基于激活内源性GLP-1分泌干预2型糖尿病的研究进展
Research Progress on Intervention for Type 2 Diabetes by Activating Endogenous GLP-1 Secretion
摘要: 2型糖尿病(Type 2 Diabetes Mellitus, T2DM)是以胰岛素抵抗为主,伴胰岛β细胞功能逐渐衰退的代谢性疾病。胰高血糖素样肽-1 (Glucagon-Like Peptide-1, GLP-1)是肠道L细胞分泌的一种高效安全的抗糖尿病肽,能够增加胰岛素敏感性。此外,天然脂质配体能够激活位于肠道远端L细胞上的G蛋白偶联受体,从而刺激GLP-1的分泌。基于此原理开发的肠促胰岛素药物包括二肽基肽酶-4抑制剂和GLP-1受体激动剂(GLP-1 Receptor Agonists, GLP-1 RAs)能够有效改善血糖,然而该类药物带来的注射负担、胃肠道的不良反应以及其昂贵的价格使患者的依从性大大降低。因此,通过激活GLP-1内源性分泌是一种极具潜力的T2DM治疗新策略。已有研究发现多种营养物质如n-3多不饱和脂肪酸(n-3 Polyunsaturated Fatty Acids, n-3 PUFAs)在一定程度上能够促进GLP-1分泌、白色脂肪棕色化和胰岛素信号传导。综上,本文系统综述了激活内源性GLP-1分泌干预T2DM的新策略,重点阐述了特定营养素/活性物质、纳米递送系统以及其他新兴策略的研究进展,并对未来方向进行了展望,为开发口服、高效、安全的T2DM新疗法提供理论参考。
Abstract: Type 2 Diabetes Mellitus (T2DM) is a metabolic disease characterized primarily by insulin resistance, accompanied by the progressive decline of pancreatic β-cell function. Glucagon-like peptide-1 (GLP-1), an anti-diabetic peptide secreted by intestinal L-cells, is both highly effective and safe, capable of enhancing insulin sensitivity. Furthermore, natural lipid ligands can activate G-protein-coupled receptors located on distal intestinal L-cells, thereby stimulating GLP-1 secretion. Incretin-based drugs developed on this principle, such as Dipeptidyl Peptidase-4 inhibitors and GLP-1 Receptor Agonists (GLP-1 RAs), effectively improve glycemic control. However, the burden of injection, gastrointestinal adverse effects, and high cost associated with these drugs significantly reduce patient adherence. Consequently, activating endogenous GLP-1 secretion represents a highly promising novel therapeutic strategy for T2DM. Existing studies have found that various nutrients, such as n-3 Polyunsaturated Fatty Acids (n-3 PUFAs), can promote GLP-1 secretion, white adipose tissue browning, and insulin signaling to some extent. In summary, this article systematically reviews novel strategies for intervening in T2DM by activating endogenous GLP-1 secretion. It focuses on elucidating the research progress regarding specific nutrients/active substances, nano-delivery systems, and other emerging strategies, while also providing an outlook on future directions, aiming to offer a theoretical reference for developing oral, efficient, and safe new therapies for T2DM.
文章引用:管佩玲. 基于激活内源性GLP-1分泌干预2型糖尿病的研究进展[J]. 临床医学进展, 2025, 15(12): 651-663. https://doi.org/10.12677/acm.2025.15123455

1. 引言

糖尿病已经成为21世纪增长最快的全球突发公共卫生事件之一[1]。全球糖尿病患病率从2000年的4.6%急剧上升到2025年的11.1%,患者总数高达5.89亿。据预测,到2050年,这一数字将攀升至8.53亿,流行趋势日益严峻[2]。其中我国糖尿病患者总人口排名全球第一,约为1.48亿[3]。从广义上讲,糖尿病包括四类:1型糖尿病(Type 1 Diabetes Mellitus)、2型糖尿病(Type 2 Diabetes Mellitus, T2DM)、妊娠糖尿病(Gestational Diabetes Mellitus)和特定类型的糖尿病(例如,年轻成熟型糖尿病)。其中T2DM发病率高达90%,其病理特征以胰岛素抵抗为核心,伴随胰岛β细胞功能性衰退[4]

维持稳定的血糖水平对于T2DM的治疗至关重要,胰高血糖素样肽-1 (Glucagon-Like Peptide-1, GLP-1)作为由肠道L细胞分泌的一种肠促胰岛素激素,因其葡萄糖浓度依赖性地促进胰岛素分泌、抑制胰高血糖素释放、延缓胃排空及增加饱腹感等多重生理作用,被视为高效且安全的抗糖尿病靶点[5] [6]。基于GLP-1路径开发的药物,如GLP-1受体激动剂(GLP-1 Receptor Agonists, GLP-1 RAs)和二肽基酶-4 (DPP-4)抑制剂在临床中展现出良好的血糖控制效果[7]。仍面临注射给药带来的不便、胃肠道不良反应以及治疗费用高昂等局限,导致部分患者长期依从性欠佳[8]。研究显示高达50%的接受治疗的个体至少会出现一次恶心发作,一些患者由于耐受性问题而停止使用GLP-1R激动剂[9]

L细胞作为分布于回肠远端与结肠(尤其是盲肠和升结肠)的关键内分泌细胞,是GLP-1的主要来源[10] [11]。研究表明,T2DM患者常存在L细胞对营养物质(如葡萄糖与脂质)应答能力下降,从而导致GLP-1分泌不足[12]。值得注意的是,天然脂质等配体可通过激活位于结肠L细胞表面的G蛋白偶联受体(如GPR119、GPR120)有效刺激内源性GLP-1的释放[13]。这一机制提示,通过靶向作用于结肠L细胞,促进机体自身GLP-1分泌,有望发展为一种更具生理性、副作用更小的T2DM治疗新途径。

因此,本文旨在系统阐述肠道L细胞分泌GLP-1的调控机制,重点综述近年来通过激活内源性GLP-1分泌以干预2型糖尿病的各类新策略与研究进展,以期为T2DM的干预提供新思路。

2. GLP-1分泌的调控机制与T2DM

2.1. GLP-1的分泌及其调控机制

肠道内分泌细胞是弥散分布于肠道上皮层中的一类特化细胞,负责分泌多种胃肠激素,如胆囊收缩素、葡萄糖依赖性促胰岛素肽及胰高血糖素样肽-1 (GLP-1)等[14]。根据其分布位置、感知信号及分泌激素的不同,可分为I细胞、K细胞、L细胞、G细胞等多种类型[15] 。其中,L细胞是分泌GLP-1的关键细胞。免疫组织化学研究显示,L细胞密度向结肠方向增加[16],隐窝中的L细胞多于绒毛[17]。在小鼠、猪及人类中均观察到,上段小肠中L细胞密度较低,并自回肠至结肠(尤其是直肠)逐渐增高[18]。这一独特的分布模式,为靶向结肠区域调控内源性GLP-1分泌的策略提供了重要的解剖学依据。

与大多数开放型肠内分泌细胞类似,L细胞形态呈锥形,其顶端带有微绒毛结构伸入肠腔,用以感知管腔内的营养物质与化学信号;而富含激素分泌颗粒的基底部则紧贴基底层,便于将合成的激素(如GLP-1)释放至固有层毛细血管中,进入血液循环[19]

长期以来,学界主要基于形态学观察提出假说,认为L细胞通过其顶端伸入肠腔的微绒毛直接感知管腔内的营养物质,从而在餐后诱导GLP-1分泌[20]。随着研究的深入,这一假说已得到充分证实:膳食摄入主要通过激活L细胞膜上的G蛋白偶联受体(GPCRs)或生电转运蛋白,驱动其直接营养感知,进而刺激GLP-1分泌[21]。目前,大量研究已阐明L细胞上一系列关键的营养传感器及其配体:① 短链脂肪酸可激活FFAR2与FFAR3受体[22];② 单酰基甘油的促分泌作用由GPR119受体介导[23];③ 胆汁酸则是TGR5受体的高效激动剂,可显著刺激GLP-1分泌[24]。简而言之,L细胞通过一套精密且多样化的机制感知营养物质,其范围涵盖由生电转运蛋白介导的底物摄取,到与不同效应蛋白(如Gq和Gαs)偶联的各类GPCRs所启动的复杂信号转导共同协调餐后GLP-1的适时释放[25]

2.2. GLP-1对T2DM的影响

胰高血糖素样肽-1 (GLP-1)是由肠道L细胞分泌的一种关键肠促胰岛素激素,由胰高血糖素原(Gcg)基因编码产生[26]。其核心生理功能在于精准调控血糖稳态从而影响T2DM,具体机制包括:① 促进胰岛素分泌:GLP-1以葡萄糖浓度依赖性的方式刺激胰岛β细胞,增强胰岛素分泌,此为GLP-1发挥降糖作用的基石[27];② 抑制胰高血糖素分泌:同时,它能有效抑制胰岛α细胞分泌胰高血糖素,双向作用以降低餐后血糖水平[28];③ 延缓胃排空与抑制食欲:通过作用于中枢神经系统及消化道,GLP-1可延缓胃内容物排空并增加饱腹感,从而减少营养物质吸收与能量摄入[29]。此外,研究还表明GLP-1在糖尿病实验模型中具有保护β细胞的作用,能够抑制其凋亡并促进增殖[30]。上述卓越的生理特性使GLP-1成为治疗T2DM的理想靶点,并直接推动了GLP-1受体激动剂(GLP-1RA)的研发与应用。然而,内源性GLP-1在体内可被二肽基肽酶-4 (DPP-4)快速降解而失活,半衰期极短,限制了其直接成药性[31]。此外有研究表明,天然GLP-1及其受体激动剂对炎症、心血管疾病和神经退行性疾病具有保护作用[32],这强调了维持GLP-1基础循环水平的重要性。

2.3. T2DM对内源性GLP-1合成和分泌的影响

尽管健康状态下L细胞具备精密的营养感知机制,但在2型糖尿病(T2DM)病理状态下,该功能呈现显著受损[33]。这一功能障碍在临床上直接表现为:T2DM患者在进食后,其内源性GLP-1的分泌总量与释放动力学均出现异常,循环GLP-1水平显著低于健康个体[34]。此外,胰岛β细胞对GLP-1的敏感性也同步下降,共同导致了典型的“肠促胰岛素效应”受损[35]。上述证据表明,在已发病的T2DM个体中,单纯依赖生理性的膳食营养刺激,可能已不足以有效激活内源性GLP-1分泌轴。因此,通过外部手段主动干预、以修复或增强L细胞功能,为开发靶向L细胞的新治疗策略提供了最直接且紧迫的理论依据。

3. 膳食营养素激活内源性GLP-1分泌的策略

3.1. 碳水化合物

碳水化合物是调控结肠L细胞分泌胰高血糖素样肽-1 (GLP-1)的关键膳食成分,其作用机制多样。首先,可消化的碳水化合物(如葡萄糖和蔗糖)可通过钠-葡萄糖协同转运蛋白1 (SGLT-1)被L细胞直接摄取。SGLT-1介导的钠离子内流引发细胞膜去极化,进而激活电压依赖性钙离子通道,导致胞内钙浓度升高,从而触发第一时相的GLP-1快速分泌[36]。其次,L细胞膜上表达的甜味受体(STR,主要由T1R2/T1R3亚基构成)能感知人工甜味剂的存在。在GLUTag [37]、NCI-H716 [38]及HuTu-80 [39]等多种L细胞模型中的研究证实,三氯蔗糖等甜味剂可通过激活STR,独立于营养吸收途径来促进GLP-1分泌。此外,不可消化的膳食纤维虽不能被宿主直接吸收,但可经肠道菌群发酵产生短链脂肪酸(SCFAs),如丙酸和丁酸。这些SCFAs作为信号分子,通过结合并激活L细胞表面表达的G蛋白偶联受体41/43 (GPCR 41/43),间接而持久地刺激GLP-1释放[40]。综上所述,碳水化合物及其衍生物通过直接转运、味觉感知和微生物代谢三种主要机制,共同构成一个复杂的网络,精细调控着L细胞的GLP-1分泌。

3.2. 蛋白质与氨基酸

与结构相对单一的碳水化合物不同,膳食蛋白质在消化过程中被分解为约20种氨基酸、400余种二肽及近8000种三肽[41],其吸收与感知机制因而更为复杂。尽管如此,研究已证实多种氨基酸及其寡肽能够有效刺激肠道L细胞分泌GLP-1 [42]

其作用机制主要涉及特异性转运体与膜受体。例如,L细胞通过牛磺酸转运蛋白(TauT)摄取牛磺酸,导致胞内ATP水平升高,进而关闭ATP敏感性钾通道(KATP),引发细胞膜去极化并开启电压依赖性钙通道,最终通过胞内钙离子浓度升高来驱动GLP-1的分泌[43]。除转运体外,G蛋白偶联受体(GPCR)在感知蛋白质消化产物中扮演着关键角色。一项基于GLUTag细胞的研究[44]揭示,G蛋白偶联受体家族C组6亚型A (GPRC6A)是感知小麦面筋水解物中低分子组分的重要受体。其激活后可介导Ca2+/钙调蛋白依赖性激酶II (CaMKII)信号通路,以剂量和时间依赖性的方式显著促进GLP-1分泌。这些发现共同表明,蛋白质及其水解产物通过多元化的分子传感器,构成了调控L细胞功能的另一重要营养信号途径。

3.3. 脂质

脂质是诱导肠促胰岛素分泌的有效营养物质。近期研究证实,无论是基于NCI-H716细胞模型[45]、Sprague-Dawley大鼠模型[46],还是在人体试验[47]中,脂质成分均显示出强大的GLP-1促泌能力,其效力甚至可能优于蛋白质与葡萄糖。脂质对L细胞的刺激作用高度依赖于其自身的碳链长度与饱和度[45],这一特性决定了它们与细胞表面特异性G蛋白偶联受体(GPCR)的结合亲和力。其中,游离脂肪酸受体1与4 (FFAR1/GPR40与FFAR4/GPR120)是感知长链脂肪酸(如DHA、EPA)的关键受体[48],其被天然配体或合成激动剂激活后,可有效触发GLP-1的释放[49]。值得注意的是,脂质的作用存在显著的肠段特异性。Morishita等人的研究[50]清晰地揭示了这一点:他们通过原位注射发现,虽然在小肠和回肠段给予DHA和EPA对GLP-1分泌影响有限,但在结肠段给予相同刺激却能显著促进GLP-1分泌(增加68%),进而强力促进胰岛素释放(提高2.3倍)并产生降血糖效应。这一发现不仅凸显了结肠L细胞在响应长链脂肪酸中的关键地位,也为靶向结肠区域开发膳食干预策略提供了重要依据。

3.4. 其他活性物质

除了宏量营养素外,多种植物来源的生物活性物质也被证实能有效促进L细胞分泌GLP-1。研究表明,人参皂苷化合物K可通过激活TGR5/YAP信号通路,在db/db糖尿病模型中不仅刺激GLP-1释放,更能显著增加L细胞的数量本身,展现出独特的促增殖潜力[51]。葡萄籽原花青素提取物(GSPE)则在肠道水平发挥作用,通过增强GLP-1及其协同激素PYY的释放,共同调节食欲与葡萄糖稳态[52]。此外,研究发现天然生物碱如小檗碱(BBR)的体内代谢产物小红碱(BBB)与棕榈碱(PMT)能显著提升GLUTag细胞以及肥胖小鼠的GLP-1基础分泌与葡萄糖刺激下的分泌[53]

综上所述,天然食物活性成分能够通过不同的分子靶点和作用模式调控GLP-1分泌,为开发膳食干预或新型药物提供了广阔前景。

4. 纳米技术提升内源性GLP-1激活效率的递送策略

4.1. 纳米递送系统的必要性

口服给药系统(ODDS)因其便捷、患者依从性高、无痛和无创的特性而成为2型糖尿病(T2DM)的理想途径[54]。特别是,结肠L细胞作为分泌胰高血糖素样肽-1 (GLP-1)等关键激素的核心单元,已成为T2DM治疗极具吸引力的靶点。然而,传统的ODDS如二甲双胍等极易在胃肠道(GIT)中遭受消化酶的降解而发生变性,导致药物失活或吸收不良、生物利用度低下,从而削弱疗效甚至完全失效[55]。纳米药物递送系统(NDDS)是指制药领域的一种新方法,利用纳米技术的潜力进行药物递送。根据所使用的载体材料和结构,NDDS分为不同的类别,包括纳米悬浮液、纳米脂质体、胶束、微乳液/自身微乳液、纳米胶囊和固体脂质纳米颗粒[56]这些NDDS的尺寸通常在1至100纳米之间,能够有效解决药物溶解度差与化学不稳定性等常规制剂的局限,从而显著提升天然产物的稳定性、溶解性与吸收性[57]。此外,NDDS能够将天然产物精确递送至体内的特定部位如结肠,在增强其治疗效果的同时,最大限度地减少副作用[58]。通过共同封装不同天然产物,NDDS还可发挥协同治疗效应,使其综合作用优于单一成分效果的总和[59]。对患者而言,NDDS带来的更高给药效率有助于减少用药剂量与频率,从而改善治疗依从性,使治疗过程更为便捷、有效[60]。因此,对于旨在通过口服途径精准调控L细胞功能以治疗T2DM的策略而言,NDDS并非一种简单的技术替代,而是一种能够克服多重生理屏障、实现高效靶向递送的必要工具,其为开发下一代糖尿病口服疗法提供了核心解决方案。

4.2. 结肠靶向纳米策略

实现口服药物精准靶向结肠L细胞的首要挑战,是确保载药系统能完整穿越胃和小肠,并在结肠部位特异性释放其内容物。目前,基于胃肠道生理梯度设计的纳米载体已成为解决这一挑战的主流策略,主要包括pH依赖、时间控制及酶触发三种机制[61]

4.2.1. pH响应型纳米载体

胃肠道各节段的pH值存在显著差异,从胃的强酸性(pH 1~3)到小肠的近中性(pH 5.9~7.8),最终至结肠的弱酸性或中性环境(pH 5~8) [62]。pH响应型纳米载体利用此梯度,在到达结肠特定pH环境前保持稳定,继而溶解或发生结构变化以释放药物。例如,采用Eudragit® S100等聚甲基丙烯酸酯聚合物包被的纳米粒,能在高于pH 7.0的环境中溶解,从而避免药物在胃及小肠中的过早释放,确保其能精准递送至结肠部位[63]

4.2.2. 时间依赖性释放系统

该策略依赖于药物在胃肠道中相对稳定的转运时间。通常,药物制剂在小肠中的转运时间约为4小时,变异较小(2~6小时) [64] [65]。时间控制系统通过设计延迟释放的纳米载体(如采用多层包衣或特定溶胀性聚合物),使其在摄入后经过预设的时间(通常为4~6小时)才开始释放药物,此时载体已大概率抵达结肠[66]

4.2.3. 微生物酶触发型纳米载体

人类结肠中栖息着超过400种需氧与厌氧细菌,它们能分泌丰富的还原酶和水解酶(如偶氮还原酶、糖苷酶)以降解未被消化的多糖[67] [68]。这一独特的微生物环境为结肠特异性药物释放提供了理想触发点。由壳聚糖、瓜尔豆胶、果胶等天然多糖构成的纳米载体,能够抵抗上消化道酶的降解,但可被结肠菌群酶特异性分解,进而释放所包封的药物活性分子[69]

4.3. L细胞主动靶向策略

传统的结肠靶向制剂虽能实现药物在结肠的区域性释放,但其对特定细胞类型的靶向能力有限,难以区分健康与病变组织,且因尺寸所限往往难以有效穿透黏液屏障并被目标细胞高效摄取[70] [71]。为克服这些局限,主动靶向策略应运而生。该策略旨在通过将抗体、配体等靶向分子修饰于纳米药物递送系统(NDDS)表面,使其能够特异性识别并结合细胞表面过表达的特定抗原或受体,从而实现药物的精准递送、促进细胞的内化摄取,并最大限度地减少脱靶效应[72] [73]

L细胞作为肠道激素分泌的关键单元,其表面富集了多种特征性受体,这些受体为主动靶向提供了理想的作用靶点。目前的靶向策略主要围绕以下几类关键受体展开:

4.3.1. 基于营养感应受体的靶向策略

L细胞通过特定的G蛋白偶联受体(GPCR)感知肠道内容物,这些受体是实施靶向策略的首选目标。其中,游离脂肪酸受体FFAR2 (GPR43)与FFAR3 (GPR41)在响应肠道菌群代谢产物短链脂肪酸(SCFAs) 并刺激GLP-1分泌的过程中扮演核心角色[74]。不同SCFAs对受体的亲和力存在差异:丙酸盐对FFAR2和FFAR3均能有效激活,而乙酸盐和丁酸盐则分别对FFAR2和FFAR3表现出高选择性[75] [76]

除FFARs外,GPR119是另一个重要的靶点,其被内源性脂质配体或合成激动剂激活后,能强效刺激GLP-1分泌。将GPR119配体修饰于纳米载体表面,可实现受体介导的L细胞靶向与生物活性激活的双重功效[77]

4.3.2. 基于激素受体的靶向策略

胰高血糖素样肽-1受体(GLP-1R)在L细胞表面高水平表达,是其最特异的标志物之一[78]。利用GLP-1受体激动剂(如艾塞那肽)或特异性抗体片段修饰NDDS,可实现载体对L细胞的高度特异性结合与内化[79]。这种“同源靶向”策略虽面临受体占用可能影响内源性信号传导的理论风险,但为实现最高精度的靶向递送提供了重要路径。

4.3.3. 基于其他关键膜蛋白的靶向策略

胆汁酸受体TGR5在L细胞中亦有丰富表达。将胆汁酸或其类似物作为靶向配体修饰于纳米载体,不仅可引导载体至L细胞,还能直接激活TGR5信号通路,产生促进GLP-1分泌的协同效应[80]

4.4. 挑战与局限性

尽管纳米递送系统前景广阔,但其临床转化仍面临多重障碍。科学层面,纳米载体在复杂胃肠道环境中的命运,包括与黏液层的相互作用、肠道菌群对其稳定性的影响以及跨上皮转运的具体路径,尚未被完全阐明[81]。技术层面,实现纳米药物的大规模、高重现性及低成本的工业化生产是一大挑战,其载药量、包封率及批次间一致性仍需优化[82]。安全层面,纳米材料(尤其是合成聚合物)的长期生物相容性、潜在的免疫原性及在器官中的长期蓄积风险,需要通过更系统的毒理学研究进行评估[83]。监管层面,针对此类复杂产品的质量控制标准、体内外相关性评价体系尚未完全建立,为其审批带来了一定的不确定性。

5. 其他新兴策略

除了上述基于纳米技术的靶向递送策略外,随着生物技术、基因工程与智能材料的深度融合,一系列新兴疗法逐渐兴起,旨在从基因层面、细胞层面乃至整个肠道微环境层面,实现对L细胞功能更为根本和长效的调控。

5.1. 基因疗法

基因疗法旨在超越传统药理学,通过基因工程手段将肠道L细胞改造为长效的“活体药物工厂”。其核心策略是利用病毒或非病毒纳米载体,将编码胰高血糖素样肽-1 (GLP-1)或其长效类似物的基因靶向递送至L细胞,从而实现GLP-1的持续、自主分泌[84]。多项研究已通过静脉或腹腔注射病毒及质粒载体,在糖尿病模型中成功实现了GLP-1的表达与分泌[85] [86]。例如,Wang等人采用“基于质粒的电穿孔增强肌内基因疗法”,将编码GLP-1或exendin-4融合蛋白的质粒直接注射至糖尿病小鼠肌肉中,成功在血浆中检测到长达数周的循环肽段,并显著改善了葡萄糖耐量[87]。综上所述,基因疗法为T2DM的长期血糖控制提供了极具前景的全新策略。

5.2. 工程活菌疗法

工程活菌疗法利用合成生物学技术,对益生菌进行基因改造,使其能够在肠道内感知特定生理信号(如血糖水平),并动态分泌GLP-1或短链脂肪酸(SCFAs)等活性物质,从而精准刺激L细胞功能。研究表明,口服能够组成型分泌GLP-1的工程菌MG1363-pMG36e-GLP-1,可在1型糖尿病及肥胖小鼠模型中有效产生具有生物活性的GLP-1,并显著降低血糖与体重[88]。另一项研究通过改造丁酸梭菌使其持续表达GLP-1 (Cb-GLP-1),证实其可通过激活GLP-1R/AC/PKA信号通路、延缓胰岛细胞凋亡并促进胰岛素分泌,在T2DM小鼠中展现出明确疗效[89]。这些工程菌相当于在肠道内构建了可自我再生的微型药物工厂,能对局部微环境作出即时响应,为实现T2DM的动态、个性化治疗提供了全新路径。

5.3. 挑战与局限性

基因疗法与工程活菌疗法作为革命性策略,其临床转化道路更为漫长且充满挑战。科学层面,基因疗法面临载体(如AAV)的靶向性、转染效率及长期表达稳定性的问题[90],且存在潜在的基因组整合风险与免疫原性[91]。工程菌则存在其在复杂人体肠道微环境中的定植稳定性、基因水平转移风险以及对宿主菌群生态的潜在不可控影响[92]。技术层面,活体生物药(LBP)的生产、纯化、保存及口服后在体内的实时无损监测均是技术瓶颈。安全层面,工程菌的生物遏制(Biosafety Containment)策略是否绝对可靠,即工程菌或其改造基因是否会逃逸至环境,是科研工作者的核心关切的安全问题。监管层面,目前全球范围内对于基因治疗产品和工程活菌疗法的监管框架仍在不断演变和完善中,其审评路径和标准缺乏先例,为产业化带来了巨大的不确定性。

6. 总结与展望

以结肠L细胞为靶点,通过促进其分泌胰高血糖素样肽-1 (GLP-1)来治疗2型糖尿病(T2DM),已成为一种极具前景的高效策略。本综述系统概述了肠道L细胞响应膳食营养素(如碳水化合物、蛋白质、脂质)的核心感知机制,进而深入探讨了如何利用纳米药物递送系统(如pH响应、酶触发及主动靶向载体)克服胃肠道屏障,实现药物或营养物质在L细胞的精准富集。此外,基因疗法、工程活菌等新兴策略的出现,进一步拓展了靶向L细胞激活内源性GLP-1分泌的技术边界。这些多元化策略的蓬勃发展,充分证明了该领域巨大的临床应用潜力与创新活力。

然而,将结肠L细胞靶向从概念转化为临床现实仍面临诸多挑战。首先,现有策略的靶向效率与特异性仍有待提高,载体在复杂肠道环境中的命运、与黏液层的相互作用及其被L细胞摄取的真实效率仍需精确定量。其次,长期安全性与规模化生产是临床转化的关键瓶颈,包括纳米材料的生物相容性、工程菌的基因稳定性以及大规模生产的成本与质量控制等问题,均需得到充分评估与解决。

展望未来,该领域的研究有赖于多学科的深度融合(药剂学、内分泌学、微生物组学与材料科学),并致力于转化为可验证的具体技术路径。本文提出以下几项具有可行性的研究方向。

6.1. 开发多功能纳米递送系统

未来的研究可聚焦于将“多靶点”理念转化为具体的技术方案。一个可行的方向是:以能够同时靶向L细胞表面FFAR1与TGR5双受体为目的构建表面共修饰有FFAR1天然配体(如亚油酸)与TGR5激动剂(如INT-777衍生物)的聚合物纳米粒(如PLGA-PEG),该载体的协同效应假说在于:FFAR1激活可能增强L细胞对TGR5信号的敏感性,从而放大下游cAMP-PKA信号通路,可在T2DM动物模型中系统评估其相较于单靶点策略是否具有协同增效作用。

6.2. 利用L细胞异质性实现精准营养靶向

在以后的研究中,可以充分利用单细胞测序与空间转录组等技术,深入解析T2DM进程中L细胞的亚群分类、功能异质性、分布规律以及疾病状态下的分化情况,以期鉴定出对特定干预(如营养或药物)响应最敏感的L细胞亚型,进一步提高靶向功能的效率并为精准治疗提供新的细胞靶点。

6.3. 构建智能响应系统

探索开发能同时响应肠道内葡萄糖与特定菌群代谢物(如丁酸盐、丙酸盐等)浓度变化的智能水凝胶或纳米颗粒,实现促GLP-1分泌药物的按需、自反馈式精准释放,并在模拟人类肠道环境的复杂体外模型中进行功能验证。

6.4. 推动临床前转化研究

至关重要的是,必须在大型动物模型(如猪或非人灵长类)中,利用新型在体传感技术,长期、动态监测GLP-1的分泌模式,以真实评估靶向策略的有效性并为临床给药方案的设计提供关键依据。

参考文献

[1] Zheng, Y., Ley, S.H. and Hu, F.B. (2017) Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nature Reviews Endocrinology, 14, 88-98. [Google Scholar] [CrossRef] [PubMed]
[2] Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119. [Google Scholar] [CrossRef] [PubMed]
[3] ElSayed, N.A., Aleppo, G., Bannuru, R.R., Bruemmer, D., Collins, B.S., Ekhlaspour, L., et al. (2023) 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care, 47, S20-S42. [Google Scholar] [CrossRef] [PubMed]
[4] Chatterjee, S., Khunti, K. and Davies, M.J. (2017) Type 2 Diabetes. The Lancet, 389, 2239-2251. [Google Scholar] [CrossRef] [PubMed]
[5] Lok, K., Wareham, N.J., Nair, R.S., How, C.W. and Chuah, L. (2022) Revisiting the Concept of Incretin and Enteroendocrine L-Cells as Type 2 Diabetes Mellitus Treatment. Pharmacological Research, 180, Article ID: 106237. [Google Scholar] [CrossRef] [PubMed]
[6] Cowart, K. (2019) Oral Semaglutide: First-in-Class Oral GLP-1 Receptor Agonist for the Treatment of Type 2 Diabetes Mellitus. Annals of Pharmacotherapy, 54, 478-485. [Google Scholar] [CrossRef] [PubMed]
[7] Fujiwara, Y., Eguchi, S., Murayama, H., Takahashi, Y., Toda, M., Imai, K., et al. (2019) Relationship between Diet/Exercise and Pharmacotherapy to Enhance the GLP‐1 Levels in Type 2 Diabetes. Endocrinology, Diabetes & Metabolism, 2, e00068. [Google Scholar] [CrossRef] [PubMed]
[8] Mari, A., Bagger, J.I., Ferrannini, E., Holst, J.J., Knop, F.K. and Vilsbøll, T. (2013) Mechanisms of the Incretin Effect in Subjects with Normal Glucose Tolerance and Patients with Type 2 Diabetes. PLOS ONE, 8, e73154. [Google Scholar] [CrossRef] [PubMed]
[9] Lyseng-Williamson, K.A. (2019) Glucagon-Like Peptide-1 Receptor Agonists in Type 2 Diabetes: Their Use and Differential Features. Clinical Drug Investigation, 39, 805-819. [Google Scholar] [CrossRef] [PubMed]
[10] Holst, J.J. (2007) The Physiology of Glucagon-Like Peptide 1. Physiological Reviews, 87, 1409-1439. [Google Scholar] [CrossRef] [PubMed]
[11] Ren, W., Chen, J., Wang, W., Li, Q., Yin, X., Zhuang, G., et al. (2024) Sympathetic Nerve-Enteroendocrine L Cell Communication Modulates GLP-1 Release, Brain Glucose Utilization, and Cognitive Function. Neuron, 112, 972-990.e8. [Google Scholar] [CrossRef] [PubMed]
[12] Kato, S., Utsumi, D. and Matsumoto, K. (2019) G Protein-Coupled Receptor 40 Activation Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice via the Upregulation of Glucagon-Likepeptide-2. Journal of Pharmacological Sciences, 140, 144-152. [Google Scholar] [CrossRef] [PubMed]
[13] Moodaley, R., Smith, D.M., Tough, I.R., Schindler, M. and Cox, H.M. (2017) Agonism of Free Fatty Acid Receptors 1 and 4 Generates Peptide YY‐Mediated Inhibitory Responses in Mouse Colon. British Journal of Pharmacology, 174, 4508-4522. [Google Scholar] [CrossRef] [PubMed]
[14] Sjölund, K., Sandén, G., Håkanson, R. and Sundler, F. (1983) Endocrine Cells in Human Intestine: An Immunocytochemical Study. Gastroenterology, 85, 1120-1130. [Google Scholar] [CrossRef
[15] Varndell, I.M., Bishop, A.E., Sikri, K.L., Uttenthal, L.O., Bloom, S.R. and Polak, J.M. (1985) Localization of Glucagon-Like Peptide (GLP) Immunoreactants in Human Gut and Pancreas Using Light and Electron Microscopic Immunocytochemistry. Journal of Histochemistry & Cytochemistry, 33, 1080-1086. [Google Scholar] [CrossRef] [PubMed]
[16] Kampmann, K., Ueberberg, S., Menge, B.A., Breuer, T.G.K., Uhl, W., Tannapfel, A., et al. (2016) Abundance and Turnover of GLP-1 Producing L-Cells in Ileal Mucosa Are Not Different in Patients with and without Type 2 Diabetes. Metabolism, 65, 84-91. [Google Scholar] [CrossRef] [PubMed]
[17] Suzuki, K., Iwasaki, K., Murata, Y., Harada, N., Yamane, S., Hamasaki, A., et al. (2017) Distribution and Hormonal Characterization of Primary Murine L Cells Throughout the Gastrointestinal Tract. Journal of Diabetes Investigation, 9, 25-32. [Google Scholar] [CrossRef] [PubMed]
[18] Eissele, R., Göke, R., Willemer, S., Harthus, H., Vermeer, H., Arnold, R., et al. (1992) Glucagon‐Like Peptide‐1 Cells in the Gastrointestinal Tract and Pancreas of Rat, Pig and Man. European Journal of Clinical Investigation, 22, 283-291. [Google Scholar] [CrossRef] [PubMed]
[19] Portela-Gomes, G.M. and Stridsberg, M. (2002) Chromogranin a in the Human Gastrointestinal Tract: An Immunocytochemical Study with Region-Specific Antibodies. Journal of Histochemistry & Cytochemistry, 50, 1487-1492. [Google Scholar] [CrossRef] [PubMed]
[20] Pinyo, J., Hira, T. and Hara, H. (2019) Continuous Feeding of a Combined High-Fat and High-Sucrose Diet, Rather than an Individual High-Fat or High-Sucrose Diet, Rapidly Enhances the Glucagon-Like Peptide-1 Secretory Response to Meal Ingestion in Diet-Induced Obese Rats. Nutrition, 62, 122-130. [Google Scholar] [CrossRef] [PubMed]
[21] Cho, Y.M., Fujita, Y. and Kieffer, T.J. (2014) Glucagon-Like Peptide-1: Glucose Homeostasis and Beyond. Annual Review of Physiology, 76, 535-559. [Google Scholar] [CrossRef] [PubMed]
[22] Tolhurst, G., Heffron, H., Lam, Y.S., Parker, H.E., Habib, A.M., Diakogiannaki, E., et al. (2012) Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein-Coupled Receptor FFAR2. Diabetes, 61, 364-371. [Google Scholar] [CrossRef] [PubMed]
[23] Ekberg, J.H., Hauge, M., Kristensen, L.V., Madsen, A.N., Engelstoft, M.S., Husted, A., et al. (2016) GPR119, a Major Enteroendocrine Sensor of Dietary Triglyceride Metabolites Coacting in Synergy with FFA1 (GPR40). Endocrinology, 157, 4561-4569. [Google Scholar] [CrossRef] [PubMed]
[24] Pathak, P., Xie, C., Nichols, R.G., Ferrell, J.M., Boehme, S., Krausz, K.W., et al. (2018) Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G‐protein Bile Acid Receptor‐1 Signaling to Improve Metabolism. Hepatology, 68, 1574-1588. [Google Scholar] [CrossRef] [PubMed]
[25] Liu, S., Anderson, P.J., Rajagopal, S., Lefkowitz, R.J. and Rockman, H.A. (2024) G Protein-Coupled Receptors: A Century of Research and Discovery. Circulation Research, 135, 174-197. [Google Scholar] [CrossRef] [PubMed]
[26] Song, Y., Koehler, J.A., Baggio, L.L., Powers, A.C., Sandoval, D.A. and Drucker, D.J. (2019) Gut-Proglucagon-Derived Peptides Are Essential for Regulating Glucose Homeostasis in Mice. Cell Metabolism, 30, 976-986.e3. [Google Scholar] [CrossRef] [PubMed]
[27] Drucker, D.J., Habener, J.F. and Holst, J.J. (2017) Discovery, Characterization, and Clinical Development of the Glucagon-Like Peptides. Journal of Clinical Investigation, 127, 4217-4227. [Google Scholar] [CrossRef] [PubMed]
[28] Chambers, A.P., Sorrell, J.E., Haller, A., Roelofs, K., Hutch, C.R., Kim, K., et al. (2017) The Role of Pancreatic Preproglucagon in Glucose Homeostasis in Mice. Cell Metabolism, 25, 927-934.e3. [Google Scholar] [CrossRef] [PubMed]
[29] Drucker, D.J. and Holst, J.J. (2023) The Expanding Incretin Universe: From Basic Biology to Clinical Translation. Diabetologia, 66, 1765-1779. [Google Scholar] [CrossRef] [PubMed]
[30] Campbell, J.E. and Drucker, D.J. (2013) Pharmacology, Physiology, and Mechanisms of Incretin Hormone Action. Cell Metabolism, 17, 819-837. [Google Scholar] [CrossRef] [PubMed]
[31] Pais, R., Rievaj, J., Meek, C., De Costa, G., Jayamaha, S., Alexander, R.T., et al. (2016) Role of Enteroendocrine L-Cells in Arginine Vasopressin‐Mediated Inhibition of Colonic Anion Secretion. The Journal of Physiology, 594, 4865-4878. [Google Scholar] [CrossRef] [PubMed]
[32] Theodorakis, M.J., Carlson, O., Michopoulos, S., Doyle, M.E., Juhaszova, M., Petraki, K., et al. (2006) Human Duodenal Enteroendocrine Cells: Source of Both Incretin Peptides, GLP-1 and GIP. American Journal of Physiology-Endocrinology and Metabolism, 290, E550-E559. [Google Scholar] [CrossRef] [PubMed]
[33] Wang, Q., Zhang, W., Zhao, Y., Chen, H., Liu, Q., Wang, Z., et al. (2023) Colonic L-Cell Impairment in Aged Subjects with Type 2 Diabetes Leads to Diminished GLP-1 Production. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 17, Article ID: 102907. [Google Scholar] [CrossRef] [PubMed]
[34] Shu, L., Matveyenko, A.V., Kerr-Conte, J., Cho, J., McIntosh, C.H.S. and Maedler, K. (2015) Decreased TCF7L2 Protein Levels in Type 2 Diabetes Mellitus Correlate with Downregulation of GIP-and GLP-1 Receptors and Impaired Beta-Cell Function. Human Molecular Genetics, 24, 3004-3004. [Google Scholar] [CrossRef] [PubMed]
[35] Nauck, M.A. and Müller, T.D. (2023) Incretin Hormones and Type 2 Diabetes. Diabetologia, 66, 1780-1795. [Google Scholar] [CrossRef] [PubMed]
[36] Song, X., Zhou, L., Xu, H., Wang, F., Liang, G., Zhang, L., et al. (2019) 3-Deoxyglucosone Interferes with Insulin Signaling and Attenuates Insulin Action on Glucose-Induced GLP-1 Secretion in the Enteroendocrine L Cell Line STC-1. Molecular Biology Reports, 46, 4799-4808. [Google Scholar] [CrossRef] [PubMed]
[37] Margolskee, R.F., Dyer, J., Kokrashvili, Z., Salmon, K.S.H., Ilegems, E., Daly, K., et al. (2007) T1R3 and Gustducin in Gut Sense Sugars to Regulate Expression of Na+-Glucose Cotransporter 1. Proceedings of the National Academy of Sciences of the United States of America, 104, 15075-15080. [Google Scholar] [CrossRef] [PubMed]
[38] Jang, H., Kokrashvili, Z., Theodorakis, M.J., Carlson, O.D., Kim, B., Zhou, J., et al. (2007) Gut-Expressed Gustducin and Taste Receptors Regulate Secretion of Glucagon-Like Peptide-1. Proceedings of the National Academy of Sciences of the United States of America, 104, 15069-15074. [Google Scholar] [CrossRef] [PubMed]
[39] Ohtsu, Y., Nakagawa, Y., Nagasawa, M., Takeda, S., Arakawa, H. and Kojima, I. (2014) Diverse Signaling Systems Activated by the Sweet Taste Receptor in Human GLP-1-Secreting Cells. Molecular and Cellular Endocrinology, 394, 70-79. [Google Scholar] [CrossRef] [PubMed]
[40] Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y.Y., Wang, X., et al. (2018) Gut Bacteria Selectively Promoted by Dietary Fibers Alleviate Type 2 Diabetes. Science, 359, 1151-1156. [Google Scholar] [CrossRef] [PubMed]
[41] Ballegaard, A.R. and Bøgh, K.L. (2023) Intestinal Protein Uptake and IgE-Mediated Food Allergy. Food Research International, 163, Article ID: 112150. [Google Scholar] [CrossRef] [PubMed]
[42] Osuga, Y., Harada, K. and Tsuboi, T. (2022) Identification of a Regulatory Pathway of L-Phenylalanine-Induced GLP-1 Secretion in the Enteroendocrine L Cells. Biochemical and Biophysical Research Communications, 588, 118-124. [Google Scholar] [CrossRef] [PubMed]
[43] Osuga, Y., Harada, K., Yamauchi, T., Kitaguchi, T., Hirai, M.Y., Matsumoto, M., et al. (2025) Taurine Promotes Glucagon-Like Peptide‐1 Secretion in Enteroendocrine L Cells. FEBS Letters, 599, 1595-1608. [Google Scholar] [CrossRef] [PubMed]
[44] Kato, M., Nakanishi, T., Tani, T. and Tsuda, T. (2017) Low-Molecular Fraction of Wheat Protein Hydrolysate Stimulates Glucagon-Like Peptide-1 Secretion in an Enteroendocrine L Cell Line and Improves Glucose Tolerance in Rats. Nutrition Research, 37, 37-45. [Google Scholar] [CrossRef] [PubMed]
[45] Elliott, R.M., Morgan, L.M., Tredger, J.A., Deacon, S., Wright, J. and Marks, V. (1993) Glucagon-Like Peptide-1(7-36)Amide and Glucose-Dependent Insulinotropic Polypeptide Secretion in Response to Nutrient Ingestion in Man: Acute Post-Prandial and 24-H Secretion Patterns. Journal of Endocrinology, 138, 159-166. [Google Scholar] [CrossRef] [PubMed]
[46] Yoder, S.M., Yang, Q., Kindel, T.L. and Tso, P. (2009) Stimulation of Incretin Secretion by Dietary Lipid: Is It Dose Dependent? American Journal of Physiology-Gastrointestinal and Liver Physiology, 297, G299-G305. [Google Scholar] [CrossRef] [PubMed]
[47] Wu, T., Rayner, C.K., Watson, L.E., Jones, K.L., Horowitz, M. and Little, T.J. (2017) Comparative Effects of Intraduodenal Fat and Glucose on the Gut-Incretin Axis in Healthy Males. Peptides, 95, 124-127. [Google Scholar] [CrossRef] [PubMed]
[48] Kimura, I., Ichimura, A., Ohue-Kitano, R. and Igarashi, M. (2020) Free Fatty Acid Receptors in Health and Disease. Physiological Reviews, 100, 171-210. [Google Scholar] [CrossRef] [PubMed]
[49] Kamakura, R., Raza, G.S., Prasannan, A., Walkowiak, J. and Herzig, K. (2020) Dipeptidyl Peptidase-4 and GLP-1 Interplay in STC-1 and GLUTag Cell Lines. Peptides, 134, Article ID: 170419. [Google Scholar] [CrossRef] [PubMed]
[50] Morishita, M., Tanaka, T., Shida, T. and Takayama, K. (2008) Usefulness of Colon Targeted DHA and EPA as Novel Diabetes Medications That Promote Intrinsic GLP-1 Secretion. Journal of Controlled Release, 132, 99-104. [Google Scholar] [CrossRef] [PubMed]
[51] Tian, F., Xu, W., Chen, L., Chen, T., Feng, X., Chen, J., et al. (2022) Ginsenoside Compound K Increases Glucagon-Like Peptide-1 Release and L-Cell Abundance in db/db Mice through TGR5/YAP Signaling. International Immunopharmacology, 113, Article ID: 109405. [Google Scholar] [CrossRef] [PubMed]
[52] Casanova‐Martí, À., González‐Abuín, N., Serrano, J., Blay, M.T., Terra, X., Frost, G., et al. (2020) Long Term Exposure to a Grape Seed Proanthocyanidin Extract Enhances L‐Cell Differentiation in Intestinal Organoids. Molecular Nutrition & Food Research, 64, e2000303. [Google Scholar] [CrossRef] [PubMed]
[53] Yang, W., Zhang, C., Ji, W., Zhao, L., Yang, F., Zhang, L., et al. (2024) Berberine Metabolites Stimulate GLP-1 Secretion by Alleviating Oxidative Stress and Mitochondrial Dysfunction. The American Journal of Chinese Medicine, 52, 253-274. [Google Scholar] [CrossRef] [PubMed]
[54] Renukuntla, J., Vadlapudi, A.D., Patel, A., Boddu, S.H.S. and Mitra, A.K. (2013) Approaches for Enhancing Oral Bioavailability of Peptides and Proteins. International Journal of Pharmaceutics, 447, 75-93. [Google Scholar] [CrossRef] [PubMed]
[55] dos Santos, A.M., Carvalho, S.G., Meneguin, A.B., Sábio, R.M., Gremião, M.P.D. and Chorilli, M. (2021) Oral Delivery of Micro/Nanoparticulate Systems Based on Natural Polysaccharides for Intestinal Diseases Therapy: Challenges, Advances and Future Perspectives. Journal of Controlled Release, 334, 353-366. [Google Scholar] [CrossRef] [PubMed]
[56] Haddadzadegan, S., Dorkoosh, F. and Bernkop-Schnürch, A. (2022) Oral Delivery of Therapeutic Peptides and Proteins: Technology Landscape of Lipid-Based Nanocarriers. Advanced Drug Delivery Reviews, 182, Article ID: 114097. [Google Scholar] [CrossRef] [PubMed]
[57] Ajazuddin, and Saraf, S. (2010) Applications of Novel Drug Delivery System for Herbal Formulations. Fitoterapia, 81, 680-689. [Google Scholar] [CrossRef] [PubMed]
[58] Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M.D.P., Acosta-Torres, L.S., et al. (2018) Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. Journal of Nanobiotechnology, 16, Article No. 71. [Google Scholar] [CrossRef] [PubMed]
[59] Zhang, L., Lin, Z., Chen, Y., Gao, D., Wang, P., Lin, Y., et al. (2022) Co-Delivery of Docetaxel and Resveratrol by Liposomes Synergistically Boosts Antitumor Efficiency against Prostate Cancer. European Journal of Pharmaceutical Sciences, 174, Article ID: 106199. [Google Scholar] [CrossRef] [PubMed]
[60] Richter, A., Anton, S.E., Koch, P. and Dennett, S.L. (2003) The Impact of Reducing Dose Frequency on Health Outcomes. Clinical Therapeutics, 25, 2307-2335. [Google Scholar] [CrossRef] [PubMed]
[61] Zhang, M. and Merlin, D. (2018) Nanoparticle-Based Oral Drug Delivery Systems Targeting the Colon for Treatment of Ulcerative Colitis. Inflammatory Bowel Diseases, 24, 1401-1415. [Google Scholar] [CrossRef] [PubMed]
[62] Collnot, E., Ali, H. and Lehr, C. (2012) Nano-and Microparticulate Drug Carriers for Targeting of the Inflamed Intestinal Mucosa. Journal of Controlled Release, 161, 235-246. [Google Scholar] [CrossRef] [PubMed]
[63] Cone, R.A. (2009) Barrier Properties of Mucus. Advanced Drug Delivery Reviews, 61, 75-85. [Google Scholar] [CrossRef] [PubMed]
[64] Kim, J.H., Shin, D.H. and Kim, J. (2018) Preparation, Characterization, and Pharmacokinetics of Liposomal Docetaxel for Oral Administration. Archives of Pharmacal Research, 41, 765-775. [Google Scholar] [CrossRef] [PubMed]
[65] Homayun, B., Kumar, A., Nascimento, P.T.H. and Choi, H. (2018) Macropored Microparticles with a Core-Shell Architecture for Oral Delivery of Biopharmaceuticals. Archives of Pharmacal Research, 41, 848-860. [Google Scholar] [CrossRef] [PubMed]
[66] Rao, K.A., Yazaki, E., Evans, D.F. and Carbon, R. (2004) Objective Evaluation of Small Bowel and Colonic Transit Time Using pH Telemetry in Athletes with Gastrointestinal Symptoms. British Journal of Sports Medicine, 38, 482-487. [Google Scholar] [CrossRef] [PubMed]
[67] Duchmann, R., Kaiser, I., Hermann, E., Mayet, W., Ewe, K. and BÜSchenfelde, K.M.Z. (1995) Tolerance Exists Towards Resident Intestinal Flora but Is Broken in Active Inflammatory Bowel Disease (IBD). Clinical and Experimental Immunology, 102, 448-455. [Google Scholar] [CrossRef] [PubMed]
[68] Williams, B., Grant, L., Gidley, M. and Mikkelsen, D. (2017) Gut Fermentation of Dietary Fibres: Physico-Chemistry of Plant Cell Walls and Implications for Health. International Journal of Molecular Sciences, 18, Article 2203. [Google Scholar] [CrossRef] [PubMed]
[69] Zhang, L., Sang, Y., Feng, J., Li, Z. and Zhao, A. (2016) Polysaccharide-Based Micro/Nanocarriers for Oral Colon-Targeted Drug Delivery. Journal of Drug Targeting, 24, 579-589. [Google Scholar] [CrossRef] [PubMed]
[70] Ali, H., Weigmann, B., Neurath, M.F., Collnot, E.M., Windbergs, M. and Lehr, C. (2014) Budesonide Loaded Nanoparticles with pH-Sensitive Coating for Improved Mucosal Targeting in Mouse Models of Inflammatory Bowel Diseases. Journal of Controlled Release, 183, 167-177. [Google Scholar] [CrossRef] [PubMed]
[71] Amidon, S., Brown, J.E. and Dave, V.S. (2015) Colon-Targeted Oral Drug Delivery Systems: Design Trends and Approaches. AAPS PharmSciTech, 16, 731-741. [Google Scholar] [CrossRef] [PubMed]
[72] Maisel, K., Ensign, L., Reddy, M., Cone, R. and Hanes, J. (2015) Effect of Surface Chemistry on Nanoparticle Interaction with Gastrointestinal Mucus and Distribution in the Gastrointestinal Tract Following Oral and Rectal Administration in the Mouse. Journal of Controlled Release, 197, 48-57. [Google Scholar] [CrossRef] [PubMed]
[73] Banerjee, A., Pathak, S., Subramanium, V.D., G., D., Murugesan, R. and Verma, R.S. (2017) Strategies for Targeted Drug Delivery in Treatment of Colon Cancer: Current Trends and Future Perspectives. Drug Discovery Today, 22, 1224-1232. [Google Scholar] [CrossRef] [PubMed]
[74] Chimerel, C., Emery, E., Summers, D.K., Keyser, U., Gribble, F.M. and Reimann, F. (2014) Bacterial Metabolite Indole Modulates Incretin Secretion from Intestinal Enteroendocrine L Cells. Cell Reports, 9, 1202-1208. [Google Scholar] [CrossRef] [PubMed]
[75] Brown, A.J., Goldsworthy, S.M., Barnes, A.A., Eilert, M.M., Tcheang, L., Daniels, D., et al. (2003) The Orphan G Protein-Coupled Receptors GPR41 and GPR43 Are Activated by Propionate and Other Short Chain Carboxylic Acids. Journal of Biological Chemistry, 278, 11312-11319. [Google Scholar] [CrossRef] [PubMed]
[76] Le Poul, E., Loison, C., Struyf, S., Springael, J., Lannoy, V., Decobecq, M., et al. (2003) Functional Characterization of Human Receptors for Short Chain Fatty Acids and Their Role in Polymorphonuclear Cell Activation. Journal of Biological Chemistry, 278, 25481-25489. [Google Scholar] [CrossRef] [PubMed]
[77] Morrison, D.J., Mackay, W.G., Edwards, C.A., Preston, T., Dodson, B. and Weaver, L.T. (2006) Butyrate Production from Oligofructose Fermentation by the Human Faecal Flora: What Is the Contribution of Extracellular Acetate and Lactate? British Journal of Nutrition, 96, 570-577. [Google Scholar] [CrossRef] [PubMed]
[78] Zheng, Z., Zong, Y., Ma, Y., Tian, Y., Pang, Y., Zhang, C., et al. (2024) Glucagon-Like Peptide-1 Receptor: Mechanisms and Advances in Therapy. Signal Transduction and Targeted Therapy, 9, Article No. 234. [Google Scholar] [CrossRef] [PubMed]
[79] Zeng, J., Tang, X., Qin, D., Yu, L., Zhou, X., Feng, C., et al. (2025) Engineered GLP-1R-Targeting Nanoplatforms: Multimodal Therapeutics in Human Diseases. Journal of Nanobiotechnology, 23, Article No. 682. [Google Scholar] [CrossRef
[80] Sorrentino, G., Perino, A., Yildiz, E., El Alam, G., Bou Sleiman, M., Gioiello, A., et al. (2020) Bile Acids Signal via TGR5 to Activate Intestinal Stem Cells and Epithelial Regeneration. Gastroenterology, 159, 956-968.e8. [Google Scholar] [CrossRef] [PubMed]
[81] Ji, T. and Kohane, D.S. (2019) Nanoscale Systems for Local Drug Delivery. Nano Today, 28, Article ID: 100765. [Google Scholar] [CrossRef] [PubMed]
[82] Huang, S., Hong, X., Zhao, M., et al. (2022) Nanocomposite Hydrogels for Biomedical Applications. Bioengineering & Translational Medicine, 7, e10315.
[83] Halder, A. and Sun, Y. (2019) Biocompatible Propulsion for Biomedical Micro/Nano Robotics. Biosensors and Bioelectronics, 139, Article ID: 111334. [Google Scholar] [CrossRef] [PubMed]
[84] Riedel, M.J., Gaddy, D.F., Asadi, A., Robbins, P.D. and Kieffer, T.J. (2009) DsAAV8-Mediated Expression of Glucagon-Like Peptide-1 in Pancreatic β-Cells Ameliorates Streptozotocin-Induced Diabetes. Gene Therapy, 17, 171-180. [Google Scholar] [CrossRef] [PubMed]
[85] Gaddy, D.F., Riedel, M.J., Pejawar-Gaddy, S., Kieffer, T.J. and Robbins, P.D. (2010) In Vivo Expression of HGF/NK1 and GLP-1 from DsAAV Vectors Enhances Pancreatic β-Cell Proliferation and Improves Pathology in the db/db Mouse Model of Diabetes. Diabetes, 59, 3108-3116. [Google Scholar] [CrossRef] [PubMed]
[86] Soltani, N., Kumar, M., Glinka, Y., Prud’Homme, G.J. and Wang, Q. (2007) In Vivo Expression of GLP-1/IgG-Fc Fusion Protein Enhances β-Cell Mass and Protects against Streptozotocin-Induced Diabetes. Gene Therapy, 14, 981-988. [Google Scholar] [CrossRef] [PubMed]
[87] Kumar, M., Hunag, Y., Glinka, Y., Prud’Homme, G.J. and Wang, Q. (2006) Gene Therapy of Diabetes Using a Novel GLP-1/IgG1-Fc Fusion Construct Normalizes Glucose Levels in db/db Mice. Gene Therapy, 14, 162-172. [Google Scholar] [CrossRef] [PubMed]
[88] Wang, L., Chen, T., Wang, H., Wu, X., Cao, Q., Wen, K., et al. (2021) Engineered Bacteria of MG1363-pMG36e-GLP-1 Attenuated Obesity-Induced by High Fat Diet in Mice. Frontiers in Cellular and Infection Microbiology, 11, Article 595575. [Google Scholar] [CrossRef] [PubMed]
[89] Zhou, D., Li, S., Hu, G., Wang, Y., Qi, Z., Xu, X., et al. (2025) Hypoglycemic Effect of C. Butyricum-pMTl007-GLP-1 Engineered Probiotics on Type 2 Diabetes Mellitus. Gut Microbes, 17, Article ID: 2447814. [Google Scholar] [CrossRef] [PubMed]
[90] Guan, X., Pei, Y. and Song, J. (2024) DNA-Based Nonviral Gene Therapy—Challenging but Promising. Molecular Pharmaceutics, 21, 427-453. [Google Scholar] [CrossRef] [PubMed]
[91] Garcia-Guerra, A., Dunwell, T.L. and Trigueros, S. (2018) Nano-Scale Gene Delivery Systems: Current Technology, Obstacles, and Future Directions. Current Medicinal Chemistry, 25, 2448-2464. [Google Scholar] [CrossRef] [PubMed]
[92] de Souza Simões, L., Madalena, D.A., Pinheiro, A.C., Teixeira, J.A., Vicente, A.A. and Ramos, Ó.L. (2017) Micro-and Nano Bio-Based Delivery Systems for Food Applications: In Vitro Behavior. Advances in Colloid and Interface Science, 243, 23-45. [Google Scholar] [CrossRef] [PubMed]