-Way Threat Assessment Method with Heterogeneous Information and Attribute Relevance. Mathematics, 12, Article 691. [Google Scholar] [CrossRef]
|
|
[36]
|
Gao, Y., Li, D. and Zhong, H. (2020) A Novel Target Threat Assessment Method Based on Three-Way Decisions under Intuitionistic Fuzzy Multi-Attribute Decision Making Environment. Engineering Applications of Artificial Intelligence, 87, Article 103276. [Google Scholar] [CrossRef]
|
|
[37]
|
Fan, C., Fu, Q., Song, Y., Lu, Y., Li, W. and Zhu, X. (2022) A New Model of Interval-Valued Intuitionistic Fuzzy Weighted Operators and Their Application in Dynamic Fusion Target Threat Assessment. Entropy, 24, Article 1825. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Yin, Y., Zhang, R. and Su, Q. (2023) Threat Assessment of Aerial Targets Based on Improved GRA-TOPSIS Method and Three-Way Decisions. Mathematical Biosciences and Engineering, 20, 13250-13266. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Chen, D.F., Feng, Y. and Liu, Y.X. (2015) Threat Assessment for Air Defense Operations Based on Intuitionistic Fuzzy Logic. International Journal of Computational Intelligence Systems, 8, 743-753.
|
|
[40]
|
Ma, S.D., Zhang, H.Z. and Yang, G.Q. (2017) Target Threat Level Assessment Based on Cloud Model under Fuzzy and Uncertain Conditions in Air Combat Simulation. Aerospace Science and Technology, 67, 49-53. [Google Scholar] [CrossRef]
|
|
[41]
|
Li, Y.B., Chen, J., Ye, F. and Liu, D. (2016) The Improvement of DS Evidence Theory and Its Application in IR/MMW Target Recognition. Journal of Sensors, 2016, 1-15. [Google Scholar] [CrossRef]
|
|
[42]
|
Wang, Y., Liu, D.S., Yang, Y., et al. (2023) Target Identity Fusion Method Based on Improved DS Evidence Theory. 2023 3rd International Conference on Electronic Information Engineering and Computer, Shenzhen, 17-19 November 2023, 451-458.
|
|
[43]
|
Huang, F.H., Zhang, Y., Wang, Z.Q., et al. (2021) A Novel Conflict Management Method Based on Uncertainty of Evidence and Reinforcement Learning for Multi-Sensor Information Fusion. Entropy, 23, Article 1222. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zhang, Z., Wang, H.F., Geng, J., et al. (2022) An Information Fusion Method Based on Deep Learning and Fuzzy Discount-Weighting for Target Intention Recognition. Engineering Applications of Artificial Intelligence, 109, Article 104610. [Google Scholar] [CrossRef]
|
|
[45]
|
Wang, Y., Sun, Y., Li, J. and Xia, S. (2012) Air Defense Threat Assessment Based on Dynamic Bayesian Network. 2012 International Conference on Systems and Informatics (ICSAI2012), Yantai, 19-20 May 2012, 721-724. [Google Scholar] [CrossRef]
|
|
[46]
|
Guo, X.X., Ji, J., Khan, F., et al. (2021) A Novel Fuzzy Dynamic Bayesian Network for Dynamic Risk Assessment and Uncertainty Propagation Quantification in Uncertainty Environment. Safety Science, 141, Article 105285. [Google Scholar] [CrossRef]
|
|
[47]
|
Xia, J.Y., Pi, Z.Y. and Fang, W.G. (2021) Predicting War Outcomes Based on a Fuzzy Influence Diagram. International Journal of Fuzzy Systems, 23, 984-1002.
|
|
[48]
|
Wang, J.X., Wang, X., Chen, Y.Y., et al. (2025) Model Adaptive Kalman Filter for Maneuvering Target Tracking Based on Variational Inference. Electronics, 14, Article 1908. [Google Scholar] [CrossRef]
|
|
[49]
|
Zhai, S.J. and Jiang, T. (2015) A New Sense-through-Foliage Target Recognition Method Based on Hybrid Differential Evolution and Self-Adaptive Particle Swarm Optimization-Based Support Vector Machine. Neurocomputing, 149, 573-584. [Google Scholar] [CrossRef]
|
|
[50]
|
Deng, Y. and Deng, Y. (2022) A Method of SAR Image Automatic Target Recognition Based on Convolution Auto-Encode and Support Vector Machine. Remote Sensing, 14, Article 5559. [Google Scholar] [CrossRef]
|
|
[51]
|
Liu, J., Xu, Q.Y. and Chen, W.S. (2021) Classification of Bird and Drone Targets Based on Motion Characteristics and Random Forest Model Using Surveillance Radar Data. IEEE Access, 9, 160135-160144. [Google Scholar] [CrossRef]
|
|
[52]
|
Song, R.Q., Liu, B.L., Xue, S.Q., et al. (2023) Air Target Threat Assessment: A Kernel Extreme Learning Machine Based on a Multi-Strategy Improved Sparrow Search Algorithm. Mathematical Problems in Engineering, 2023, 1-14 [Google Scholar] [CrossRef]
|
|
[53]
|
Zhao, F., Liu, Y., Huo, K., Zhang, S. and Zhang, Z. (2018) Radar HRRP Target Recognition Based on Stacked Autoencoder and Extreme Learning Machine. Sensors, 18, Article 173. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Cao, Y., Kou, Y., Xu, A. and Xi, Z. (2021) Target Threat Assessment in Air Combat Based on Improved Glowworm Swarm Optimization and ELM Neural Network. International Journal of Aerospace Engineering, 2021, 1-19. [Google Scholar] [CrossRef]
|
|
[55]
|
Tong, Z., Xu, P. and Denœux, T. (2021) An Evidential Classifier Based on Dempster-Shafer Theory and Deep Learning. Neurocomputing, 450, 275-293. [Google Scholar] [CrossRef]
|
|
[56]
|
Zhang, Y., Gao, X., Peng, X., Ye, J. and Li, X. (2018) Attention-Based Recurrent Temporal Restricted Boltzmann Machine for Radar High Resolution Range Profile Sequence Recognition. Sensors, 18, Article 1585. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Wang, J., Liu, J., Ren, P. and Qin, C.X. (2020) A SAR Target Recognition Based on Guided Reconstruction and Weighted Norm-Constrained Deep Belief Network. IEEE Access, 8, 181712-181722. [Google Scholar] [CrossRef]
|
|
[58]
|
Qin, C.H., Song, X.C. and Chen, H. (2020) Radar Behavior Classification Based on DBN. 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, 11-13 December 2020, 1169-1173. [Google Scholar] [CrossRef]
|
|
[59]
|
Zhang, L.L., Cheng, B.Z. and Lin, F. (2022) Hyperspectral Anomaly Detection via Fractional Fourier Transform and Deep Belief Networks. Infrared Physics & Technology, 125, Article 104314. [Google Scholar] [CrossRef]
|
|
[60]
|
Yu, J.M., Zhou, G.Y., Zhou, S.B., et al. (2021) A Lightweight Fully Convolutional Neural Network for SAR Automatic Target Recognition. Remote Sensing, 13, Article 3029. [Google Scholar] [CrossRef]
|
|
[61]
|
Zang, B., Ding, L.L., Feng, Z.P., et al. (2021) CNN-LRP: Understanding Convolutional Neural Networks Performance for Target Recognition in SAR Images. Sensors, 21, Article 4536. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
d’Acremont, A., Fablet, R., Baussard, A. and Quin, G. (2019) CNN-Based Target Recognition and Identification for Infrared Imaging in Defense Systems. Sensors, 19, Article 2040. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Chen, Y., Li, L. and Liu, X. (2025) HMCNet: Hybrid State Space Model and CNN for Infrared Small Target Detection. Remote Sensing, 17, Article 452.
|
|
[64]
|
Fan, M.M., Tian, S.Q., Liu, K., et al. (2021) Infrared Small Target Detection Based on Region Proposal and CNN Classifier. Signal, Image and Video Processing, 15, 1927-1936. [Google Scholar] [CrossRef]
|
|
[65]
|
Geng, Z., Yan, H., Zhang, J. and Zhu, D. (2021) Deep-Learning for Radar: A Survey. IEEE Access, 9, 141800-141818. [Google Scholar] [CrossRef]
|
|
[66]
|
Cao, B., Xing, Q.H., Li, L.Y., et al. (2025) An Air Target Intention Data Extension and Recognition Model Based on Deep Learning. Scientific Reports, 15, Article No. 13894. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Fu, Q., Fan, C.L. and Heng, Y. (2023) Air Defense Intelligent Weapon Target Assignment Method Based on Deep Reinforcement Learning. Proceedings of the 7th International Conference on Control Engineering and Artificial Intelligence, New York, 18-20 January 2023, 157-161.
|
|
[68]
|
Yang, Z., Yu, W., Liang, P.W., et al. (2018) Deep Transfer Learning for Military Object Recognition under Small Training Set Condition. Neural Computing and Applications, 31, 6469-6478. [Google Scholar] [CrossRef]
|
|
[69]
|
Zhang, Y.K., Guo, X.S., Leung, H. and Li, L. (2023) Ross-Task and Cross-Domain SAR Target Recognition: A Meta-Transfer Learning Approach. Pattern Recognition, 138, Article 109402. [Google Scholar] [CrossRef]
|
|
[70]
|
Du, X.L., Song, L.K., Lv, Y.N., et al. (2022) A Lightweight Military Target Detection Algorithm Based on Improved YOLOv5. Electronics, 11, Article 3263. [Google Scholar] [CrossRef]
|
|
[71]
|
Sun, Y., Wang, J.Z., You, Y., et al. (2025) YOLO-E: A Lightweight Object Detection Algorithm for Military Targets. Signal, Image and Video Processing, 19, Article No. 241. [Google Scholar] [CrossRef]
|
|
[72]
|
Zhuang, X.N., Li, D.G., Wang, Y., et al. (2024) Military Target Detection Method Based on EfficientDet and Generative Adversarial Network. Engineering Applications of Artificial Intelligence, 132, Article 107896. [Google Scholar] [CrossRef]
|
|
[73]
|
Oghim, S., Kim, Y., Bang, H., Lim, D. and Ko, J. (2024) SAR Image Generation Method Using DH-GAN for Automatic Target Recognition. Sensors, 24, Article 670. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Teng, F., Song, Y., Wang, G., Zhang, P., Wang, L. and Zhang, Z. (2021) A GRU-Based Method for Predicting Intention of Aerial Targets. Computational Intelligence and Neuroscience, 2021, Article 6082242. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Wang, Y.H., Wang, J., Fan, S.P., et al. (2023) Quick Intention Identification of an Enemy Aerial Target through Information Classification Processing. Aerospace Science and Technology, 132, Article 108005. [Google Scholar] [CrossRef]
|
|
[76]
|
Zhang, C.H., Zhou, Y., Li, H., et al. (2023) Combat Intention Recognition of Air Targets Based on 1DCNN-BILSTM. IEEE Access, 11, 134504-134516. [Google Scholar] [CrossRef]
|
|
[77]
|
Liu, J., Albrethsen, J., Goh, L., Yau, D. and Lim, K.H. (2024). Spatial-Temporal Graph Representation Learning for Tactical Networks Future State Prediction. 2024 International Joint Conference on Neural Networks (IJCNN), Yokohama, 30 June-5 July 2024, 1-8.[CrossRef]
|