|
[1]
|
Siegel, R.L., Giaquinto, A.N. and Jemal, A. (2024) Cancer Statistics, 2024. CA: A Cancer Journal for Clinicians, 74, 12-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Marcazzan, S., Varoni, E.M., Blanco, E., Lodi, G. and Ferrari, M. (2018) Nanomedicine, an Emerging Therapeutic Strategy for Oral Cancer Therapy. Oral Oncology, 76, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Quehenberger, O. and Dennis, E.A. (2011) The Human Plasma Lipidome. New England Journal of Medicine, 365, 1812-1823. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Butler, L.M., Perone, Y., Dehairs, J., Lupien, L.E., de Laat, V., Talebi, A., et al. (2020) Lipids and Cancer: Emerging Roles in Pathogenesis, Diagnosis and Therapeutic Intervention. Advanced Drug Delivery Reviews, 159, 245-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Abdul Rahman, M., Mohamad Haron, D.E., Hollows, R.J., Abdul Ghani, Z.D.F., Ali Mohd, M., Chai, W.L., et al. (2020) Profiling Lysophosphatidic Acid Levels in Plasma from Head and Neck Cancer Patients. PeerJ, 8, e9304. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wang, N., Chen, Y., Lin, J., Lin, Y., Song, H., Huang, W., et al. (2025) Identification of Novel Serum Lipid Metabolism Potential Markers and Metabolic Pathways for Oral Cancer: A Population-Based Study. BMC Cancer, 25, Article No. 177. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., et al. (2021) Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. Signal Transduction and Targeted Therapy, 6, Article No. 263. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Khandia, R. and Munjal, A. (2020) Interplay between Inflammation and Cancer. Advances in Protein Chemistry and Structural Biology, 119, 199-245.
|
|
[9]
|
Patel, P., Patel, J., Shah, F. and Joshi, G. (2016) Clinical Significance of Inflammatory Mediators in the Pathogenesis of Oral Cancer. Journal of Cancer Research and Therapeutics, 12, 447-457. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Feller, L., Altini, M. and Lemmer, J. (2013) Inflammation in the Context of Oral Cancer. Oral Oncology, 49, 887-892. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Martin-Perez, M., Urdiroz-Urricelqui, U., Bigas, C. and Benitah, S.A. (2022) The Role of Lipids in Cancer Progression and Metastasis. Cell Metabolism, 34, 1675-1699. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wang, N., Yao, T., Luo, C., Sun, L., Wang, Y. and Hou, S.X. (2023) Blockade of Arf1-Mediated Lipid Metabolism in Cancers Promotes Tumor Infiltration of Cytotoxic T Cells via the LPE-PPARγ-NF-κB-CCL5 Pathway. Life Metabolism, 2, load036. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Guo, Q., Jin, Y., Chen, X., Ye, X., Shen, X., Lin, M., et al. (2024) NF-κB in Biology and Targeted Therapy: New Insights and Translational Implications. Signal Transduction and Targeted Therapy, 9, Article No. 53. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Alarcón-Vila, C., Pizzuto, M. and Pelegrín, P. (2019) Purinergic Receptors and the Inflammatory Response Mediated by Lipids. Current Opinion in Pharmacology, 47, 90-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Freire, M.O. and Van Dyke, T.E. (2013) Natural Resolution of Inflammation. Periodontology 2000, 63, 149-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Valdez, J.A. and Brennan, M.T. (2018) Impact of Oral Cancer on Quality of Life. Dental Clinics of North America, 62, 143-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lam, S.M. and Shui, G. (2013) Lipidomics as a Principal Tool for Advancing Biomedical Research. Journal of Genetics and Genomics, 40, 375-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Dickinson, A., Saraswat, M., Joenväärä, S., Agarwal, R., Jyllikoski, D., Wilkman, T., et al. (2020) Mass Spectrometry-Based Lipidomics of Oral Squamous Cell Carcinoma Tissue Reveals Aberrant Cholesterol and Glycerophospholipid Metabolism—A Pilot Study. Translational Oncology, 13, Article 100807. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wichitsranoi, J., Ladawan, S., Sirijaichingkul, S., Settasatian, N. and Leelayuwat, N. (2015) Relationship between Aerobic Capacity and Cardiovascular Disease Risk Factors in Thai Men and Women with Normolipidemia and Dyslipidemia. Journal of Physical Therapy Science, 27, 3503-3509. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
张文超, 王汉宁, 萧金丰, 等. microRNA-449通过调控SIRT1相关的脂质代谢途径抑制HepG 2.2.15细胞增殖[J]. 国外医学: 病毒学分册, 2015, 22(4): 221-228.
|
|
[21]
|
White, C.P. (2010) On the Occurrence of Crystals in Tumours. The Journal of Pathology and Bacteriology, 13, 3-10. [Google Scholar] [CrossRef]
|
|
[22]
|
Mieno, M.N., Sawabe, M., Tanaka, N., Nakahara, K., Hamamatsu, A., Chida, K., et al. (2014) Significant Association between Hypolipoproteinemia(a) and Lifetime Risk of Cancer: An Autopsy Study from a Community-Based Geriatric Hospital. Cancer Epidemiology, 38, 550-555. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Win, A.K., MacInnis, R.J., Hopper, J.L. and Jenkins, M.A. (2012) Risk Prediction Models for Colorectal Cancer: A Review. Cancer Epidemiology, Biomarkers & Prevention, 21, 398-410. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Liu, C., Hsu, H., Li, C., Jan, C., Li, T., Lin, W., et al. (2010) Central Obesity and Atherogenic Dyslipidemia in Metabolic Syndrome Are Associated with Increased Risk for Colorectal Adenoma in a Chinese Population. BMC Gastroenterology, 10, Article No. 51. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Santos, C.R. and Schulze, A. (2012) Lipid Metabolism in Cancer. The FEBS Journal, 279, 2610-2623. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Pavlova, N.N. and Thompson, C.B. (2016) The Emerging Hallmarks of Cancer Metabolism. Cell Metabolism, 23, 27-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Cotte, A.K., Aires, V., Fredon, M., Limagne, E., Derangère, V., Thibaudin, M., et al. (2018) Lysophosphatidylcholine Acyltransferase 2-Mediated Lipid Droplet Production Supports Colorectal Cancer Chemoresistance. Nature Communications, 9, Article No. 322. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Koundouros, N. and Poulogiannis, G. (2020) Reprogramming of Fatty Acid Metabolism in Cancer. British Journal of Cancer, 122, 4-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Maan, M., Peters, J.M., Dutta, M. and Patterson, A.D. (2018) Lipid Metabolism and Lipophagy in Cancer. Biochemical and Biophysical Research Communications, 504, 582-589. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Schiliro, C. and Firestein, B.L. (2021) Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells, 10, Article 1056. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Murph, M., Tanaka, T., Pang, J., Felix, E., Liu, S., Trost, R., et al. (2007) Liquid Chromatography Mass Spectrometry for Quantifying Plasma Lysophospholipids: Potential Biomarkers for Cancer Diagnosis. Methods in Enzymology, 433, 1-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Grivennikov, S.I., Greten, F.R. and Karin, M. (2010) Immunity, Inflammation, and Cancer. Cell, 140, 883-899. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Rodier, F., Coppé, J., Patil, C.K., Hoeijmakers, W.A.M., Muñoz, D.P., Raza, S.R., et al. (2009) Persistent DNA Damage Signalling Triggers Senescence-Associated Inflammatory Cytokine Secretion. Nature Cell Biology, 11, 973-979. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Rokavec, M., Öner, M.G. and Hermeking, H. (2015) Lnflammation-Induced Epigenetic Switches in Cancer. Cellular and Molecular Life Sciences, 73, 23-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Thanan, R., Oikawa, S., Yongvanit, P., Hiraku, Y., Ma, N., Pinlaor, S., et al. (2012) Inflammation-Induced Protein Carbonylation Contributes to Poor Prognosis for Cholangiocarcinoma. Free Radical Biology and Medicine, 52, 1465-1472. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kim, T.W., Febbraio, M., Robinet, P., DuGar, B., Greene, D., Cerny, A., et al. (2011) The Critical Role of IL-1 Receptor-Associated Kinase 4-Mediated NF-κB Activation in Modified Low-Density Lipoprotein-Induced Inflammatory Gene Expression and Atherosclerosis. The Journal of Immunology, 186, 2871-2880. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Welch, J.S., Ricote, M., Akiyama, T.E., Gonzalez, F.J. and Glass, C.K. (2003) PPARγ and PPARδ Negatively Regulate Specific Subsets of Lipopolysaccharide and IFN-γ Target Genes in Macrophages. Proceedings of the National Academy of Sciences, 100, 6712-6717. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Luo, D., Cao, D., Xiong, Y., Peng, X. and Liao, D. (2010) A Novel Model of Cholesterol Efflux from Lipid-Loaded Cells. Acta Pharmacologica Sinica, 31, 1243-1257. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Luo, D., Cheng, J., Xiong, Y., Li, J., Xia, C., Xu, C., et al. (2010) Static Pressure Drives Proliferation of Vascular Smooth Muscle Cells via Caveolin-1/ERK1/2 Pathway. Biochemical and Biophysical Research Communications, 391, 1693-1697. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Sowa, G. (2012) Caveolae, Caveolins, Cavins, and Endothelial Cell Function: New Insights. Frontiers in Physiology, 2, Article ID: 120. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yuan, K., Huang, C., Fox, J., Gaid, M., Weaver, A., Li, G., et al. (2011) Elevated Inflammatory Response in Caveolin-1-Deficient Mice with Pseudomonas Aeruginosa Infection Is Mediated by STAT3 Protein and Nuclear Factor κB (NF-κB). Journal of Biological Chemistry, 286, 21814-21825. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Katan, M. (1986) Apoupoprotein E Isoforms, Serum Cholesterol, and Cancer. The Lancet, 327, 507-508. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Sekula, P., Del Greco M, F., Pattaro, C. and Köttgen, A. (2016) Mendelian Randomization as an Approach to Assess Causality Using Observational Data. Journal of the American Society of Nephrology, 27, 3253-3265. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Martens, E.P., Pestman, W.R., de Boer, A., Belitser, S.V. and Klungel, O.H. (2006) Instrumental Variables: Application and Limitations. Epidemiology, 17, 260-267. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Baiocchi, M., Cheng, J. and Small, D.S. (2014) Instrumental Variable Methods for Causal Inference. Statistics in Medicine, 33, 2297-2340. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Lawlor, D.A., Harbord, R.M., Sterne, J.A.C., Timpson, N. and Davey Smith, G. (2008) Mendelian Randomization: Using Genes as Instruments for Making Causal Inferences in Epidemiology. Statistics in Medicine, 27, 1133-1163. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Neeland, I.J. and Kozlitina, J. (2017) Mendelian Randomization. Circulation, 135, 755-758. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Piper, M.R., Freedman, D.M., Robien, K., Kopp, W., Rager, H., Horst, R.L., et al. (2015) Vitamin D-Binding Protein and Pancreatic Cancer: A Nested Case-Control Study. The American Journal of Clinical Nutrition, 101, 1206-1215. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Stolzenberg-Solomon, R.Z., Jacobs, E.J., Arslan, A.A., Qi, D., Patel, A.V., Helzlsouer, K.J., et al. (2010) Circulating 25-Hydroxyvitamin D and Risk of Pancreatic Cancer: Cohort Consortium Vitamin D Pooling Project of Rarer Cancers. American Journal of Epidemiology, 172, 81-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Thanassoulis, G. and O’Donnell, C.J. (2009) Mendelian Randomization: Nature’s Randomized Trial in the Post-Genome Era. JAMA, 301, 2386-2388. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Burgess, S., Butterworth, A. and Thompson, S.G. (2013) Mendelian Randomization Analysis with Multiple Genetic Variants Using Summarized Data. Genetic Epidemiology, 37, 658-665. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Burgess, S. and Labrecque, J.A. (2018) Mendelian Randomization with a Binary Exposure Variable: Interpretation and Presentation of Causal Estimates. European Journal of Epidemiology, 33, 947-952. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Wang, Y., Localio, R. and Rebbeck, T.R. (2006) Evaluating Bias Due to Population Stratification in Epidemiologic Studies of Gene-Gene or Gene-Environment Interactions. Cancer Epidemiology, Biomarkers & Prevention, 15, 124-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Sanderson, E. (2020) Multivariable Mendelian Randomization and Mediation. Cold Spring Harbor Perspectives in Medicine, 11, a038984. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Burgess, S., Bowden, J., Fall, T., Ingelsson, E. and Thompson, S.G. (2017) Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants. Epidemiology, 28, 30-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Jiang, L., Zheng, Z., Fang, H. and Yang, J. (2021) A Generalized Linear Mixed Model Association Tool for Biobank-Scale Data. Nature Genetics, 53, 1616-1621. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Ottensmann, L., Tabassum, R., Ruotsalainen, S.E., Gerl, M.J., Klose, C., Widén, E., et al. (2023) Genome-Wide Association Analysis of Plasma Lipidome Identifies 495 Genetic Associations. Nature Communications, 14, Article No. 6934. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Zhao, J.H., Stacey, D., Eriksson, N., Macdonald-Dunlop, E., Hedman, Å.K., Kalnapenkis, A., et al. (2023) Genetics of Circulating Inflammatory Proteins Identifies Drivers of Immune-Mediated Disease Risk and Therapeutic Targets. Nature Immunology, 24, 1540-1551. [Google Scholar] [CrossRef] [PubMed]
|