|
[1]
|
Zheng, Y., Ley, S.H. and Hu, F.B. (2017) Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nature Reviews Endocrinology, 14, 88-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
ElSayed, N.A., Aleppo, G., Bannuru, R.R., Bruemmer, D., Collins, B.S., Ekhlaspour, L., et al. (2023) 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care, 47, S20-S42. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Chatterjee, S., Khunti, K. and Davies, M.J. (2017) Type 2 Diabetes. The Lancet, 389, 2239-2251. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lok, K., Wareham, N.J., Nair, R.S., How, C.W. and Chuah, L. (2022) Revisiting the Concept of Incretin and Enteroendocrine L-Cells as Type 2 Diabetes Mellitus Treatment. Pharmacological Research, 180, Article ID: 106237. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Cowart, K. (2019) Oral Semaglutide: First-in-Class Oral GLP-1 Receptor Agonist for the Treatment of Type 2 Diabetes Mellitus. Annals of Pharmacotherapy, 54, 478-485. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Fujiwara, Y., Eguchi, S., Murayama, H., Takahashi, Y., Toda, M., Imai, K., et al. (2019) Relationship between Diet/Exercise and Pharmacotherapy to Enhance the GLP‐1 Levels in Type 2 Diabetes. Endocrinology, Diabetes & Metabolism, 2, e00068. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Mari, A., Bagger, J.I., Ferrannini, E., Holst, J.J., Knop, F.K. and Vilsbøll, T. (2013) Mechanisms of the Incretin Effect in Subjects with Normal Glucose Tolerance and Patients with Type 2 Diabetes. PLOS ONE, 8, e73154. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lyseng-Williamson, K.A. (2019) Glucagon-Like Peptide-1 Receptor Agonists in Type 2 Diabetes: Their Use and Differential Features. Clinical Drug Investigation, 39, 805-819. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Holst, J.J. (2007) The Physiology of Glucagon-Like Peptide 1. Physiological Reviews, 87, 1409-1439. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ren, W., Chen, J., Wang, W., Li, Q., Yin, X., Zhuang, G., et al. (2024) Sympathetic Nerve-Enteroendocrine L Cell Communication Modulates GLP-1 Release, Brain Glucose Utilization, and Cognitive Function. Neuron, 112, 972-990.e8. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kato, S., Utsumi, D. and Matsumoto, K. (2019) G Protein-Coupled Receptor 40 Activation Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice via the Upregulation of Glucagon-Likepeptide-2. Journal of Pharmacological Sciences, 140, 144-152. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Moodaley, R., Smith, D.M., Tough, I.R., Schindler, M. and Cox, H.M. (2017) Agonism of Free Fatty Acid Receptors 1 and 4 Generates Peptide YY‐Mediated Inhibitory Responses in Mouse Colon. British Journal of Pharmacology, 174, 4508-4522. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Sjölund, K., Sandén, G., Håkanson, R. and Sundler, F. (1983) Endocrine Cells in Human Intestine: An Immunocytochemical Study. Gastroenterology, 85, 1120-1130. [Google Scholar] [CrossRef]
|
|
[15]
|
Varndell, I.M., Bishop, A.E., Sikri, K.L., Uttenthal, L.O., Bloom, S.R. and Polak, J.M. (1985) Localization of Glucagon-Like Peptide (GLP) Immunoreactants in Human Gut and Pancreas Using Light and Electron Microscopic Immunocytochemistry. Journal of Histochemistry & Cytochemistry, 33, 1080-1086. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kampmann, K., Ueberberg, S., Menge, B.A., Breuer, T.G.K., Uhl, W., Tannapfel, A., et al. (2016) Abundance and Turnover of GLP-1 Producing L-Cells in Ileal Mucosa Are Not Different in Patients with and without Type 2 Diabetes. Metabolism, 65, 84-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Suzuki, K., Iwasaki, K., Murata, Y., Harada, N., Yamane, S., Hamasaki, A., et al. (2017) Distribution and Hormonal Characterization of Primary Murine L Cells Throughout the Gastrointestinal Tract. Journal of Diabetes Investigation, 9, 25-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Eissele, R., Göke, R., Willemer, S., Harthus, H., Vermeer, H., Arnold, R., et al. (1992) Glucagon‐Like Peptide‐1 Cells in the Gastrointestinal Tract and Pancreas of Rat, Pig and Man. European Journal of Clinical Investigation, 22, 283-291. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Portela-Gomes, G.M. and Stridsberg, M. (2002) Chromogranin a in the Human Gastrointestinal Tract: An Immunocytochemical Study with Region-Specific Antibodies. Journal of Histochemistry & Cytochemistry, 50, 1487-1492. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Pinyo, J., Hira, T. and Hara, H. (2019) Continuous Feeding of a Combined High-Fat and High-Sucrose Diet, Rather than an Individual High-Fat or High-Sucrose Diet, Rapidly Enhances the Glucagon-Like Peptide-1 Secretory Response to Meal Ingestion in Diet-Induced Obese Rats. Nutrition, 62, 122-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Cho, Y.M., Fujita, Y. and Kieffer, T.J. (2014) Glucagon-Like Peptide-1: Glucose Homeostasis and Beyond. Annual Review of Physiology, 76, 535-559. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tolhurst, G., Heffron, H., Lam, Y.S., Parker, H.E., Habib, A.M., Diakogiannaki, E., et al. (2012) Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein-Coupled Receptor FFAR2. Diabetes, 61, 364-371. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ekberg, J.H., Hauge, M., Kristensen, L.V., Madsen, A.N., Engelstoft, M.S., Husted, A., et al. (2016) GPR119, a Major Enteroendocrine Sensor of Dietary Triglyceride Metabolites Coacting in Synergy with FFA1 (GPR40). Endocrinology, 157, 4561-4569. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Pathak, P., Xie, C., Nichols, R.G., Ferrell, J.M., Boehme, S., Krausz, K.W., et al. (2018) Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G‐protein Bile Acid Receptor‐1 Signaling to Improve Metabolism. Hepatology, 68, 1574-1588. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Liu, S., Anderson, P.J., Rajagopal, S., Lefkowitz, R.J. and Rockman, H.A. (2024) G Protein-Coupled Receptors: A Century of Research and Discovery. Circulation Research, 135, 174-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Song, Y., Koehler, J.A., Baggio, L.L., Powers, A.C., Sandoval, D.A. and Drucker, D.J. (2019) Gut-Proglucagon-Derived Peptides Are Essential for Regulating Glucose Homeostasis in Mice. Cell Metabolism, 30, 976-986.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Drucker, D.J., Habener, J.F. and Holst, J.J. (2017) Discovery, Characterization, and Clinical Development of the Glucagon-Like Peptides. Journal of Clinical Investigation, 127, 4217-4227. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chambers, A.P., Sorrell, J.E., Haller, A., Roelofs, K., Hutch, C.R., Kim, K., et al. (2017) The Role of Pancreatic Preproglucagon in Glucose Homeostasis in Mice. Cell Metabolism, 25, 927-934.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Drucker, D.J. and Holst, J.J. (2023) The Expanding Incretin Universe: From Basic Biology to Clinical Translation. Diabetologia, 66, 1765-1779. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Campbell, J.E. and Drucker, D.J. (2013) Pharmacology, Physiology, and Mechanisms of Incretin Hormone Action. Cell Metabolism, 17, 819-837. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Pais, R., Rievaj, J., Meek, C., De Costa, G., Jayamaha, S., Alexander, R.T., et al. (2016) Role of Enteroendocrine L-Cells in Arginine Vasopressin‐Mediated Inhibition of Colonic Anion Secretion. The Journal of Physiology, 594, 4865-4878. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Theodorakis, M.J., Carlson, O., Michopoulos, S., Doyle, M.E., Juhaszova, M., Petraki, K., et al. (2006) Human Duodenal Enteroendocrine Cells: Source of Both Incretin Peptides, GLP-1 and GIP. American Journal of Physiology-Endocrinology and Metabolism, 290, E550-E559. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wang, Q., Zhang, W., Zhao, Y., Chen, H., Liu, Q., Wang, Z., et al. (2023) Colonic L-Cell Impairment in Aged Subjects with Type 2 Diabetes Leads to Diminished GLP-1 Production. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 17, Article ID: 102907. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Shu, L., Matveyenko, A.V., Kerr-Conte, J., Cho, J., McIntosh, C.H.S. and Maedler, K. (2015) Decreased TCF7L2 Protein Levels in Type 2 Diabetes Mellitus Correlate with Downregulation of GIP-and GLP-1 Receptors and Impaired Beta-Cell Function. Human Molecular Genetics, 24, 3004-3004. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Nauck, M.A. and Müller, T.D. (2023) Incretin Hormones and Type 2 Diabetes. Diabetologia, 66, 1780-1795. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Song, X., Zhou, L., Xu, H., Wang, F., Liang, G., Zhang, L., et al. (2019) 3-Deoxyglucosone Interferes with Insulin Signaling and Attenuates Insulin Action on Glucose-Induced GLP-1 Secretion in the Enteroendocrine L Cell Line STC-1. Molecular Biology Reports, 46, 4799-4808. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Margolskee, R.F., Dyer, J., Kokrashvili, Z., Salmon, K.S.H., Ilegems, E., Daly, K., et al. (2007) T1R3 and Gustducin in Gut Sense Sugars to Regulate Expression of Na+-Glucose Cotransporter 1. Proceedings of the National Academy of Sciences of the United States of America, 104, 15075-15080. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Jang, H., Kokrashvili, Z., Theodorakis, M.J., Carlson, O.D., Kim, B., Zhou, J., et al. (2007) Gut-Expressed Gustducin and Taste Receptors Regulate Secretion of Glucagon-Like Peptide-1. Proceedings of the National Academy of Sciences of the United States of America, 104, 15069-15074. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ohtsu, Y., Nakagawa, Y., Nagasawa, M., Takeda, S., Arakawa, H. and Kojima, I. (2014) Diverse Signaling Systems Activated by the Sweet Taste Receptor in Human GLP-1-Secreting Cells. Molecular and Cellular Endocrinology, 394, 70-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y.Y., Wang, X., et al. (2018) Gut Bacteria Selectively Promoted by Dietary Fibers Alleviate Type 2 Diabetes. Science, 359, 1151-1156. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Ballegaard, A.R. and Bøgh, K.L. (2023) Intestinal Protein Uptake and IgE-Mediated Food Allergy. Food Research International, 163, Article ID: 112150. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Osuga, Y., Harada, K. and Tsuboi, T. (2022) Identification of a Regulatory Pathway of L-Phenylalanine-Induced GLP-1 Secretion in the Enteroendocrine L Cells. Biochemical and Biophysical Research Communications, 588, 118-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Osuga, Y., Harada, K., Yamauchi, T., Kitaguchi, T., Hirai, M.Y., Matsumoto, M., et al. (2025) Taurine Promotes Glucagon-Like Peptide‐1 Secretion in Enteroendocrine L Cells. FEBS Letters, 599, 1595-1608. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kato, M., Nakanishi, T., Tani, T. and Tsuda, T. (2017) Low-Molecular Fraction of Wheat Protein Hydrolysate Stimulates Glucagon-Like Peptide-1 Secretion in an Enteroendocrine L Cell Line and Improves Glucose Tolerance in Rats. Nutrition Research, 37, 37-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Elliott, R.M., Morgan, L.M., Tredger, J.A., Deacon, S., Wright, J. and Marks, V. (1993) Glucagon-Like Peptide-1(7-36)Amide and Glucose-Dependent Insulinotropic Polypeptide Secretion in Response to Nutrient Ingestion in Man: Acute Post-Prandial and 24-H Secretion Patterns. Journal of Endocrinology, 138, 159-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Yoder, S.M., Yang, Q., Kindel, T.L. and Tso, P. (2009) Stimulation of Incretin Secretion by Dietary Lipid: Is It Dose Dependent? American Journal of Physiology-Gastrointestinal and Liver Physiology, 297, G299-G305. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Wu, T., Rayner, C.K., Watson, L.E., Jones, K.L., Horowitz, M. and Little, T.J. (2017) Comparative Effects of Intraduodenal Fat and Glucose on the Gut-Incretin Axis in Healthy Males. Peptides, 95, 124-127. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kimura, I., Ichimura, A., Ohue-Kitano, R. and Igarashi, M. (2020) Free Fatty Acid Receptors in Health and Disease. Physiological Reviews, 100, 171-210. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Kamakura, R., Raza, G.S., Prasannan, A., Walkowiak, J. and Herzig, K. (2020) Dipeptidyl Peptidase-4 and GLP-1 Interplay in STC-1 and GLUTag Cell Lines. Peptides, 134, Article ID: 170419. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Morishita, M., Tanaka, T., Shida, T. and Takayama, K. (2008) Usefulness of Colon Targeted DHA and EPA as Novel Diabetes Medications That Promote Intrinsic GLP-1 Secretion. Journal of Controlled Release, 132, 99-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Tian, F., Xu, W., Chen, L., Chen, T., Feng, X., Chen, J., et al. (2022) Ginsenoside Compound K Increases Glucagon-Like Peptide-1 Release and L-Cell Abundance in db/db Mice through TGR5/YAP Signaling. International Immunopharmacology, 113, Article ID: 109405. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Casanova‐Martí, À., González‐Abuín, N., Serrano, J., Blay, M.T., Terra, X., Frost, G., et al. (2020) Long Term Exposure to a Grape Seed Proanthocyanidin Extract Enhances L‐Cell Differentiation in Intestinal Organoids. Molecular Nutrition & Food Research, 64, e2000303. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Yang, W., Zhang, C., Ji, W., Zhao, L., Yang, F., Zhang, L., et al. (2024) Berberine Metabolites Stimulate GLP-1 Secretion by Alleviating Oxidative Stress and Mitochondrial Dysfunction. The American Journal of Chinese Medicine, 52, 253-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Renukuntla, J., Vadlapudi, A.D., Patel, A., Boddu, S.H.S. and Mitra, A.K. (2013) Approaches for Enhancing Oral Bioavailability of Peptides and Proteins. International Journal of Pharmaceutics, 447, 75-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
dos Santos, A.M., Carvalho, S.G., Meneguin, A.B., Sábio, R.M., Gremião, M.P.D. and Chorilli, M. (2021) Oral Delivery of Micro/Nanoparticulate Systems Based on Natural Polysaccharides for Intestinal Diseases Therapy: Challenges, Advances and Future Perspectives. Journal of Controlled Release, 334, 353-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Haddadzadegan, S., Dorkoosh, F. and Bernkop-Schnürch, A. (2022) Oral Delivery of Therapeutic Peptides and Proteins: Technology Landscape of Lipid-Based Nanocarriers. Advanced Drug Delivery Reviews, 182, Article ID: 114097. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Ajazuddin, and Saraf, S. (2010) Applications of Novel Drug Delivery System for Herbal Formulations. Fitoterapia, 81, 680-689. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M.D.P., Acosta-Torres, L.S., et al. (2018) Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. Journal of Nanobiotechnology, 16, Article No. 71. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Zhang, L., Lin, Z., Chen, Y., Gao, D., Wang, P., Lin, Y., et al. (2022) Co-Delivery of Docetaxel and Resveratrol by Liposomes Synergistically Boosts Antitumor Efficiency against Prostate Cancer. European Journal of Pharmaceutical Sciences, 174, Article ID: 106199. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Richter, A., Anton, S.E., Koch, P. and Dennett, S.L. (2003) The Impact of Reducing Dose Frequency on Health Outcomes. Clinical Therapeutics, 25, 2307-2335. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Zhang, M. and Merlin, D. (2018) Nanoparticle-Based Oral Drug Delivery Systems Targeting the Colon for Treatment of Ulcerative Colitis. Inflammatory Bowel Diseases, 24, 1401-1415. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Collnot, E., Ali, H. and Lehr, C. (2012) Nano-and Microparticulate Drug Carriers for Targeting of the Inflamed Intestinal Mucosa. Journal of Controlled Release, 161, 235-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Cone, R.A. (2009) Barrier Properties of Mucus. Advanced Drug Delivery Reviews, 61, 75-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Kim, J.H., Shin, D.H. and Kim, J. (2018) Preparation, Characterization, and Pharmacokinetics of Liposomal Docetaxel for Oral Administration. Archives of Pharmacal Research, 41, 765-775. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Homayun, B., Kumar, A., Nascimento, P.T.H. and Choi, H. (2018) Macropored Microparticles with a Core-Shell Architecture for Oral Delivery of Biopharmaceuticals. Archives of Pharmacal Research, 41, 848-860. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Rao, K.A., Yazaki, E., Evans, D.F. and Carbon, R. (2004) Objective Evaluation of Small Bowel and Colonic Transit Time Using pH Telemetry in Athletes with Gastrointestinal Symptoms. British Journal of Sports Medicine, 38, 482-487. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Duchmann, R., Kaiser, I., Hermann, E., Mayet, W., Ewe, K. and BÜSchenfelde, K.M.Z. (1995) Tolerance Exists Towards Resident Intestinal Flora but Is Broken in Active Inflammatory Bowel Disease (IBD). Clinical and Experimental Immunology, 102, 448-455. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Williams, B., Grant, L., Gidley, M. and Mikkelsen, D. (2017) Gut Fermentation of Dietary Fibres: Physico-Chemistry of Plant Cell Walls and Implications for Health. International Journal of Molecular Sciences, 18, Article 2203. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Zhang, L., Sang, Y., Feng, J., Li, Z. and Zhao, A. (2016) Polysaccharide-Based Micro/Nanocarriers for Oral Colon-Targeted Drug Delivery. Journal of Drug Targeting, 24, 579-589. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Ali, H., Weigmann, B., Neurath, M.F., Collnot, E.M., Windbergs, M. and Lehr, C. (2014) Budesonide Loaded Nanoparticles with pH-Sensitive Coating for Improved Mucosal Targeting in Mouse Models of Inflammatory Bowel Diseases. Journal of Controlled Release, 183, 167-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Amidon, S., Brown, J.E. and Dave, V.S. (2015) Colon-Targeted Oral Drug Delivery Systems: Design Trends and Approaches. AAPS PharmSciTech, 16, 731-741. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Maisel, K., Ensign, L., Reddy, M., Cone, R. and Hanes, J. (2015) Effect of Surface Chemistry on Nanoparticle Interaction with Gastrointestinal Mucus and Distribution in the Gastrointestinal Tract Following Oral and Rectal Administration in the Mouse. Journal of Controlled Release, 197, 48-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Banerjee, A., Pathak, S., Subramanium, V.D., G., D., Murugesan, R. and Verma, R.S. (2017) Strategies for Targeted Drug Delivery in Treatment of Colon Cancer: Current Trends and Future Perspectives. Drug Discovery Today, 22, 1224-1232. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Chimerel, C., Emery, E., Summers, D.K., Keyser, U., Gribble, F.M. and Reimann, F. (2014) Bacterial Metabolite Indole Modulates Incretin Secretion from Intestinal Enteroendocrine L Cells. Cell Reports, 9, 1202-1208. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Brown, A.J., Goldsworthy, S.M., Barnes, A.A., Eilert, M.M., Tcheang, L., Daniels, D., et al. (2003) The Orphan G Protein-Coupled Receptors GPR41 and GPR43 Are Activated by Propionate and Other Short Chain Carboxylic Acids. Journal of Biological Chemistry, 278, 11312-11319. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Le Poul, E., Loison, C., Struyf, S., Springael, J., Lannoy, V., Decobecq, M., et al. (2003) Functional Characterization of Human Receptors for Short Chain Fatty Acids and Their Role in Polymorphonuclear Cell Activation. Journal of Biological Chemistry, 278, 25481-25489. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Morrison, D.J., Mackay, W.G., Edwards, C.A., Preston, T., Dodson, B. and Weaver, L.T. (2006) Butyrate Production from Oligofructose Fermentation by the Human Faecal Flora: What Is the Contribution of Extracellular Acetate and Lactate? British Journal of Nutrition, 96, 570-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Zheng, Z., Zong, Y., Ma, Y., Tian, Y., Pang, Y., Zhang, C., et al. (2024) Glucagon-Like Peptide-1 Receptor: Mechanisms and Advances in Therapy. Signal Transduction and Targeted Therapy, 9, Article No. 234. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Zeng, J., Tang, X., Qin, D., Yu, L., Zhou, X., Feng, C., et al. (2025) Engineered GLP-1R-Targeting Nanoplatforms: Multimodal Therapeutics in Human Diseases. Journal of Nanobiotechnology, 23, Article No. 682. [Google Scholar] [CrossRef]
|
|
[80]
|
Sorrentino, G., Perino, A., Yildiz, E., El Alam, G., Bou Sleiman, M., Gioiello, A., et al. (2020) Bile Acids Signal via TGR5 to Activate Intestinal Stem Cells and Epithelial Regeneration. Gastroenterology, 159, 956-968.e8. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Ji, T. and Kohane, D.S. (2019) Nanoscale Systems for Local Drug Delivery. Nano Today, 28, Article ID: 100765. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Huang, S., Hong, X., Zhao, M., et al. (2022) Nanocomposite Hydrogels for Biomedical Applications. Bioengineering & Translational Medicine, 7, e10315.
|
|
[83]
|
Halder, A. and Sun, Y. (2019) Biocompatible Propulsion for Biomedical Micro/Nano Robotics. Biosensors and Bioelectronics, 139, Article ID: 111334. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Riedel, M.J., Gaddy, D.F., Asadi, A., Robbins, P.D. and Kieffer, T.J. (2009) DsAAV8-Mediated Expression of Glucagon-Like Peptide-1 in Pancreatic β-Cells Ameliorates Streptozotocin-Induced Diabetes. Gene Therapy, 17, 171-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Gaddy, D.F., Riedel, M.J., Pejawar-Gaddy, S., Kieffer, T.J. and Robbins, P.D. (2010) In Vivo Expression of HGF/NK1 and GLP-1 from DsAAV Vectors Enhances Pancreatic β-Cell Proliferation and Improves Pathology in the db/db Mouse Model of Diabetes. Diabetes, 59, 3108-3116. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Soltani, N., Kumar, M., Glinka, Y., Prud’Homme, G.J. and Wang, Q. (2007) In Vivo Expression of GLP-1/IgG-Fc Fusion Protein Enhances β-Cell Mass and Protects against Streptozotocin-Induced Diabetes. Gene Therapy, 14, 981-988. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Kumar, M., Hunag, Y., Glinka, Y., Prud’Homme, G.J. and Wang, Q. (2006) Gene Therapy of Diabetes Using a Novel GLP-1/IgG1-Fc Fusion Construct Normalizes Glucose Levels in db/db Mice. Gene Therapy, 14, 162-172. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Wang, L., Chen, T., Wang, H., Wu, X., Cao, Q., Wen, K., et al. (2021) Engineered Bacteria of MG1363-pMG36e-GLP-1 Attenuated Obesity-Induced by High Fat Diet in Mice. Frontiers in Cellular and Infection Microbiology, 11, Article 595575. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Zhou, D., Li, S., Hu, G., Wang, Y., Qi, Z., Xu, X., et al. (2025) Hypoglycemic Effect of C. Butyricum-pMTl007-GLP-1 Engineered Probiotics on Type 2 Diabetes Mellitus. Gut Microbes, 17, Article ID: 2447814. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Guan, X., Pei, Y. and Song, J. (2024) DNA-Based Nonviral Gene Therapy—Challenging but Promising. Molecular Pharmaceutics, 21, 427-453. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Garcia-Guerra, A., Dunwell, T.L. and Trigueros, S. (2018) Nano-Scale Gene Delivery Systems: Current Technology, Obstacles, and Future Directions. Current Medicinal Chemistry, 25, 2448-2464. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
de Souza Simões, L., Madalena, D.A., Pinheiro, A.C., Teixeira, J.A., Vicente, A.A. and Ramos, Ó.L. (2017) Micro-and Nano Bio-Based Delivery Systems for Food Applications: In Vitro Behavior. Advances in Colloid and Interface Science, 243, 23-45. [Google Scholar] [CrossRef] [PubMed]
|