|
[1]
|
Wang, H., Li, L., Zhang, N. and Ma, Y. (2022) Vitamin K2 Improves Osteogenic Differentiation by Inhibiting STAT1 via the Bcl-6 and IL-6/JAK in C3H10 T1/2 Clone 8 Cells. Nutrients, 14, Article 2934. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Tang, L., Lu, W., Huang, J., Tang, X., Zhang, H. and Liu, S. (2019) miR‑144 Promotes the Proliferation and Differentiation of Bone Mesenchymal Stem Cells by Downregulating the Expression of SFRP1. Molecular Medicine Reports, 20, 270-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wu, X., Wang, T., Zhao, J., Zhang, L., Liu, Z., Chen, Y., et al. (2025) Ultrasound-Responsive Piezoelectric Membrane Promotes Osteoporotic Bone Regeneration via the “Two-Way Regulation” Bone Homeostasis Strategy. Advanced Science, 12, e2504293. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Fu, J. and Zhang, C. (2025) The Research Progress on Radionuclides in Osteoporosis Diagnosis and Drug Efficacy Monitoring. Frontiers in Pharmacology, 16, Article 1594903. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Xiao, Y., Xie, X., Chen, Z., Yin, G., Kong, W. and Zhou, J. (2023) Advances in the Roles of ATF4 in Osteoporosis. Biomedicine & Pharmacotherapy, 169, Article 115864. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Qi, X., Hu, Q., Elghobashi-Meinhardt, N., Long, T., Chen, H. and Li, X. (2023) Molecular Basis of Wnt Biogenesis, Secretion, and Wnt7-Specific Signaling. Cell, 186, 5028-5040. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ma, S., Wang, D., Ma, C. and Zhang, Y. (2019) MicroRNA-96 Promotes Osteoblast Differentiation and Bone Formation in Ankylosing Spondylitis Mice through Activating the Wnt Signaling Pathway by Binding to Sost. Journal of Cellular Biochemistry, 120, 15429-15442. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wu, L., Wei, Q., Lv, Y., Xue, J., Zhang, B., Sun, Q., et al. (2019) Wnt/β-Catenin Pathway Is Involved in Cadmium-Induced Inhibition of Osteoblast Differentiation of Bone Marrow Mesenchymal Stem Cells. International Journal of Molecular Sciences, 20, Article 1519. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Luo, C., Xu, W., Tang, X., Liu, X., Cheng, Y., Wu, Y., et al. (2022) Canonical Wnt Signaling Works Downstream of Iron Overload to Prevent Ferroptosis from Damaging Osteoblast Differentiation. Free Radical Biology and Medicine, 188, 337-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Lawson, L.Y., Brodt, M.D., Migotsky, N., Chermside-Scabbo, C.J., Palaniappan, R. and Silva, M.J. (2022) Osteoblast-specific Wnt Secretion Is Required for Skeletal Homeostasis and Loading-Induced Bone Formation in Adult Mice. Journal of Bone and Mineral Research, 37, 108-120. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, D., Weng, Y., Guo, S., Zhang, Y., Zhou, T., Zhang, M., et al. (2018) Platelet-Rich Plasma Inhibits Rankl-Induced Osteoclast Differentiation through Activation of Wnt Pathway during Bone Remodeling. International Journal of Molecular Medicine, 41, 729-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lu, C.L., Shyu, J.F., Wu, C.C., Hung, C.F., Liao, M.T., Liu, W.C., et al. (2018) Association of Anabolic Effect of Calcitriol with Osteoclast-Derived Wnt 10b Secretion. Nutrients, 10, Article 1164. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Graham, T.A., Weaver, C., Mao, F., Kimelman, D. and Xu, W. (2000) Crystal Structure of a β-Catenin/Tcf Complex. Cell, 103, 885-896. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chu, Y., Gao, Y., Yang, Y., Liu, Y., Guo, N., Wang, L., et al. (2020) β-Catenin Mediates Fluoride-Induced Aberrant Osteoblasts Activity and Osteogenesis. Environmental Pollution, 265, Article 114734. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chen, S., Yang, L., He, S., Yang, J., Liu, D., Bao, Q., et al. (2020) Preactivation of β-Catenin in Osteoblasts Improves the Osteoanabolic Effect of PTH in Type 1 Diabetic Mice. Journal of Cellular Physiology, 235, 1480-1493. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Rybchyn, M.S., Islam, K.S., Brennan-Speranza, T.C., Cheng, Z., Brennan, S.C., Chang, W., et al. (2019) Homer1 Mediates CASR-Dependent Activation of mTOR Complex 2 and Initiates a Novel Pathway for Akt-Dependent β-Catenin Stabilization in Osteoblasts. Journal of Biological Chemistry, 294, 16337-16350. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Gupta, A., Chatree, S., Buo, A.M., Moorer, M.C. and Stains, J.P. (2019) Connexin43 Enhances Wnt and PGE2-Dependent Activation of β-Catenin in Osteoblasts. European Journal of Physiology, 471, 1235-1243. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Dann, C.E., Hsieh, J., Rattner, A., Sharma, D., Nathans, J. and Leahy, D.J. (2001) Insights into Wnt Binding and Signalling from the Structures of Two Frizzled Cysteine-Rich Domains. Nature, 412, 86-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kushwaha, P., Kim, S., Foxa, G.E., Michalski, M.N., Williams, B.O., Tomlinson, R.E., et al. (2020) Frizzled-4 Is Required for Normal Bone Acquisition Despite Compensation by Frizzled-8. Journal of Cellular Physiology, 235, 6673-6683. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ambrosetti, D., Holmes, G., Mansukhani, A. and Basilico, C. (2008) Fibroblast Growth Factor Signaling Uses Multiple Mechanisms to Inhibit Wnt-Induced Transcription in Osteoblasts. Molecular and Cellular Biology, 28, 4759-4771. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yu, S., Yerges-Armstrong, L.M., Chu, Y., Zmuda, J.M. and Zhang, Y. (2016) Transcriptional Regulation of Frizzled-1 in Human Osteoblasts by Sp1. PLOS ONE, 11, e0163277. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, J., Xia, Y., Li, J. and Wang, W. (2021) miR-129-5p in Exosomes Inhibits Diabetes-Associated Osteogenesis in the Jaw via Targeting Fzd4. Biochemical and Biophysical Research Communications, 566, 87-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., et al. (2005) A Dual-Kinase Mechanism for Wnt Co-Receptor Phosphorylation and Activation. Nature, 438, 873-877. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wu, G., Huang, H., Abreu, J.G. and He, X. (2009) Inhibition of GSK3 Phosphorylation of β-Catenin via Phosphorylated PPPSPXS Motifs of Wnt Coreceptor Lrp6. PLOS ONE, 4, e4926. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yu, K., Jiang, Z., Miao, X., Yu, Z., Du, X., Lai, K., et al. (2022) CircRNA422 Enhanced Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells during Early Osseointegration through the SP7/LRP5 Axis. Molecular Therapy, 30, 3226-3240. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Moosa, S., Yamamoto, G.L., Garbes, L., Keupp, K., Beleza-Meireles, A., Moreno, C.A., et al. (2019) Autosomal-Recessive Mutations in MESD Cause Osteogenesis Imperfecta. The American Journal of Human Genetics, 105, 836-843. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sebastian, A., Hum, N.R., Murugesh, D.K., Hatsell, S., Economides, A.N. and Loots, G.G. (2017) Wnt Co-Receptors Lrp5 and Lrp6 Differentially Mediate Wnt3a Signaling in Osteoblasts. PLOS ONE, 12, e0188264. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Riddle, R.C., Diegel, C.R., Leslie, J.M., Van Koevering, K.K., Faugere, M., Clemens, T.L., et al. (2013) Lrp5 and Lrp6 Exert Overlapping Functions in Osteoblasts during Postnatal Bone Acquisition. PLOS ONE, 8, e63323. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Duan, J., Li, H., Wang, C., Yao, J., Jin, Y., Zhao, J., et al. (2023) BMSC-Derived Extracellular Vesicles Promoted Osteogenesis via Axin2 Inhibition by Delivering miR-16-5p. International Immunopharmacology, 120, Article 110319. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Suthon, S., Perkins, R.S., Lin, J., Crockarell, J.R., Miranda-Carboni, G.A. and Krum, S.A. (2022) GATA4 and Estrogen Receptor Alpha Bind at SNPs rs9921222 and rs10794639 to Regulate AXIN1 Expression in Osteoblasts. Human Genetics, 141, 1849-1861. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Matsumoto, Y., La Rose, J., Lim, M., Adissu, H.A., Law, N., Mao, X., et al. (2017) Ubiquitin Ligase RNF146 Coordinates Bone Dynamics and Energy Metabolism. Journal of Clinical Investigation, 127, 2612-2625. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kimelman, D. and Xu, W. (2006) β-Catenin Destruction Complex: Insights and Questions from a Structural Perspective. Oncogene, 25, 7482-7491. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Miclea, R.L., van der Horst, G., Robanus-Maandag, E.C., Löwik, C.W.G.M., Oostdijk, W., Wit, J.M., et al. (2011) Apc Bridges Wnt/β-Catenin and BMP Signaling during Osteoblast Differentiation of KS483 Cells. Experimental Cell Research, 317, 1411-1421. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ge, J., Yu, Y.J., Li, J.Y., Li, M.Y., Xia, S.M., Xue, K., et al. (2023) Activating Wnt/β-Catenin Signaling by Autophagic Degradation of APC Contributes to the Osteoblast Differentiation Effect of Soy Isoflavone on Osteoporotic Mesenchymal Stem Cells. Acta Pharmacologica Sinica, 44, 1841-1855. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Gambardella, A., Nagaraju, C.K., O'Shea, P.J., Mohanty, S.T., Kottam, L., Pilling, J., et al. (2011) Glycogen Synthase Kinase-3α/β Inhibition Promotes in Vivo Amplification of Endogenous Mesenchymal Progenitors with Osteogenic and Adipogenic Potential and Their Differentiation to the Osteogenic Lineage. Journal of Bone and Mineral Research, 26, 811-821. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Arioka, M., Takahashi-Yanaga, F., Sasaki, M., Yoshihara, T., Morimoto, S., Hirata, M., et al. (2014) Acceleration of Bone Regeneration by Local Application of Lithium: Wnt Signal-Mediated Osteoblastogenesis and Wnt Signal-Independent Suppression of Osteoclastogenesis. Biochemical Pharmacology, 90, 397-405. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Gan, X.Q., Wang, J.Y., Xi, Y., Wu, Z.L., Li, Y.P. and Li, L. (2008) Nuclear Dvl, C-Jun, Β-Catenin, and TCF Form a Complex Leading to Stabilization of β-Catenin-Tcf Interaction. The Journal of Cell Biology, 180, 1087-1100. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kim, H.Y., Yoon, J.Y., Yun, J.H., Cho, K.W., Lee, S.H., Rhee, Y.M., et al. (2015) CXXC5 Is a Negative-Feedback Regulator of the Wnt/β-Catenin Pathway Involved in Osteoblast Differentiation. Cell Death & Differentiation, 22, 912-920. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhou, F., Li, F., Fang, P., Dai, T., Yang, B., van Dam, H., et al. (2016) Ubiquitin-Specific Protease 4 Antagonizes Osteoblast Differentiation through Dishevelled. Journal of Bone and Mineral Research, 31, 1888-1898. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yu, F., Liu, Z., Tong, Z., Zhao, Z. and Liang, H. (2015) Soybean Isoflavone Treatment Induces Osteoblast Differentiation and Proliferation by Regulating Analysis of Wnt/β-Catenin Pathway. Gene, 573, 273-277. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wang, X., Tian, Y., Liang, X., Yin, C., Huai, Y., Zhao, Y., et al. (2022) Bergamottin Promotes Osteoblast Differentiation and Bone Formation via Activating the Wnt/β-Catenin Signaling Pathway. Food & Function, 13, 2913-2924. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Suh, K.S., Choi, E.M., Lee, Y.S. and Kim, Y.S. (2013) Protective Effect of Albiflorin against Oxidative-Stress-Mediated Toxicity in Osteoblast-Like MC3T3-E1 Cells. Fitoterapia, 89, 33-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Cai, Z., Liu, J., Bian, H. and Cai, J. (2019) Albiflorin Alleviates Ovalbumin (OVA)-Induced Pulmonary Inflammation in Asthmatic Mice. American Journal of Translational Research, 11, 7300-7309.
|
|
[44]
|
Xu, Y.J., Mei, Y., Shi, X.Q., Zhang, Y.F., Wang, X.Y., Guan, L., et al. (2019) Albiflorin Ameliorates Memory Deficits in APP/PS1 Transgenic Mice via Ameliorating Mitochondrial Dysfunction. Brain Research, 1719, 113-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Kim, J.H., Kim, M., Hong, S., Kim, E.Y., Lee, H., Jung, H.S., et al. (2021) Albiflorin Promotes Osteoblast Differentiation and Healing of Rat Femoral Fractures through Enhancing BMP-2/Smad and Wnt/β-Catenin Signaling. Frontiers in Pharmacology, 12, Article 690113. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Kim, M.B., Song, Y. and Hwang, J.K. (2014) Kirenol Stimulates Osteoblast Differentiation through Activation of the BMP and Wnt/β-Catenin Signaling Pathways in MC3T3-E1 Cells. Fitoterapia, 98, 59-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Liu, S., Luo, Z.H., Ji, G.M., Guo, W., Cai, J.Z., Fu, L.C., et al. (2019) Cajanolactone a from Cajanus Cajan Promoted Osteoblast Differentiation in Human Bone Marrow Mesenchymal Stem Cells via Stimulating Wnt/LRP5/β-Catenin Signaling. Molecules, 24, Article 271. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Xia, B., Xu, B., Sun, Y., Xiao, L., Pan, J., Jin, H., et al. (2014) The Effects of Liuwei Dihuang on Canonical Wnt/β-Catenin Signaling Pathway in Osteoporosis. Journal of Ethnopharmacology, 153, 133-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Cheng, X., Wei, B., Sun, L., Hu, X., Liang, J. and Chen, Y. (2016) Astragaloside I Stimulates Osteoblast Differentiation through the Wnt/β-Catenin Signaling Pathway. Phytotherapy Research, 30, 1680-1688. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Yao, B., Liu, B., Shi, L., Li, X., Ren, C., Cai, M., et al. (2017) PAFR Selectively Mediates Radioresistance and Irradiation-Induced Autophagy Suppression in Prostate Cancer Cells. Oncotarget, 8, 13846-13854. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zhu, B., Xue, F., Zhang, C. and Li, G. (2019) Ginkgolide B Promotes Osteoblast Differentiation via Activation of Canonical Wnt Signalling and Alleviates Osteoporosis through a Bone Anabolic Way. Journal of Cellular and Molecular Medicine, 23, 5782-5793. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Dun, S.L., Lyu, R.M., Chen, Y.H., Chang, J.K., Luo, J.J. and Dun, N.J. (2013) Irisin-Immunoreactivity in Neural and Non-Neural Cells of the Rodent. Neuroscience, 240, 155-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Aydin, S., Kuloglu, T., Aydin, S., Kalayci, M., Yilmaz, M., Cakmak, T., et al. (2014) A Comprehensive Immunohistochemical Examination of the Distribution of the Fat-Burning Protein Irisin in Biological Tissues. Peptides, 61, 130-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Chen, Z., Zhang, Y., Zhao, F., Yin, C., Yang, C., Wang, X., et al. (2020) Recombinant Irisin Prevents the Reduction of Osteoblast Differentiation Induced by Stimulated Microgravity through Increasing β-Catenin Expression. International Journal of Molecular Sciences, 21, Article 1259. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
He, J., Li, X., Wang, Z., Bennett, S., Chen, K., Xiao, Z., et al. (2019) Therapeutic Anabolic and Anticatabolic Benefits of Natural Chinese Medicines for the Treatment of Osteoporosis. Frontiers in Pharmacology, 10, Article 1344. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Wang, Y., Li, J. and Li, N. (2021) Phytochemistry and Pharmacological Activity of Plants of Genus Curculigo: An Updated Review since 2013. Molecules, 26, Article 3396. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Wang, J., Yang, J., Tang, Z., Yu, Y., Chen, H., Yu, Q., et al. (2023) Curculigo Orchioides Polysaccharide COP70-1 Stimulates Osteogenic Differentiation of MC3T3-E1 Cells by Activating the BMP and Wnt Signaling Pathways. International Journal of Biological Macromolecules, 248, Article 125879. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Molagoda, I.M.N., Karunarathne, W.A.H.M., Choi, Y.H., Park, E.K., Jeon, Y., Lee, B., et al. (2019) Fermented Oyster Extract Promotes Osteoblast Differentiation by Activating the Wnt/β-Catenin Signaling Pathway, Leading to Bone Formation. Biomolecules, 9, Article 711. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Du, L., Nong, M.N., Zhao, J.M., et al. (2016) Polygonatum Sibiricum Polysaccharide Inhibits Osteoporosis by Promoting Osteoblast Formation and Blocking Osteoclastogenesis through Wnt/β-Catenin Signalling Pathway. Scientific Reports, 6, Article No. 32261. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Man, X., Yang, L., Liu, S., Yang, L., Li, M. and Fu, Q. (2019) Arbutin Promotes MC3T3‑E1 Mouse Osteoblast Precursor Cell Proliferation and Differentiation via the Wnt/β‑Catenin Signaling Pathway. Molecular Medicine Reports, 19, 4637-4644. [Google Scholar] [CrossRef] [PubMed]
|