|
[1]
|
Tan, Y., Wang, Z., Xu, M., Li, B., Huang, Z., Qin, S., et al. (2023) Oral Squamous Cell Carcinomas: State of the Field and Emerging Directions. International Journal of Oral Science, 15, Article No. 44. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Safi, A.F., Kauke, M., Grandoch, A., Nickenig, H., Drebber, U., Zöller, J., et al. (2017) Clinicopathological Parameters Affecting Nodal Yields in Patients with Oral Squamous Cell Carcinoma Receiving Selective Neck Dissection. Journal of Cranio-Maxillofacial Surgery, 45, 2092-2096. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhao, Y., Chen, D., Yin, J., Xie, J., Sun, C. and Lu, M. (2022) Comprehensive Analysis of Tumor Immune Microenvironment Characteristics for the Prognostic Prediction and Immunotherapy of Oral Squamous Cell Carcinoma. Frontiers in Genetics, 13, Article 788580. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zeng, H., Chen, W., Zheng, R., Zhang, S., Ji, J.S., Zou, X., et al. (2018) Changing Cancer Survival in China during 2003-15: A Pooled Analysis of 17 Population-Based Cancer Registries. The Lancet Global Health, 6, e555-e567. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Yu, C., Li, Q., Zhang, Y., Wen, Z., Dong, H. and Mou, Y. (2022) Current Status and Perspective of Tumor Immunotherapy for Head and Neck Squamous Cell Carcinoma. Frontiers in Cell and Developmental Biology, 10, Article 941750. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Shi, R., Tang, Y. and Miao, H. (2020) Metabolism in Tumor Microenvironment: Implications for Cancer Immunotherapy. MedComm, 1, 47-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Belényesi, S.K., Patmore, S. and O’Driscoll, L. (2025) Extracellular Vesicles and the Tumour Microenvironment. Biochimica et Biophysica Acta—Reviews on Cancer, 1880, Article 189275. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Nong, S., Han, X., Xiang, Y., Qian, Y., Wei, Y., Zhang, T., et al. (2023) Metabolic Reprogramming in Cancer: Mechanisms and Therapeutics. MedComm, 4, e218. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Navarro, C., Ortega, Á., Santeliz, R., Garrido, B., Chacín, M., Galban, N., et al. (2022) Metabolic Reprogramming in Cancer Cells: Emerging Molecular Mechanisms and Novel Therapeutic Approaches. Pharmaceutics, 14, Article 1303. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Jiang, M., Fang, H. and Tian, H. (2025) Metabolism of Cancer Cells and Immune Cells in the Initiation, Progression, and Metastasis of Cancer. Theranostics, 15, 155-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Vilbois, S., Xu, Y. and Ho, P. (2024) Metabolic Interplay: Tumor Macrophages and Regulatory T Cells. Trends in Cancer, 10, 242-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
de Visser, K.E. and Joyce, J.A. (2023) The Evolving Tumor Microenvironment: From Cancer Initiation to Metastatic Outgrowth. Cancer Cell, 41, 374-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Man, K., Kutyavin, V.I. and Chawla, A. (2017) Tissue Immunometabolism: Development, Physiology, and Pathobiology. Cell Metabolism, 25, 11-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cai, L., Chen, Y., Tang, S., Wang, Q., Xu, Y., Pan, Y., et al. (2025) Enhanced LDL Uptake and PPARα Signaling Support OSCC Cell Survival under Glutamine Deprivation. Medical Oncology, 42, Article No. 332. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Koppenol, W.H., Bounds, P.L. and Dang, C.V. (2011) Otto Warburg’s Contributions to Current Concepts of Cancer Metabolism. Nature Reviews Cancer, 11, 325-337. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Barba, I., Carrillo-Bosch, L. and Seoane, J. (2024) Targeting the Warburg Effect in Cancer: Where Do We Stand? International Journal of Molecular Sciences, 25, Article 3142. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Botha, H., Farah, C.S., Koo, K., Cirillo, N., McCullough, M., Paolini, R., et al. (2021) The Role of Glucose Transporters in Oral Squamous Cell Carcinoma. Biomolecules, 11, Article 1070. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liu, N., Zhu, X., Wu, C., Liu, Y., Chen, M. and Gu, J. (2024) PCK1 as a Target for Cancer Therapy: From Metabolic Reprogramming to Immune Microenvironment Remodeling. Cell Death Discovery, 10, Article No. 478. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ji, Y., Zhang, Z., Zhao, X., Li, Z., Hu, X., Zhang, M., et al. (2024) IL-1α Facilitates GSH Synthesis to Counteract Oxidative Stress in Oral Squamous Cell Carcinoma under Glucose-Deprivation. Cancer Letters, 589, Article 216833. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Leone, R.D. and Powell, J.D. (2020) Metabolism of Immune Cells in Cancer. Nature Reviews Cancer, 20, 516-531. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wu, Y., Han, W., Tang, X., Liu, J., Guo, Z., Li, Z., et al. (2024) B7-H3 Suppresses CD8+ T Cell Immunologic Function through Reprogramming Glycolytic Metabolism. Journal of Cancer, 15, 2505-2517. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Viel, S., Vivier, E., Walzer, T. and Marçais, A. (2025) Targeting Metabolic Dysfunction of CD8 T Cells and Natural Killer Cells in Cancer. Nature Reviews Drug Discovery, 24, 190-208. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Bergers, G. and Fendt, S.M. (2021) The Metabolism of Cancer Cells during Metastasis. Nature Reviews Cancer, 21, 162-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Sangsuwan, R., Thuamsang, B., Pacifici, N., Allen, R., Han, H., Miakicheva, S., et al. (2020) Lactate Exposure Promotes Immunosuppressive Phenotypes in Innate Immune Cells. Cellular and Molecular Bioengineering, 13, 541-557. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Gottfried, E., Kunz-Schughart, L.A., Ebner, S., Mueller-Klieser, W., Hoves, S., Andreesen, R., et al. (2006) Tumor-derived Lactic Acid Modulates Dendritic Cell Activation and Antigen Expression. Blood, 107, 2013-2021. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Guduguntla, P. and Guttikonda, V.R. (2020) Estimation of Serum Pyruvic Acid Levels in Oral Squamous Cell Carcinoma. Journal of Oral and Maxillofacial Pathology, 24, 585. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Safrhansova, L., Hlozkova, K. and Starkova, J. (2022) Targeting Amino Acid Metabolism in Cancer. International Review of Cell and Molecular Biology, 373, 37-79.
|
|
[29]
|
Li, X. and Zhang, H.S. (2024) Amino Acid Metabolism, Redox Balance and Epigenetic Regulation in Cancer. The FEBS Journal, 291, 412-429. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wang, D. and Wan, X. (2022) Progress in Research on the Role of Amino Acid Metabolic Reprogramming in Tumour Therapy: A Review. Biomedicine & Pharmacotherapy, 156, Article 113923. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Cetindis, M., Biegner, T., Munz, A., Teriete, P., Reinert, S. and Grimm, M. (2015) Glutaminolysis and Carcinogenesis of Oral Squamous Cell Carcinoma. European Archives of Oto-Rhino-Laryngology, 273, 495-503. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Rajneesh,, Tiwari, R., Singh, V.K., Kumar, A., Mehrotra, S., Gautam, V., et al. (2025) Exploring Metabolic and Immunological Biomarkers for Oral Squamous Cell Carcinoma: Potential Targets for Precision Therapy. Biology, 14, Article 1109. [Google Scholar] [CrossRef]
|
|
[33]
|
Wang, B., Pei, J., Xu, S., Liu, J. and Yu, J. (2024) Correction: A Glutamine Tug-of-War between Cancer and Immune Cells: Recent Advances in Unraveling the Ongoing Battle. Journal of Experimental & Clinical Cancer Research, 43, Article No. 93. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Guo, S., Wang, X., Wang, Y., Bai, J., Liu, Y. and Shao, Z. (2024) The Potential Therapeutic Targets of Glutamine Metabolism in Head and Neck Squamous Cell Carcinoma. Biomedicine & Pharmacotherapy, 176, Article 116906. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Leone, R.D., Zhao, L., Englert, J.M., Sun, I., Oh, M., Sun, I., et al. (2019) Glutamine Blockade Induces Divergent Metabolic Programs to Overcome Tumor Immune Evasion. Science, 366, 1013-1021. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Pascual, G. and Benitah, S.A. (2024) Lipids in the Tumor Microenvironment: Immune Modulation and Metastasis. Frontiers in Oncology, 14, Article 1435480. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Su, X. and Abumrad, N.A. (2009) Cellular Fatty Acid Uptake: A Pathway under Construction. Trends in Endocrinology & Metabolism, 20, 72-77. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Sakurai, K., Tomihara, K., Yamazaki, M., Heshiki, W., Moniruzzaman, R., Sekido, K., et al. (2020) CD36 Expression on Oral Squamous Cell Carcinoma Cells Correlates with Enhanced Proliferation and Migratory Activity. Oral Diseases, 26, 745-755. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ma, X., Xiao, L., Liu, L., Ye, L., Su, P., Bi, E., et al. (2021) CD36-Mediated Ferroptosis Dampens Intratumoral CD8+ T Cell Effector Function and Impairs Their Antitumor Ability. Cell Metabolism, 33, 1001-1012.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Wang, H., Franco, F., Tsui, Y., Xie, X., Trefny, M.P., Zappasodi, R., et al. (2020) CD36-Mediated Metabolic Adaptation Supports Regulatory T Cell Survival and Function in Tumors. Nature Immunology, 21, 298-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Takaichi, M., Tachinami, H., Takatsuka, D., Yonesi, A., Sakurai, K., Rasul, M.I., et al. (2024) Targeting CD36-Mediated Lipid Metabolism by Selective Inhibitor-Augmented Antitumor Immune Responses in Oral Cancer. International Journal of Molecular Sciences, 25, Article 9438. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Lin, Z., Hua, G. and Hu, X. (2024) Lipid Metabolism Associated Crosstalk: The Bidirectional Interaction between Cancer Cells and Immune/Stromal Cells within the Tumor Microenvironment for Prognostic Insight. Cancer Cell International, 24, Article No. 295. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
He, Y., Liu, L., Dong, Y., Zhang, X., Song, Y., Jing, Y., et al. (2024) Lipid Droplets-Related Perilipin-3: Potential Immune Checkpoint and Oncogene in Oral Squamous Cell Carcinoma. Cancer Immunology, Immunotherapy, 73, Article No. 78. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Sung, J.Y. and Cheong, J.H. (2022) New Immunometabolic Strategy Based on Cell Type-Specific Metabolic Reprogramming in the Tumor Immune Microenvironment. Cells, 11, Article 768. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wongpattaraworakul, W., Choi, A., Buchakjian, M.R., Lanzel, E.A., KD, A.R. and Simons, A.L. (2024) Prognostic Role of Tumor-Infiltrating Lymphocytes in Oral Squamous Cell Carcinoma. BMC Cancer, 24, Article No. 766. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Baessler, A. and Vignali, D.A.A. (2024) T Cell Exhaustion. Annual Review of Immunology, 42, 179-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Humblin, E., Korpas, I., Lu, J.H., et al. (2023) Sustained CD28 Costimulation Is Required for Self-Renewal and Differentiation of TCF-1+ PD-1+ CD8 T Cells. Science Immunology, 8, eadg0878. https://pubmed.ncbi.nlm.nih.gov/37624910/
|
|
[48]
|
Wu, H., Zhao, X., Hochrein, S.M., Eckstein, M., Gubert, G.F., Knöpper, K., et al. (2023) Mitochondrial Dysfunction Promotes the Transition of Precursor to Terminally Exhausted T Cells through HIF-1α-Mediated Glycolytic Reprogramming. Nature Communications, 14, Article No. 6858. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Michalek, R.D., Gerriets, V.A., Jacobs, S.R., Macintyre, A.N., MacIver, N.J., Mason, E.F., et al. (2011) Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4+ T Cell Subsets. The Journal of Immunology, 186, 3299-3303. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Gerriets, V.A., Kishton, R.J., Johnson, M.O., Cohen, S., Siska, P.J., Nichols, A.G., et al. (2016) Foxp3 and Toll-Like Receptor Signaling Balance Treg Cell Anabolic Metabolism for Suppression. Nature Immunology, 17, 1459-1466. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Lim, S.A., Wei, J., Nguyen, T.M., Shi, H., Su, W., Palacios, G., et al. (2021) Lipid Signalling Enforces Functional Specialization of Treg Cells in Tumours. Nature, 591, 306-311. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Mehla, K. and Singh, P.K. (2019) Metabolic Regulation of Macrophage Polarization in Cancer. Trends in Cancer, 5, 822-834. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Huber, R., Meier, B., Otsuka, A., Fenini, G., Satoh, T., Gehrke, S., et al. (2016) Tumour Hypoxia Promotes Melanoma Growth and Metastasis via High Mobility Group Box-1 and M2-Like Macrophages. Scientific Reports, 6, Article No. 29914. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Dong, X., Dong, C. and Li, B. (2025) Effects of Macrophages in OSCC Progression. Frontiers in Immunology, 15, Article 1517886. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Babu, S., Manavalan, M.J., jasmine, S.H. and Krishnan, M. (2024) Tumor Microenvironment in Oral Squamous Cell Carcinoma: Implications for Novel Therapies. Oral Oncology Reports, 12, Article 100666. [Google Scholar] [CrossRef]
|
|
[56]
|
Hasan, M.N., Capuk, O., Patel, S.M. and Sun, D. (2022) The Role of Metabolic Plasticity of Tumor-Associated Macrophages in Shaping the Tumor Microenvironment Immunity. Cancers, 14, Article No. 3331. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Mazzone, M., Menga, A. and Castegna, A. (2018) Metabolism and TAM Functions—It Takes Two to Tango. The FEBS Journal, 285, 700-716. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
An, J.X., Qin, Y.T., Tang, Y., et al. (2025) Polymerization of L‐Arginine into Nanomicelles for Immunometabolic Engineering of Adoptive Macrophages in Solid Tumor Therapy. Angewandte Chemie, 137, e202507426. [Google Scholar] [CrossRef]
|
|
[59]
|
Sakakura, K., Chikamatsu, K., Sakurai, T., Takahashi, K., Murata, T., Oriuchi, N., et al. (2005) Infiltration of Dendritic Cells and NK Cells into the Sentinel Lymph Node in Oral Cavity Cancer. Oral Oncology, 41, 89-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Caponio, V.C.A., Zhurakivska, K., Lo Muzio, L., Troiano, G. and Cirillo, N. (2023) The Immune Cells in the Development of Oral Squamous Cell Carcinoma. Cancers, 15, Article No. 3779. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Liu, J., Zhang, X., Chen, K., Cheng, Y., Liu, S., Xia, M., et al. (2019) CCR7 Chemokine Receptor-Inducible Lnc-Dpf3 Restrains Dendritic Cell Migration by Inhibiting HIF-1α-Mediated Glycolysis. Immunity, 50, 600-615.e15. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Mullen, P.J., Yu, R., Longo, J., Archer, M.C. and Penn, L.Z. (2016) The Interplay between Cell Signalling and the Mevalonate Pathway in Cancer. Nature Reviews Cancer, 16, 718-731. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Zhu, J., Petit, P. and Van den Eynde, B.J. (2019) Apoptosis of Tumor-Infiltrating T Lymphocytes: A New Immune Checkpoint Mechanism. Cancer Immunology, Immunotherapy, 68, 835-847. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Yi, M., Li, T., Niu, M., Mei, Q., Zhao, B., Chu, Q., et al. (2023) Exploiting Innate Immunity for Cancer Immunotherapy. Molecular Cancer, 22, Article No. 187. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Stein, M., Lin, H., Jeyamohan, C., Dvorzhinski, D., Gounder, M., Bray, K., et al. (2010) Targeting Tumor Metabolism with 2-Deoxyglucose in Patients with Castrate-Resistant Prostate Cancer and Advanced Malignancies. The Prostate, 70, 1388-1394. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Raez, L.E., Papadopoulos, K., Ricart, A.D., Chiorean, E.G., DiPaola, R.S., Stein, M.N., et al. (2013) A Phase I Dose-Escalation Trial of 2-Deoxy-D-Glucose Alone or Combined with Docetaxel in Patients with Advanced Solid Tumors. Cancer Chemotherapy and Pharmacology, 71, 523-530. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Dwarakanath, B.S., Farooque, A. and Gupta, S. (2018) Targeting Regulatory T Cells for Improving Cancer Therapy: Challenges and Prospects. Cancer Reports, 1, e21105. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Farooque, A., Singh, N., Adhikari, J.S., Afrin, F. and Dwarakanath, B.S.R. (2014) Enhanced Antitumor Immunity Contributes to the Radio-Sensitization of Ehrlich Ascites Tumor by the Glycolytic Inhibitor 2-Deoxy-D-Glucose in Mice. PLOS ONE, 9, e108131. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Pai, S., Yadav, V.K., Kuo, K., Pikatan, N.W., Lin, C., Chien, M., et al. (2021) PDK1 Inhibitor BX795 Improves Cisplatin and Radio-Efficacy in Oral Squamous Cell Carcinoma by Downregulating the PDK1/CD47/Akt-Mediated Glycolysis Signaling Pathway. International Journal of Molecular Sciences, 22, Article 11492. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Campesato, L.F., Budhu, S., Tchaicha, J., Weng, C., Gigoux, M., Cohen, I.J., et al. (2020) Blockade of the AHR Restricts a Treg-Macrophage Suppressive Axis Induced by L-Kynurenine. Nature Communications, 11, Article No. 4011. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Beatty, G.L., O'Dwyer, P.J., Clark, J., Shi, J.G., Bowman, K.J., Scherle, P.A., et al. (2017) First-in-Human Phase I Study of the Oral Inhibitor of Indoleamine 2,3-Dioxygenase-1 Epacadostat (INCB024360) in Patients with Advanced Solid Malignancies. Clinical Cancer Research, 23, 3269-3276. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Chan, N.N., Yamazaki, M., Maruyama, S., Abé, T., Haga, K., Kawaharada, M., et al. (2023) Cholesterol Is a Regulator of CAV1 Localization and Cell Migration in Oral Squamous Cell Carcinoma. International Journal of Molecular Sciences, 24, Article 6035. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Luo, X., Zheng, E., Wei, L., Zeng, H., Qin, H., Zhang, X., et al. (2021) The Fatty Acid Receptor CD36 Promotes HCC Progression through Activating Src/PI3K/AKT Axis-Dependent Aerobic Glycolysis. Cell Death & Disease, 12, Article No. 328. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Mehra, R., Seiwert, T.Y., Gupta, S., Weiss, J., Gluck, I., Eder, J.P., et al. (2018) Efficacy and Safety of Pembrolizumab in Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma: Pooled Analyses after Long-Term Follow-Up in KEYNOTE-012. British Journal of Cancer, 119, 153-159. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Ferraro, G.B., Ali, A., Luengo, A., et al. (2021) Fatty Acid Synthesis Is Required for Breast Cancer Brain Metastasis. Nature Cancer, 2, 414-428. [Google Scholar] [CrossRef] [PubMed]
|