口腔鳞癌免疫代谢重编程:从机制到临床转化
Immune Metabolic Reprogramming in Oral Squamous Cell Carcinoma: From Mechanisms to Clinical Translation
摘要: 在口腔鳞状细胞癌中,代谢特征与免疫反应间相互影响,免疫代谢在细胞增殖、分化和功能反应中起着关键作用。肿瘤微环境(TME)对免疫细胞的正常功能施加了多重障碍,包括代谢挑战和免疫抑制微环境。同时肿瘤细胞代谢活性的增强会导致免疫细胞所需关键营养物质的消耗或通过代谢物或信号通路调节免疫细胞功能,从而促进口腔鳞状细胞癌进展或免疫逃避。因此,靶向代谢网络来重编程免疫细胞表型并增强抗肿瘤免疫力,对于临床转化具有重要的前景。本综述重点探讨了OSCC肿瘤微环境中葡萄糖、氨基酸和脂质代谢改变对免疫细胞代谢和功能的影响以及总结了各种免疫细胞亚群特有的代谢重编程。最后,探讨了靶向代谢检查点的潜在策略,旨在为开发新型免疫疗法提供新的思路。
Abstract: In oral squamous cell carcinoma, metabolic characteristics and immune responses interact reciprocally, with immunometabolism playing a pivotal role in cellular proliferation, differentiation, and functional responses. The tumor microenvironment (TME) imposes multiple barriers to normal immune cell function, including metabolic challenges and an immunosuppressive microenvironment. Concurrently, enhanced metabolic activity in tumor cells depletes key nutrients required by immune cells or modulates immune cell function via metabolites or signaling pathways, thereby promoting oral squamous cell carcinoma progression or immune evasion. Consequently, targeting metabolic networks to reprogram immune cell phenotypes and enhance antitumor immunity holds significant promise for clinical translation. This review focuses on examining the impact of altered glucose, amino acid, and lipid metabolism in the OSCC tumor microenvironment on immune cell metabolism and function, while summarizing metabolism-specific reprogramming across various immune cell subsets. Finally, potential strategies targeting metabolic checkpoints are explored to provide novel insights for developing novel immunotherapies.
文章引用:李文昕, 鲁文轩, 杨凯. 口腔鳞癌免疫代谢重编程:从机制到临床转化[J]. 临床医学进展, 2025, 15(12): 629-638. https://doi.org/10.12677/acm.2025.15123452

1. 引言

口腔癌是头颈部常见的恶性肿瘤,其中90%以上为口腔鳞状细胞癌[1] (oral squamous cell carcinoma, OSCC)。其特点是会导致面部外形及相关功能障碍,例如吞咽、说话等,对患者的生活质量有重大影响[2]。口腔癌是全球重大的公共卫生挑战,全球每年新发病例分别为377,713例[3]。OSCC传统治疗方法通常为以手术为主,放疗、化疗相结合的综合序列治疗[4],但OSCC患者五年生存率仅在50%~60%之间[5]。免疫疗法作为一种新型治疗方式在OSCC的治疗中具有广阔的治疗前景,特别是抗PD-1/PD-L1药物通过阻断免疫检查点的抑制信号来促进抗肿瘤免疫反应[6]。免疫疗法的疗效与肿瘤细胞和肿瘤微环境(TME)中免疫调节因子的相互作用密切相关,肿瘤微环境在抑制或增强免疫反应方面发挥着重要作用[7]

肿瘤细胞及周围复杂的生态系统称为肿瘤微环境(TME) [8],OSCC的发生发展与TME失调密切相关。代谢重编程是指肿瘤细胞及周围免疫细胞等改变自身代谢模式以适应TME中缺氧、营养匮乏等环境,不同细胞之间的相互作用利于肿瘤的发生发展[9]。肿瘤细胞中的代谢重编程是随着肿瘤类型以及TME环境改变而变化的,并且涉及多种代谢途径,例如糖代谢、氨基酸代谢、脂质代谢等[10]。肿瘤细胞的代谢改变创造了更有利于自身生长的环境,促进肿瘤的生长。同时这种改变还能影响免疫细胞功能,抑制抗肿瘤免疫反应等。

免疫细胞通过特定的代谢途径执行其免疫应答功能,抑制癌细胞生长,或促进癌细胞的生长或转移[11]。研究表明肿瘤相关巨噬细胞既可以通过己糖胺生物合成途径增强其促肿瘤生长功能也能通过葡萄糖代谢增强溶酶体组织蛋白酶,促进肿瘤转移和对化疗的耐药性[12]。同时随TME环境改变的免疫细胞代谢过程会导致炎症反应、抗肿瘤等免疫功能减弱,有助于肿瘤细胞免疫逃逸[13]

免疫代谢是指代谢与免疫反应之间的相互作用[14],而通过干预代谢来改善免疫细胞功能,是增强肿瘤免疫治疗效果的新型策略。在本综述中,我们着重探讨了在OSCC中代谢和免疫细胞的相互影响以及免疫代谢相关的最新进展,总结了不同免疫细胞常见的代谢重编程类型。此外我们还讨论了在OSCC中当前靶向代谢的治疗策略,旨在将代谢重编程应用于OSCC的免疫治疗,提高OSCC免疫治疗疗效。

2. 肿瘤细胞代谢与免疫细胞代谢的竞争

在TME中高代谢活性的肿瘤细胞争夺营养物质,包括葡萄糖、谷氨酰胺、脂质等,这些营养物质也是免疫细胞发挥其功能所必需的,两者之间的营养物质竞争会影响免疫细胞的功能,从而导致肿瘤的进展。同时在OSCC中肿瘤细胞中不同代谢通路之间的相互作用,当谷氨酰胺被剥夺时,它们能通过上调LDLR增强对外源性脂质的摄取,并激活PPARα信号通路,利用脂肪酸氧化来维持生存,绕过了对特定营养的依赖。这种代偿机制也是导致耐药的原因之一[15]

2.1. 葡萄糖竞争

在TME中肿瘤细胞发生葡萄糖代谢重编程,是一种典型的肿瘤代谢特征。与正常细胞不同,肿瘤细胞就算在有氧环境中也主动进行有氧糖酵解来满足其更高的能量需求,该现象称为Warburg效应[16]。糖酵解导致乳酸水平升高和pH值呈酸性,这会对TME中细胞产生影响[17]。在口腔鳞状细胞癌中存在Warburg效应,主要表现为加速摄取葡萄糖[18]。为了满足恶性肿瘤的快速生长,肿瘤对营养的需求显着增加,肿瘤糖酵解能力是正常细胞的20~30倍[19],同时OSCC基本上位于葡萄糖缺乏的微环境中[20]。此外,TME中浸润的免疫细胞(包括效应T细胞)在增殖、分化及功能发挥过程中严重依赖糖酵解供能[21]。这种代谢依赖性导致了肿瘤细胞与免疫细胞之间对葡萄糖等营养物质的激烈竞争,这种能量竞争可能会影响CD8+T细胞的免疫功能,促进T细胞功能耗竭和免疫逃逸[22]。虽然NK细胞与肿瘤细胞之间的葡萄糖竞争尚未得到直接证实,但活化的NK细胞高度依赖糖酵解提供能量和生物合成前体,因此这种营养竞争很可能显著存在。例如,有研究发现,在体外实验中减缓糖酵解的速度后,经细胞因子刺激的NK细胞的IFNγ产生显著降低[23],这提示在肿瘤微环境中类似的代谢竞争很可能损害NK细胞的抗肿瘤活性。此外乳酸的积累不仅支持癌细胞增殖所需的快速ATP生成,还会酸化微环境,促进肿瘤侵袭并帮助其逃避免疫监视,并促进固有免疫细胞[24]和适应性免疫细胞的免疫抑制表型[25]。乳酸积累导致的酸性pH值也会阻碍炎症细胞因子的释放,而这些炎症细胞因子对于辅助性T细胞极化和炎症树突状细胞的分化至关重要[26]。乳酸不稳定,会迅速转化为丙酮酸,导致生成和清除之间的失衡,这会导致丙酮酸在口腔或血液中积累。临床研究表明,OSCC患者的血清丙酮酸水平显著高于健康个体[27]

2.2. 氨基酸剥夺

在TME各种代谢改变中,对肿瘤影响深远的氨基酸代谢失调受到越来越多的关注[28]。氨基酸作为蛋白质的组成部分和重要的信号分子,通过能量生成、氧化还原稳态、核苷酸合成及表观遗传调控来支持癌细胞存活并进一步诱导治疗耐药性,大量的氨基酸有利于癌细胞满足其增殖驱动力[29]。在肿瘤发生发展过程中,肿瘤细胞上调了氨基酸的吸收速率,其氨基酸代谢重编程的特点是氨基酸、代谢物和关键酶的吸收率异常[30]。谷氨酰胺代谢在OSCC中起着重要作用,该代谢与核苷酸(嘌呤和嘧啶)或蛋白质的生物合成以及抗氧化剂(谷胱甘肽)功能有关[31]。OSCC细胞常高表达谷氨酰胺转运蛋白SLC1A5/ASCT2,以促进谷氨酰胺的摄取[32]。在TME中谷氨酰胺大量消耗会影响免疫细胞效应功能[33],谷氨酰胺的缺乏会导致效应T细胞的蛋白质表达减少、生长受限和免疫功能受损。同时T细胞的活化与谷氨酰胺浓度密切相关,谷氨酰胺浓度降低也会导致B细胞产生抗体(IgG、IgM)减少。此外,NK细胞也依赖谷氨酰胺,谷氨酰胺的剥夺会损害其免疫功能。谷氨酰胺会影响CD8+ T细胞的增殖,其缺失会加速CD8+ T细胞的耗竭[34]。并且研究表明阻断谷氨酰胺可以诱导不同的代谢过程,从而克服肿瘤的免疫逃逸[35],这表明靶向谷氨酰胺代谢可能对抗肿瘤免疫治疗产生积极影响。

2.3. 脂质代谢干扰

在TME中肿瘤细胞脂质代谢重编程以适应其生长需求,其显著特征为脂肪酸(FA)摄取、合成和交换增强[36]。肿瘤细胞通过摄取脂肪酸(FA)以支持其异常增殖,这一过程主要依赖多种位于质膜上的脂肪酸转运蛋白,包括CD36、溶质载体家族27 (SLC27)成员以及脂肪酸结合蛋白(FABP)家族[37]。研究表明转运体CD36在OSCC中高表达,并参与OSCC的增殖、迁移以及淋巴结转移[38]。CD36有助于抑制免疫效应细胞,例如CD8+ T细胞可以通过CD36增加脂肪酸导致铁死亡和免疫效应功能减弱[39],Treg和髓源性抑制细胞(MDSC)由于通过CD36增强了脂质代谢而具有增强的免疫抑制功能[40]。一项研究显示CD36抑制剂用于靶向OSCC中的脂质代谢,并且它不仅显示出直接的抗肿瘤作用,而且还在体外和体内增强了抗肿瘤免疫反应。一项研究显示靶向CD36的抑制剂可通过调节口腔鳞状细胞癌(OSCC)的脂质代谢过程,不仅直接抑制肿瘤生长,并且能够在体外及体内实验模型中显著增强抗肿瘤免疫应答[41]。肿瘤细胞增加脂肪酸(FA)摄取,TME中的免疫细胞以及肿瘤细胞存在脂质竞争,免疫细胞可能无法获得足够的脂肪酸。但大多数时候,TME中富含脂质且游离脂肪酸高于正常水平[42],脂滴的积累会导致CD8+ T细胞活化减少和T细胞耗竭增加[43]

3. 免疫细胞代谢重编程在OSCC中的作用

3.1. T细胞

T细胞的亚型不同则代谢途径不同,同时代谢重编程程度也会随着T细胞的分化程度和功能改变[44]。T细胞的免疫功能依赖于其独特的代谢特性,静息状态下的T细胞优先依赖氧化磷酸化途径产生能量,该途径产能效率高,但过程缓慢且依赖氧气供应。当T细胞识别抗原并被激活时,其代谢程序迅速发生重编程,即使在氧含量充足的环境,也优先通过糖酵解为主的能量供应方式满足T细胞生长与功能分化的需求。同时活化T细胞通过加强氨基酸(特别是谷氨酰胺)和脂质的代谢利用,为细胞增殖提供原料,也为效应功能的发挥提供支持[11]。研究表明T辅助细胞(CD4+)、细胞毒性T细胞(CD8+)和调节性T细胞(Tregs (FOXP3+))等T细胞亚型可作为OSCC的生物标志物,其中CD8+ T细胞是抗肿瘤作用的主要力量[45]。在TME中长期刺激肿瘤细胞生成的抗原刺激下,T细胞逐渐分化为终末耗竭状态,包括自我更新潜能的祖细胞样耗竭T细胞(Tpex)和终末分化耗竭T细胞(Tex)这两类,其特征包括细胞因子分泌能力下降以及程序性细胞死亡蛋白1 (PD-1)、淋巴细胞激活基因3 (LAG-3)等抑制性受体持续表达[46]。CD8+ Tpex和Tex在代谢特征上存在显著差异,Tpex细胞能够协调利用氧化磷酸化(OXPHOS)和糖酵解,维持一种代谢平衡状态,这种代谢灵活性为自我更新及应答刺激提供了基础[47]。而Tex细胞则因线粒体功能严重受损,表现为线粒体碎片化增多和活性氧(ROS)累积,转而更加依赖糖酵解供能,以弥补能量危机并维持基本存活[48]。相比CD8+ T细胞,Treg细胞在TME中具有更强的代谢适应性,使其维持免疫抑制作用。Tregs细胞对糖酵解的依赖性较低,而是依靠线粒体氧化磷酸化(OXPHOS)产生能量[49],该代谢特性受叉头框蛋白P3 (Forkhead box P3) FOXP3调控[50]。同时在TME中,Treg细胞上调脂质代谢途径以支持其在肿瘤中的生存和免疫抑制功能[51]。有研究表明阻断肿瘤细胞释放游离脂肪酸或 Treg细胞吸收游离脂肪酸,通过抗脂肪酸受体CD36抗体治疗或Treg细胞特异性敲除脂肪酸受体CD36可减少肿瘤中的Treg细胞,并逆转肿瘤对抗PD-1治疗的耐药性[40]

3.2. 巨噬细胞

在TME中,根据巨噬细胞在肿瘤发展不同时期TME的动态变化将其分为两类,在肿瘤发生初期,肿瘤微环境(TME)中的巨噬细胞主要受干扰素-γ (IFN-γ)或脂多糖(LPS)激活,极化为具有抗肿瘤特性的M1样表型,称为M1样肿瘤相关巨噬细胞[52]。随着肿瘤进展至增殖和转移阶段,巨噬细胞则在白细胞介素4 (IL-4)和IL-10等细胞因子的诱导下,极化为促进肿瘤发展的M2样表型,称为M2样肿瘤相关巨噬细胞[53]。巨噬细胞的多种功能通过多种机制促进OSCC的发生发展[54]。在口腔鳞状细胞癌中,M2巨噬细胞占主导地位[55]。具有免疫抑制功能的M2型肿瘤相关巨噬细胞(TAM)的能量代谢主要依赖于氧化代谢途径,例如氧化磷酸化(OXPHOS)和脂肪酸氧化(FAO)。尽管M2型TAM仍需要一定程度的糖酵解以提供细胞因子合成所需底物及快速能量供应,但其糖酵解活性显著低于M1型巨噬细胞。M2型TAM主要由氧化磷酸化供能,表现为细胞内线粒体密度较高、耗氧率提升,此外M2型TAM的三羧酸循环高度依赖谷氨酰胺的摄取[56]。TAM通过上调清道夫受体CD36 (the scavenger receptor CD36)的表达,增强从肿瘤微环境中摄取脂质的能力,导致TME内脂质持续积聚,进而促进脂肪酸氧化和氧化磷酸化过程 [57]。精氨酸代谢也是巨噬细胞极化的一个重要标志,M2型TAM中高表达的Arg1可将精氨酸水解为鸟氨酸和尿素,而微环境中精氨酸的耗竭会抑制T细胞和NK细胞的活化与增殖,从而加剧免疫抑制状态 [58]

3.3. 树突状细胞

树突状细胞(DC)不仅表达高水平的主要组织相容性复合体(MHC)分子,还表达高水平的粘附和共刺激分子,这些分子对于激活幼稚T细胞至关重要,DC在调节和维持针对癌症的细胞免疫反应中起着核心作用[59]。在口腔黏膜微环境中,树突状细胞(DC)通过向T细胞呈递抗原参与MHC-I通路,树突状朗格汉斯细胞(LC)是口腔中最主要的树突状细胞型[60]。在肿瘤微环境中,树突状细胞(DC)与肿瘤细胞竞争葡萄糖,葡萄糖缺乏可激活腺苷酸活化蛋白激酶AMPK,并负向调控mTORC1信号,从而削弱DC的免疫应答能力。同时长链非编码RNA Lnc-Dpf3抑制乳酸脱氢酶A (LDHA)的转录,通过结合HIF-1α进而降低糖酵解水平并损害DC的迁移能力[61]。肿瘤微环境中的DC表现出一种高度活跃的MVA途径,MVA途径是胆固醇代谢的重要组成部分,该途径在MVA途径的下游代谢物香叶基香叶酰二磷酸(GGPP)的帮助下激活小GTP酶。小GTP酶在细胞内抗原转运途径中起着至关重要的作用。小GTP酶的过度激活导致抗原加速向溶酶体的转运,进而减少树突状细胞(DC)抗原呈递,损害细胞毒性T淋巴细胞的启动,并最终导致不受控制的肿瘤进展[62]

4. OSCC中靶向免疫细胞代谢的临床策略

口腔鳞状细胞癌的传统治疗主要为以手术为主的综合序列治疗,尤其是化疗、放疗和手术的三联疗法[4],免疫疗法的出现和发展改变了口腔鳞状细胞癌的治疗格局。免疫疗法较传统治疗方法来说更有针对性,它利用人体自身的免疫系统对抗癌细胞,从而最大限度地减少副作用,免疫治疗在OSCC治疗中显示出良好的应用前景[63],尤其是靶向抑制性免疫检查点(例如程序性细胞死亡蛋白-1 (PD-1)、程序性细胞死亡蛋白配体-1 (PD-L1)和细胞毒性T淋巴细胞相关蛋白-4 (CTLA-4))的药物。肿瘤代谢与肿瘤免疫密不可分,靶向肿瘤代谢是肿瘤免疫治疗中值得研究的重点。靶向代谢检查点为改善癌症免疫疗法提供了多方面的策略,并有望实现临床转化。

基于肿瘤微环境中肿瘤和免疫细胞的不同代谢特性,已开发出多种免疫疗法和药物[64]。最近的研究针对肿瘤细胞及免疫细胞中的各种代谢重编程途径,其中针对糖酵解相关的机制的免疫疗法显示出良好的前景。在肿瘤微环境中,肿瘤消耗葡萄糖,并且糖酵解率很高,抑制糖酵解可能是缓解葡萄糖缺乏和限制肿瘤微环境生长的一种有前途的治疗策略。糖酵解抑制剂2-脱氧葡萄糖(2-DG)的单一疗法或联合疗法已进入临床试验[65] [66]。并且在缺氧环境下,OSCC的TME中的Treg细胞严重依赖糖酵解快速产生能量。2-脱氧-D-葡萄糖(2-DG)等糖酵解酶抑制剂会限制Treg的主要能量来源,从而损害其功能[67] [68]。最近的研究表明,糖酵解抑制剂与化疗或放疗相结合具有协同作用,可通过诱导细胞凋亡、DNA损伤和代谢重编程来增强抗肿瘤疗效[69]。重要的是,糖酵解抑制剂选择性地靶向Treg,而不会显著影响效应T细胞,因为效应T细胞可以利用其他代谢途径。进行的临床试验旨在评估这些抑制剂在减轻Treg介导的免疫抑制以及改善癌症治疗结果方面的潜力。同时值得注意的是,肿瘤细胞比正常细胞需要更多的氨基酸,氨基酸代谢更强。因此,靶向氨基酸代谢可以阻碍肿瘤细胞的功能,而不会过度损害正常细胞。氨基酸代谢可以影响免疫细胞的作用和免疫因子的产生,对肿瘤免疫有显著的影响。靶向氨基酸代谢可以恢复肿瘤免疫反应,因此作为一种肿瘤治疗策略值得深入研究。PD-1和CTLA4等免疫检查点受体通过阻碍T细胞摄取和分解代谢氨基酸来限制T细胞的作用。因此,阻断免疫检查点可以促进T细胞的氨基酸代谢[30]。氨基酸代谢,特别是色氨酸-犬尿氨酸-AhR通路,是破坏Treg功能的另一个靶点[70]。吲哚胺2,3-双加氧酶(IDO)抑制剂,例如依帕卡司他,可减少犬尿氨酸的产生,从而减弱Treg的增殖和抑制活性[71]。通过阻断该通路IDO抑制剂可以降低Treg介导的免疫抑制,并增强其他癌症疗法的疗效。临床试验目前正在评估IDO抑制剂与免疫检查点抑制剂联合用于口腔鳞状细胞癌(OSCC)和其他癌症的疗效,突显了其改善治疗效果的潜力。IDO抑制剂与免疫检查点抑制剂的联合策略,在口腔鳞状细胞癌等癌症的治疗中展现出广阔的临床应用前景,有望为提升疗效开辟新途径。此外降胆固醇药物的生长抑制作用已在OSCC中得到证实,表明肿瘤生长与脂质代谢之间存在关系[72]。研究表明各种肿瘤细胞表达的CD36特别影响肿瘤的生长和转移[73],同时在OSCC中CD36大量表达,并参与肿瘤细胞的增殖和迁移[38]。一项研究表明当CD36抑制剂磺基琥珀酰亚胺油酸钠(SSO)被用于靶向OSCC的脂质代谢时,它不仅显示出直接的抗肿瘤作用,而且在体外和体内都显示出抗肿瘤免疫反应的增强。研究结果还表明,CD36参与了OSCC中T细胞免疫反应的调节、树突状细胞功能和免疫抑制细胞功能的失调,表明脂质代谢在OSCC抗肿瘤免疫反应的调节中具有重要意义[41]

近年来,免疫检查点抑制剂的出现彻底改变了复发和/或转移性口腔癌的治疗,使总生存率高于传统疗法[74]。然而,免疫检查点抑制剂的反应率有限,需要进一步开发联合药物以增强免疫检查点抑制剂的疗效。有研究认为对ICI反应不良的原因之一是免疫抑制细胞(如Treg和MDSCs)在肿瘤TME中积累,从而对ICI产生耐药性[75]。CD36抑制会降低免疫抑制细胞的功能,并且ICIs与CD36抑制剂联合使用可能会增加其作用[40]

5. 结论

综上所述,在口腔鳞状细胞癌中代谢重编程是肿瘤微环境中免疫细胞和癌细胞的共同特征。免疫细胞在糖酵解、氨基酸代谢、脂质代谢等多个代谢途径中表现出显著的可塑性,共同塑造了肿瘤微环境的免疫格局。随着免疫代谢概念的提出和广泛研究,其在OSCC治疗中的应用也逐渐受到关注。以往研究表明OSCC通过改变代谢途径来获得免疫逃避能力,免疫代谢在OSCC治疗中的运用越来越受到关注。靶向肿瘤或免疫细胞代谢可以与抗肿瘤免疫协同作用,了解和利用肿瘤细胞和免疫细胞中的代谢串扰有可能提高免疫疗法的反应率。尽管靶向代谢和免疫疗法的各种组合已经应用于临床试验,但努力更好地了解肿瘤免疫逃避的代谢机制和免疫细胞的代谢需求对于充分利用联合疗法的治疗潜力至关重要。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Tan, Y., Wang, Z., Xu, M., Li, B., Huang, Z., Qin, S., et al. (2023) Oral Squamous Cell Carcinomas: State of the Field and Emerging Directions. International Journal of Oral Science, 15, Article No. 44. [Google Scholar] [CrossRef] [PubMed]
[2] Safi, A.F., Kauke, M., Grandoch, A., Nickenig, H., Drebber, U., Zöller, J., et al. (2017) Clinicopathological Parameters Affecting Nodal Yields in Patients with Oral Squamous Cell Carcinoma Receiving Selective Neck Dissection. Journal of Cranio-Maxillofacial Surgery, 45, 2092-2096. [Google Scholar] [CrossRef] [PubMed]
[3] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
[4] Zhao, Y., Chen, D., Yin, J., Xie, J., Sun, C. and Lu, M. (2022) Comprehensive Analysis of Tumor Immune Microenvironment Characteristics for the Prognostic Prediction and Immunotherapy of Oral Squamous Cell Carcinoma. Frontiers in Genetics, 13, Article 788580. [Google Scholar] [CrossRef] [PubMed]
[5] Zeng, H., Chen, W., Zheng, R., Zhang, S., Ji, J.S., Zou, X., et al. (2018) Changing Cancer Survival in China during 2003-15: A Pooled Analysis of 17 Population-Based Cancer Registries. The Lancet Global Health, 6, e555-e567. [Google Scholar] [CrossRef] [PubMed]
[6] Yu, C., Li, Q., Zhang, Y., Wen, Z., Dong, H. and Mou, Y. (2022) Current Status and Perspective of Tumor Immunotherapy for Head and Neck Squamous Cell Carcinoma. Frontiers in Cell and Developmental Biology, 10, Article 941750. [Google Scholar] [CrossRef] [PubMed]
[7] Shi, R., Tang, Y. and Miao, H. (2020) Metabolism in Tumor Microenvironment: Implications for Cancer Immunotherapy. MedComm, 1, 47-68. [Google Scholar] [CrossRef] [PubMed]
[8] Belényesi, S.K., Patmore, S. and O’Driscoll, L. (2025) Extracellular Vesicles and the Tumour Microenvironment. Biochimica et Biophysica ActaReviews on Cancer, 1880, Article 189275. [Google Scholar] [CrossRef] [PubMed]
[9] Nong, S., Han, X., Xiang, Y., Qian, Y., Wei, Y., Zhang, T., et al. (2023) Metabolic Reprogramming in Cancer: Mechanisms and Therapeutics. MedComm, 4, e218. [Google Scholar] [CrossRef] [PubMed]
[10] Navarro, C., Ortega, Á., Santeliz, R., Garrido, B., Chacín, M., Galban, N., et al. (2022) Metabolic Reprogramming in Cancer Cells: Emerging Molecular Mechanisms and Novel Therapeutic Approaches. Pharmaceutics, 14, Article 1303. [Google Scholar] [CrossRef] [PubMed]
[11] Jiang, M., Fang, H. and Tian, H. (2025) Metabolism of Cancer Cells and Immune Cells in the Initiation, Progression, and Metastasis of Cancer. Theranostics, 15, 155-188. [Google Scholar] [CrossRef] [PubMed]
[12] Vilbois, S., Xu, Y. and Ho, P. (2024) Metabolic Interplay: Tumor Macrophages and Regulatory T Cells. Trends in Cancer, 10, 242-255. [Google Scholar] [CrossRef] [PubMed]
[13] de Visser, K.E. and Joyce, J.A. (2023) The Evolving Tumor Microenvironment: From Cancer Initiation to Metastatic Outgrowth. Cancer Cell, 41, 374-403. [Google Scholar] [CrossRef] [PubMed]
[14] Man, K., Kutyavin, V.I. and Chawla, A. (2017) Tissue Immunometabolism: Development, Physiology, and Pathobiology. Cell Metabolism, 25, 11-26. [Google Scholar] [CrossRef] [PubMed]
[15] Cai, L., Chen, Y., Tang, S., Wang, Q., Xu, Y., Pan, Y., et al. (2025) Enhanced LDL Uptake and PPARα Signaling Support OSCC Cell Survival under Glutamine Deprivation. Medical Oncology, 42, Article No. 332. [Google Scholar] [CrossRef] [PubMed]
[16] Koppenol, W.H., Bounds, P.L. and Dang, C.V. (2011) Otto Warburg’s Contributions to Current Concepts of Cancer Metabolism. Nature Reviews Cancer, 11, 325-337. [Google Scholar] [CrossRef] [PubMed]
[17] Barba, I., Carrillo-Bosch, L. and Seoane, J. (2024) Targeting the Warburg Effect in Cancer: Where Do We Stand? International Journal of Molecular Sciences, 25, Article 3142. [Google Scholar] [CrossRef] [PubMed]
[18] Botha, H., Farah, C.S., Koo, K., Cirillo, N., McCullough, M., Paolini, R., et al. (2021) The Role of Glucose Transporters in Oral Squamous Cell Carcinoma. Biomolecules, 11, Article 1070. [Google Scholar] [CrossRef] [PubMed]
[19] Liu, N., Zhu, X., Wu, C., Liu, Y., Chen, M. and Gu, J. (2024) PCK1 as a Target for Cancer Therapy: From Metabolic Reprogramming to Immune Microenvironment Remodeling. Cell Death Discovery, 10, Article No. 478. [Google Scholar] [CrossRef] [PubMed]
[20] Ji, Y., Zhang, Z., Zhao, X., Li, Z., Hu, X., Zhang, M., et al. (2024) IL-1α Facilitates GSH Synthesis to Counteract Oxidative Stress in Oral Squamous Cell Carcinoma under Glucose-Deprivation. Cancer Letters, 589, Article 216833. [Google Scholar] [CrossRef] [PubMed]
[21] Leone, R.D. and Powell, J.D. (2020) Metabolism of Immune Cells in Cancer. Nature Reviews Cancer, 20, 516-531. [Google Scholar] [CrossRef] [PubMed]
[22] Wu, Y., Han, W., Tang, X., Liu, J., Guo, Z., Li, Z., et al. (2024) B7-H3 Suppresses CD8+ T Cell Immunologic Function through Reprogramming Glycolytic Metabolism. Journal of Cancer, 15, 2505-2517. [Google Scholar] [CrossRef] [PubMed]
[23] Viel, S., Vivier, E., Walzer, T. and Marçais, A. (2025) Targeting Metabolic Dysfunction of CD8 T Cells and Natural Killer Cells in Cancer. Nature Reviews Drug Discovery, 24, 190-208. [Google Scholar] [CrossRef] [PubMed]
[24] Bergers, G. and Fendt, S.M. (2021) The Metabolism of Cancer Cells during Metastasis. Nature Reviews Cancer, 21, 162-180. [Google Scholar] [CrossRef] [PubMed]
[25] Sangsuwan, R., Thuamsang, B., Pacifici, N., Allen, R., Han, H., Miakicheva, S., et al. (2020) Lactate Exposure Promotes Immunosuppressive Phenotypes in Innate Immune Cells. Cellular and Molecular Bioengineering, 13, 541-557. [Google Scholar] [CrossRef] [PubMed]
[26] Gottfried, E., Kunz-Schughart, L.A., Ebner, S., Mueller-Klieser, W., Hoves, S., Andreesen, R., et al. (2006) Tumor-derived Lactic Acid Modulates Dendritic Cell Activation and Antigen Expression. Blood, 107, 2013-2021. [Google Scholar] [CrossRef] [PubMed]
[27] Guduguntla, P. and Guttikonda, V.R. (2020) Estimation of Serum Pyruvic Acid Levels in Oral Squamous Cell Carcinoma. Journal of Oral and Maxillofacial Pathology, 24, 585. [Google Scholar] [CrossRef] [PubMed]
[28] Safrhansova, L., Hlozkova, K. and Starkova, J. (2022) Targeting Amino Acid Metabolism in Cancer. International Review of Cell and Molecular Biology, 373, 37-79.
[29] Li, X. and Zhang, H.S. (2024) Amino Acid Metabolism, Redox Balance and Epigenetic Regulation in Cancer. The FEBS Journal, 291, 412-429. [Google Scholar] [CrossRef] [PubMed]
[30] Wang, D. and Wan, X. (2022) Progress in Research on the Role of Amino Acid Metabolic Reprogramming in Tumour Therapy: A Review. Biomedicine & Pharmacotherapy, 156, Article 113923. [Google Scholar] [CrossRef] [PubMed]
[31] Cetindis, M., Biegner, T., Munz, A., Teriete, P., Reinert, S. and Grimm, M. (2015) Glutaminolysis and Carcinogenesis of Oral Squamous Cell Carcinoma. European Archives of Oto-Rhino-Laryngology, 273, 495-503. [Google Scholar] [CrossRef] [PubMed]
[32] Rajneesh,, Tiwari, R., Singh, V.K., Kumar, A., Mehrotra, S., Gautam, V., et al. (2025) Exploring Metabolic and Immunological Biomarkers for Oral Squamous Cell Carcinoma: Potential Targets for Precision Therapy. Biology, 14, Article 1109. [Google Scholar] [CrossRef
[33] Wang, B., Pei, J., Xu, S., Liu, J. and Yu, J. (2024) Correction: A Glutamine Tug-of-War between Cancer and Immune Cells: Recent Advances in Unraveling the Ongoing Battle. Journal of Experimental & Clinical Cancer Research, 43, Article No. 93. [Google Scholar] [CrossRef] [PubMed]
[34] Guo, S., Wang, X., Wang, Y., Bai, J., Liu, Y. and Shao, Z. (2024) The Potential Therapeutic Targets of Glutamine Metabolism in Head and Neck Squamous Cell Carcinoma. Biomedicine & Pharmacotherapy, 176, Article 116906. [Google Scholar] [CrossRef] [PubMed]
[35] Leone, R.D., Zhao, L., Englert, J.M., Sun, I., Oh, M., Sun, I., et al. (2019) Glutamine Blockade Induces Divergent Metabolic Programs to Overcome Tumor Immune Evasion. Science, 366, 1013-1021. [Google Scholar] [CrossRef] [PubMed]
[36] Pascual, G. and Benitah, S.A. (2024) Lipids in the Tumor Microenvironment: Immune Modulation and Metastasis. Frontiers in Oncology, 14, Article 1435480. [Google Scholar] [CrossRef] [PubMed]
[37] Su, X. and Abumrad, N.A. (2009) Cellular Fatty Acid Uptake: A Pathway under Construction. Trends in Endocrinology & Metabolism, 20, 72-77. [Google Scholar] [CrossRef] [PubMed]
[38] Sakurai, K., Tomihara, K., Yamazaki, M., Heshiki, W., Moniruzzaman, R., Sekido, K., et al. (2020) CD36 Expression on Oral Squamous Cell Carcinoma Cells Correlates with Enhanced Proliferation and Migratory Activity. Oral Diseases, 26, 745-755. [Google Scholar] [CrossRef] [PubMed]
[39] Ma, X., Xiao, L., Liu, L., Ye, L., Su, P., Bi, E., et al. (2021) CD36-Mediated Ferroptosis Dampens Intratumoral CD8+ T Cell Effector Function and Impairs Their Antitumor Ability. Cell Metabolism, 33, 1001-1012.e5. [Google Scholar] [CrossRef] [PubMed]
[40] Wang, H., Franco, F., Tsui, Y., Xie, X., Trefny, M.P., Zappasodi, R., et al. (2020) CD36-Mediated Metabolic Adaptation Supports Regulatory T Cell Survival and Function in Tumors. Nature Immunology, 21, 298-308. [Google Scholar] [CrossRef] [PubMed]
[41] Takaichi, M., Tachinami, H., Takatsuka, D., Yonesi, A., Sakurai, K., Rasul, M.I., et al. (2024) Targeting CD36-Mediated Lipid Metabolism by Selective Inhibitor-Augmented Antitumor Immune Responses in Oral Cancer. International Journal of Molecular Sciences, 25, Article 9438. [Google Scholar] [CrossRef] [PubMed]
[42] Lin, Z., Hua, G. and Hu, X. (2024) Lipid Metabolism Associated Crosstalk: The Bidirectional Interaction between Cancer Cells and Immune/Stromal Cells within the Tumor Microenvironment for Prognostic Insight. Cancer Cell International, 24, Article No. 295. [Google Scholar] [CrossRef] [PubMed]
[43] He, Y., Liu, L., Dong, Y., Zhang, X., Song, Y., Jing, Y., et al. (2024) Lipid Droplets-Related Perilipin-3: Potential Immune Checkpoint and Oncogene in Oral Squamous Cell Carcinoma. Cancer Immunology, Immunotherapy, 73, Article No. 78. [Google Scholar] [CrossRef] [PubMed]
[44] Sung, J.Y. and Cheong, J.H. (2022) New Immunometabolic Strategy Based on Cell Type-Specific Metabolic Reprogramming in the Tumor Immune Microenvironment. Cells, 11, Article 768. [Google Scholar] [CrossRef] [PubMed]
[45] Wongpattaraworakul, W., Choi, A., Buchakjian, M.R., Lanzel, E.A., KD, A.R. and Simons, A.L. (2024) Prognostic Role of Tumor-Infiltrating Lymphocytes in Oral Squamous Cell Carcinoma. BMC Cancer, 24, Article No. 766. [Google Scholar] [CrossRef] [PubMed]
[46] Baessler, A. and Vignali, D.A.A. (2024) T Cell Exhaustion. Annual Review of Immunology, 42, 179-206. [Google Scholar] [CrossRef] [PubMed]
[47] Humblin, E., Korpas, I., Lu, J.H., et al. (2023) Sustained CD28 Costimulation Is Required for Self-Renewal and Differentiation of TCF-1+ PD-1+ CD8 T Cells. Science Immunology, 8, eadg0878.
https://pubmed.ncbi.nlm.nih.gov/37624910/
[48] Wu, H., Zhao, X., Hochrein, S.M., Eckstein, M., Gubert, G.F., Knöpper, K., et al. (2023) Mitochondrial Dysfunction Promotes the Transition of Precursor to Terminally Exhausted T Cells through HIF-1α-Mediated Glycolytic Reprogramming. Nature Communications, 14, Article No. 6858. [Google Scholar] [CrossRef] [PubMed]
[49] Michalek, R.D., Gerriets, V.A., Jacobs, S.R., Macintyre, A.N., MacIver, N.J., Mason, E.F., et al. (2011) Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4+ T Cell Subsets. The Journal of Immunology, 186, 3299-3303. [Google Scholar] [CrossRef] [PubMed]
[50] Gerriets, V.A., Kishton, R.J., Johnson, M.O., Cohen, S., Siska, P.J., Nichols, A.G., et al. (2016) Foxp3 and Toll-Like Receptor Signaling Balance Treg Cell Anabolic Metabolism for Suppression. Nature Immunology, 17, 1459-1466. [Google Scholar] [CrossRef] [PubMed]
[51] Lim, S.A., Wei, J., Nguyen, T.M., Shi, H., Su, W., Palacios, G., et al. (2021) Lipid Signalling Enforces Functional Specialization of Treg Cells in Tumours. Nature, 591, 306-311. [Google Scholar] [CrossRef] [PubMed]
[52] Mehla, K. and Singh, P.K. (2019) Metabolic Regulation of Macrophage Polarization in Cancer. Trends in Cancer, 5, 822-834. [Google Scholar] [CrossRef] [PubMed]
[53] Huber, R., Meier, B., Otsuka, A., Fenini, G., Satoh, T., Gehrke, S., et al. (2016) Tumour Hypoxia Promotes Melanoma Growth and Metastasis via High Mobility Group Box-1 and M2-Like Macrophages. Scientific Reports, 6, Article No. 29914. [Google Scholar] [CrossRef] [PubMed]
[54] Dong, X., Dong, C. and Li, B. (2025) Effects of Macrophages in OSCC Progression. Frontiers in Immunology, 15, Article 1517886. [Google Scholar] [CrossRef] [PubMed]
[55] Babu, S., Manavalan, M.J., jasmine, S.H. and Krishnan, M. (2024) Tumor Microenvironment in Oral Squamous Cell Carcinoma: Implications for Novel Therapies. Oral Oncology Reports, 12, Article 100666. [Google Scholar] [CrossRef
[56] Hasan, M.N., Capuk, O., Patel, S.M. and Sun, D. (2022) The Role of Metabolic Plasticity of Tumor-Associated Macrophages in Shaping the Tumor Microenvironment Immunity. Cancers, 14, Article No. 3331. [Google Scholar] [CrossRef] [PubMed]
[57] Mazzone, M., Menga, A. and Castegna, A. (2018) Metabolism and TAM Functions—It Takes Two to Tango. The FEBS Journal, 285, 700-716. [Google Scholar] [CrossRef] [PubMed]
[58] An, J.X., Qin, Y.T., Tang, Y., et al. (2025) Polymerization of L‐Arginine into Nanomicelles for Immunometabolic Engineering of Adoptive Macrophages in Solid Tumor Therapy. Angewandte Chemie, 137, e202507426. [Google Scholar] [CrossRef
[59] Sakakura, K., Chikamatsu, K., Sakurai, T., Takahashi, K., Murata, T., Oriuchi, N., et al. (2005) Infiltration of Dendritic Cells and NK Cells into the Sentinel Lymph Node in Oral Cavity Cancer. Oral Oncology, 41, 89-96. [Google Scholar] [CrossRef] [PubMed]
[60] Caponio, V.C.A., Zhurakivska, K., Lo Muzio, L., Troiano, G. and Cirillo, N. (2023) The Immune Cells in the Development of Oral Squamous Cell Carcinoma. Cancers, 15, Article No. 3779. [Google Scholar] [CrossRef] [PubMed]
[61] Liu, J., Zhang, X., Chen, K., Cheng, Y., Liu, S., Xia, M., et al. (2019) CCR7 Chemokine Receptor-Inducible Lnc-Dpf3 Restrains Dendritic Cell Migration by Inhibiting HIF-1α-Mediated Glycolysis. Immunity, 50, 600-615.e15. [Google Scholar] [CrossRef] [PubMed]
[62] Mullen, P.J., Yu, R., Longo, J., Archer, M.C. and Penn, L.Z. (2016) The Interplay between Cell Signalling and the Mevalonate Pathway in Cancer. Nature Reviews Cancer, 16, 718-731. [Google Scholar] [CrossRef] [PubMed]
[63] Zhu, J., Petit, P. and Van den Eynde, B.J. (2019) Apoptosis of Tumor-Infiltrating T Lymphocytes: A New Immune Checkpoint Mechanism. Cancer Immunology, Immunotherapy, 68, 835-847. [Google Scholar] [CrossRef] [PubMed]
[64] Yi, M., Li, T., Niu, M., Mei, Q., Zhao, B., Chu, Q., et al. (2023) Exploiting Innate Immunity for Cancer Immunotherapy. Molecular Cancer, 22, Article No. 187. [Google Scholar] [CrossRef] [PubMed]
[65] Stein, M., Lin, H., Jeyamohan, C., Dvorzhinski, D., Gounder, M., Bray, K., et al. (2010) Targeting Tumor Metabolism with 2-Deoxyglucose in Patients with Castrate-Resistant Prostate Cancer and Advanced Malignancies. The Prostate, 70, 1388-1394. [Google Scholar] [CrossRef] [PubMed]
[66] Raez, L.E., Papadopoulos, K., Ricart, A.D., Chiorean, E.G., DiPaola, R.S., Stein, M.N., et al. (2013) A Phase I Dose-Escalation Trial of 2-Deoxy-D-Glucose Alone or Combined with Docetaxel in Patients with Advanced Solid Tumors. Cancer Chemotherapy and Pharmacology, 71, 523-530. [Google Scholar] [CrossRef] [PubMed]
[67] Dwarakanath, B.S., Farooque, A. and Gupta, S. (2018) Targeting Regulatory T Cells for Improving Cancer Therapy: Challenges and Prospects. Cancer Reports, 1, e21105. [Google Scholar] [CrossRef] [PubMed]
[68] Farooque, A., Singh, N., Adhikari, J.S., Afrin, F. and Dwarakanath, B.S.R. (2014) Enhanced Antitumor Immunity Contributes to the Radio-Sensitization of Ehrlich Ascites Tumor by the Glycolytic Inhibitor 2-Deoxy-D-Glucose in Mice. PLOS ONE, 9, e108131. [Google Scholar] [CrossRef] [PubMed]
[69] Pai, S., Yadav, V.K., Kuo, K., Pikatan, N.W., Lin, C., Chien, M., et al. (2021) PDK1 Inhibitor BX795 Improves Cisplatin and Radio-Efficacy in Oral Squamous Cell Carcinoma by Downregulating the PDK1/CD47/Akt-Mediated Glycolysis Signaling Pathway. International Journal of Molecular Sciences, 22, Article 11492. [Google Scholar] [CrossRef] [PubMed]
[70] Campesato, L.F., Budhu, S., Tchaicha, J., Weng, C., Gigoux, M., Cohen, I.J., et al. (2020) Blockade of the AHR Restricts a Treg-Macrophage Suppressive Axis Induced by L-Kynurenine. Nature Communications, 11, Article No. 4011. [Google Scholar] [CrossRef] [PubMed]
[71] Beatty, G.L., O'Dwyer, P.J., Clark, J., Shi, J.G., Bowman, K.J., Scherle, P.A., et al. (2017) First-in-Human Phase I Study of the Oral Inhibitor of Indoleamine 2,3-Dioxygenase-1 Epacadostat (INCB024360) in Patients with Advanced Solid Malignancies. Clinical Cancer Research, 23, 3269-3276. [Google Scholar] [CrossRef] [PubMed]
[72] Chan, N.N., Yamazaki, M., Maruyama, S., Abé, T., Haga, K., Kawaharada, M., et al. (2023) Cholesterol Is a Regulator of CAV1 Localization and Cell Migration in Oral Squamous Cell Carcinoma. International Journal of Molecular Sciences, 24, Article 6035. [Google Scholar] [CrossRef] [PubMed]
[73] Luo, X., Zheng, E., Wei, L., Zeng, H., Qin, H., Zhang, X., et al. (2021) The Fatty Acid Receptor CD36 Promotes HCC Progression through Activating Src/PI3K/AKT Axis-Dependent Aerobic Glycolysis. Cell Death & Disease, 12, Article No. 328. [Google Scholar] [CrossRef] [PubMed]
[74] Mehra, R., Seiwert, T.Y., Gupta, S., Weiss, J., Gluck, I., Eder, J.P., et al. (2018) Efficacy and Safety of Pembrolizumab in Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma: Pooled Analyses after Long-Term Follow-Up in KEYNOTE-012. British Journal of Cancer, 119, 153-159. [Google Scholar] [CrossRef] [PubMed]
[75] Ferraro, G.B., Ali, A., Luengo, A., et al. (2021) Fatty Acid Synthesis Is Required for Breast Cancer Brain Metastasis. Nature Cancer, 2, 414-428. [Google Scholar] [CrossRef] [PubMed]