Wnt/β-Catenin信号通路调控成骨细胞分化的机制及靶向该通路抗骨质疏松天然化合物研究进展
Research Progress on the Mechanism of Wnt/β-Catenin Signaling Pathway Regulating Osteoblast Differentiation and Natural Compounds Targeting This Pathway against Osteoporosis
摘要: 成骨细胞作为骨骼形成与重塑过程中的核心功能细胞,其主要起源于骨髓间充质干细胞。这些干细胞经定向分化生成成骨细胞后,可通过分泌骨基质、调控骨形成过程及参与骨组织重塑等关键生物学功能,维持骨骼系统的结构完整与代谢平衡。骨细胞功能异常或分化障碍会直接诱发多种骨骼相关疾病,其中骨质疏松症、骨折愈合延迟及骨骼畸形等临床常见病症,已成为影响人群健康的重要问题。近年来,随着对PTH类药物、生物磷酸盐类药物、钙调素类药物应用所引起的副作用,人们对成骨细胞分化机制进行了更深入的研究,并积极寻找天然化合物对骨质疏松的治疗方法。Wnt/β-catenin信号通路被认为是成骨细胞分化的重要通路之一,已经成为治疗骨质疏松症的重要靶点。本文将对Wnt/β-catenin信号通路对成骨细胞分化的影响做简要概述,并系统总结近年来靶向该通路的抗骨质疏松天然化合物的最新研究进展,为相关疾病的临床治疗及天然药物研发提供参考。
Abstract: As the core functional cells in the process of bone formation and remodeling, osteoblasts are mainly derived from bone marrow mesenchymal stem cells. These stem cells can maintain the structural integrity and metabolic balance of the skeletal system by secreting bone matrix, regulating the process of bone formation and participating in bone tissue remodeling. Abnormal or abnormal differentiation of bone cells can directly induce a variety of bone-related diseases, including osteoporosis, delayed fracture healing and skeletal deformities, which have become important problems affecting human health. In recent years, with the side effects caused by the application of PTH drugs, biphosphonate drugs, and calmodulin drugs, people have carried out more in-depth research on the mechanism of osteoblast differentiation, and are actively looking for natural compounds for the treatment of osteoporosis. The Wnt/β-catenin signaling pathway is considered to be one of the important pathways of osteoblast differentiation and has become an important target for the treatment of osteoporosis. In this review, we briefly summarize the effect of the Wnt/β-catenin signaling pathway on osteoblast differentiation, and systematically summarize the latest research progress of natural anti-osteoporosis compounds targeting this pathway in recent years, so as to provide a reference for the clinical treatment of related diseases and the development of natural drugs.
文章引用:王晓浩, 陈森. Wnt/β-Catenin信号通路调控成骨细胞分化的机制及靶向该通路抗骨质疏松天然化合物研究进展[J]. 临床医学进展, 2025, 15(12): 793-802. https://doi.org/10.12677/acm.2025.15123472

1. 引言

骨质疏松是一种骨骼疾病,主要是由成骨细胞和破骨细胞的数量或功能失衡所造成的[1]。骨质疏松的特点是骨量减少、骨密度降低和骨质变薄,从而使骨骼容易受到损伤和骨折从而严重影响生活质量。成骨细胞在骨质疏松的发生和发展过程中扮演着重要的角色。骨质疏松发生时,成骨细胞的生成和活性会受到严重的影响,导致新骨组织的产生减少或者质量降低。这会导致骨骼变得脆弱和容易受损,增加了骨折的风险。

成骨细胞的分化是一个极其复杂的过程,牵涉BMP-Smad和Wnt/β-catenin等多个信号通路和调控因子[2]。其中,Wnt/β-catenin信号通路被认为是最为重要和关键的分化通路之一。Wnt/β-catenin信号通路在骨骼发育和骨骼稳态中扮演着至关重要的角色[3]。它不仅参与成骨细胞的分化,还调节成骨细胞和破骨细胞的平衡,维持骨骼的生理状态。Wnt/β-catenin信号通路异常活化或者抑制都会导致骨骼相关疾病的发生,如骨质疏松症、骨折愈合延迟等[4]。因此,对Wnt信号通路的研究不仅有助于深入了解成骨细胞的分化机制,还为相关疾病的治疗提供了重要的线索。针对该通路的调节可能会成为未来骨骼疾病治疗的重要方向。

2. Wnt/β-Catenin信号通路

当机体中没有Wnt信号或Wnt受体受阻时,Axin-APC-GSK-3-CK1组成的复合物将会与胞质内游离的β-catenin结合使得β-catenin磷酸化,从而使其被胞浆内的蛋白酶体降解因此无法进入细胞核中。而此时细胞核内,LEF/TCF转录因子家族与转录抑制因子Groucho结合形成复合蛋白结构,无法作用于下游靶基因,细胞表面上处于一个相对静止的状态。

在Wnt信号存在的情况下,Wnt与细胞膜表面的Fzd受体和辅助受体LRP5/6形成复合物,激活细胞内的Dvl蛋白并招募到细胞膜上。Fzd的C端与Dvl蛋白的PDZ和DEP区域结合并磷酸化,Dvl的DIX与Axin的DIX相互作用将Axin招募到细胞膜上,同时与Axin结合的激酶GSK-3和CK1也转移到膜上磷酸化LRP5/6C端的PPPSPxS位点,阻止了GSK-3对β-catenin的磷酸化,破坏了复合体的形成。因此,β-catenin不能正常降解而在胞质中异常聚集。大量游离的β-catenin进入细胞核破坏LEF/TCF家族与转录抑制因子Groucho形成的复合蛋白,并与LEF/TCF家族的转录因子结合,同时招募转录辅助因子,进一步激活转录因子,从而激活下游靶基因的表达。

2.1. Wnt蛋白

Wnt蛋白是一个大型的分泌性糖蛋白家族[5],在细胞和组织的生长和发育过程中起到了重要的作用。Wnt蛋白在细胞内合成和分泌前会在内质网中被O-酰转移酶Porcupine (PORCN)脂质化同时会通过膜蛋白Wntless (WLS)进行细胞内转运和分泌[6]。目前已知的Wnt蛋白有多种类型,包括Wnt1-10等。这些不同类型的Wnt蛋白在生物生长、发育、能量代谢等方面发挥着不同的作用。因此,对于Wnt蛋白的进一步研究能够加深对疾病的发生和发展的认识,以此来指导相关疾病的治疗。

骨质疏松是由于成骨细胞和破骨细胞的数量或功能之间的微妙平衡被破坏所导致的,会引起严重的并发症。Wnt信号通路在骨稳态中发挥核心调控作用,其活性受多种因素影响。研究表明,miR-96可激活Wnt/β-catenin通路促进成骨分化[7],而环境污染物镉和过量铁则通过抑制该通路关键分子表达损害成骨功能[8] [9]。机械应变可上调Wnt配体表达增强骨形成[10],药物干预如富血小板血浆和1,25-二羟基维生素D3也通过调节Wnt信号发挥促成骨或抑破骨作用[11] [12]。这些发现揭示了Wnt通路在骨形成与吸收双向调节中的关键地位,为骨质疏松的靶向治疗提供了理论依据。

2.2. β-Catenin

β-catenin最开始被发现是作为粘合连接(Adhesion Junction)的一员,而后被发现其还是Wnt信号通路的核心成员。β-catenin是犰狳家族蛋白,是被CTNNbl基因所编码的,其N末端富有Ser、Thr位点并且可以调控分子的稳定性,C末端由100个氨基酸组成,其作用是激活靶基因的转录,而通过结合一系列通用的转录辅助因子,如组蛋白乙酰转移酶和染色质重塑因子等,能够促进转录的开始和延伸,中间连接臂分成12个Arm重复区(R1~R12),并且由12个重复区组成形成了一个棒状的超螺旋结构,这种结构可以有效地防止蛋白质发生水解作用[13]。Wnt信号通路的关键在于细胞质内是否存在稳定的β-catenin,因为β-catenin是Wnt信号向细胞核传递的重要信号分子。

β-catenin在骨代谢调控中具有核心作用,其信号活性的异常与多种骨骼疾病密切相关。研究表明,氟中毒可因β-catenin异常激活导致骨代谢紊乱[14];而在糖尿病状态下,预先激活β-catenin能增强PTH的成骨效应[15]。此外,CaSR/Homer1复合物可通过mTORC2/AKT通路稳定β-catenin促进骨矿化[16],Connexin43也能通过增强β-catenin信号传导调控骨再生[17]。这些发现系统揭示了β-catenin在骨骼生理病理过程中的关键调控机制,为相关骨骼疾病的靶向治疗提供了新的理论依据。

2.3. Fzd

Fzd受体是一种七跨膜的蛋白,与G蛋白偶联受体的结构相似。Fzd受体的胞外N端是配体结合区能与Wnt结合,其高度保守并且含有丰富的半胱氨酸[18]。此外,胞内C端能够将胞外的信号传递到Dvl,从而抑制β-catenin的降解进而调节靶基因的表达。目前已经发现有10种Fzd成员。

Fzd蛋白作为Wnt/β-catenin通路的关键受体,在骨骼发育与成骨分化中发挥核心作用。研究表明,Fzd4对骨矿化至关重要,其功能可被Fzd8部分代偿[19];成纤维细胞生长因子通过下调Fzd受体表达抑制成骨分化[20],而转录因子Sp1通过促进Fzd1转录增强成骨活性[21]。此外,miR-129-5p通过靶向Fzd4抑制成骨分化[22]。这些发现揭示了Fzd受体的表达和功能受多层级调控,为骨骼疾病的靶向治疗提供了新方向。

2.4. LRP5 /6

LRP5/6是低密度脂蛋白受体相关蛋白(LDL-receptor-related protein),是一种辅助受体,其特征是单次跨膜。此外,它拥有胞内区域和胞外区域,各区域的功能各不相同。胞内区域因拥有PPPS/TPxS/T模体可以与Axin蛋白和GSK-3蛋白相互作用[23] [24],胞外区域可以进一步分为表皮生长因子结构域(EGF)和低密度脂蛋白受体结构域(LDLR),其中表皮生长因子结构域(EGF)可以与Wnt结合从而传递信号。

LRP5和LRP6作为Wnt信号通路的关键共受体,在维持骨密度与骨骼稳态中不可或缺。研究表明,circRNA422可通过上调LRP5表达促进成骨分化[25];而LRP5/6的功能缺失性变异会导致成骨不全等骨骼疾病[26]。值得注意的是,在介导Wnt信号时,LRP6的作用相较于LRP5更为关键,其缺失对骨密度与结构的负面影响也更显著[27] [28]。这些发现不仅阐明了LRP5/6在骨骼生物学中的核心地位,也为其作为治疗骨质疏松等骨骼疾病的靶点提供了理论依据。

2.5. Axin

Axin是Wnt信号通路中的一个负调控因子,与Wnt信号通路中的多个成员存在结合关系,N末端是APC与Axin的结合区域,中间的区域可以和GSK-3、β-catenin和CK1相互结合,C末端是DIX结构域是形成同源寡聚体的区域。Axin包含Axin1和Axin2两个家族成员并且二者在结构上相似。Axin1通过与其他蛋白质如GSK-3β、APC以及CK1等形成复合物来调节β-连环蛋白的磷酸化和稳定性。Axin2虽然在细胞中的表达模式和功能与Axin1有所差异,但在胚胎发育过程中发挥着至关重要的作用,特别是在骨骼发育中。近年来的研究表明,Axin2与多种与骨骼系统相关的疾病和肿瘤有关。

Axin作为Wnt/β-catenin通路的关键调控蛋白,在成骨分化中扮演重要角色。研究表明,miR-16-5p通过靶向抑制Axin2表达促进成骨分化[29];AXIN1基因多态性rs9921222可通过影响转录因子结合调节骨密度[30];此外,E3泛素连接酶RNF146通过降解Axin1维持成骨细胞正常增殖与分化[31]。这些发现揭示了Axin在转录后修饰、遗传变异及蛋白稳定性等多个层面精密调控骨代谢的机制,为骨骼疾病的诊疗提供了新的潜在靶点。

2.6. APC

APC蛋白质其相对分子质量较大,可以和Axin和GSK-3等形成功能复合体来调节细胞质中β-catenin的蛋白水平[32]。APC既拥有与β-catenin结合的结构域同时也拥有与Axin结合的结构域。

APC蛋白是成骨分化过程中的关键调控因子。研究表明,APC基因的缺失会显著抑制间充质干细胞的成骨分化能力,但该抑制作用可被高浓度BMP-7所逆转[33]。另一方面,大豆异黄酮可通过转录因子EB促进APC的自噬降解,从而激活Wnt/β-catenin信号通路以促进成骨分化[34]。这些发现揭示了APC在骨代谢中的双重角色,并为通过药理干预调控APC功能治疗骨骼疾病提供了新思路。

2.7. GSK-3

GSK-3是一种丝氨酸/苏氨酸激酶,在α螺旋的C端和β折叠的N端两个结构域之间是结合口袋ATP (AMP-NP的同系物),该催化区域主要由Lys85、Thr138、Asp133和Gin185等氨基酸残基组成。在Wnt/β-catenin信号通路中,GSK-3发挥负调控作用的机制包括磷酸化β-catenin促进其被降解;而在该信号通路的正向调控中,GSK-3则通过磷酸化LRP6发挥作用,促进正向调控因子的表达。

GSK-3是调控骨代谢平衡的关键分子。研究表明,GSK-3抑制剂AR28可促使间充质祖细胞向成骨分化而非成脂分化[35];局部应用GSK-3抑制剂Li2CO3则能在抑制破骨细胞分化的同时增强成骨细胞活性[36]。这些发现揭示了GSK-3抑制在协调骨形成与骨吸收中的双重积极作用,为骨质疏松等骨骼疾病的治疗提供了新的靶向策略。

2.8. CK1

CK1是最早被发现具有丝氨酸/苏氨酸蛋白激酶活性的蛋白激酶之一,参与调控细胞的信号转导以及基因的表达。其广泛分布在真核生物中,目前在哺乳动物中已经发现了7种亚型,包括αβγ1、γ2、γ3、δε。CK1的N端是高度保守的激酶结构域,主要是由290个氨基酸残基组成,其C端差异较大,长度从40到180个氨基酸不等。

关于CK1与骨质疏松之间的关系,目前文献中并没有发现直接相关的研究成果。然而,根据目前已知的信息,CK1在Wnt/β-catenin信号通路中发挥着重要的作用,与细胞增殖、分化等过程密切相关,尽管不清楚CK1与骨质疏松发病机制之间的关系,但是从其生物学作用方面来看,我们可以推测CK1与骨质疏松之间存在一点的联系,因此,在未来的研究中可以进一步探索CK1在骨质疏松发病机制中的潜在作用。

2.9. Dvl

多功能支架蛋白Dvl是一种在机体组织细胞中普遍存在的结构蛋白,对于促使Wnt/β-catenin信号通路在细胞内传递至关重要。Dvl蛋白含有3个主要的结构域,N端含有51个氨基酸构成的DIX (Di-shevelled, Axin)区,中间部分是PDZ (Postsynaptic Density 95, DiscLarge, ZonaOccludens-1)区,由80至90个氨基酸组成,能够在50多种蛋白如PSD-95和ZO-1中找到,C端则含有DEP (Dishevelled, Egl-10, Pleckstrin)区,该区域能够与Dvl、EGL10和Pleckstrin蛋白相结合[37]

Dvl作为Wnt/β-catenin信号通路的关键胞内信号转导蛋白,其活性状态直接调控成骨细胞分化。研究表明,负反馈调节因子CXXC5可通过与Dvl直接结合抑制成骨分化[38];而泛素特异性蛋白酶USP4则通过去除Dvl的Lys-63泛素化修饰负向调控Wnt信号与成骨进程[39]。这些发现揭示了通过精确调控Dvl蛋白的相互作用与翻译后修饰是影响骨形成的重要分子机制。

3. 天然化合物

3.1. 黄酮类及异黄酮类化合物:调控通路核心分子表达

大豆异黄酮是大豆中的一类天然化合物,属于异黄酮类化合物。大豆异黄酮主要包括大豆甙、大豆苷和大豆黄铜素。它们被认为是植物雌激素,可以模拟雌激素的作用。研究表明,大豆异黄酮具有多种生物活性,包括抗氧化、抗炎、抗肿瘤、降低血脂和改善骨密度等作用。研究证明大豆异黄酮能够促进成骨细胞的分化,并增强了成骨细胞ALP活性及其矿化能力。其主要机制是大豆异黄酮的浓度增加可以提高Wnt3a、β-catenin和Wnt7b蛋白的表达水平,并激活Wnt3a/β-catenin信号通路[40]

佛手柑素是一种天然活性成分,主要来源于柑橘类水果,具有抗脂肪生成、抗氧化及调节血脂等多种生物学效应。研究发现,佛手柑素在骨骼代谢中表现出显著保护作用:它可通过上调LRP6、Wnt3a和β-catenin的表达,并抑制GSK-3β水平,从而激活Wnt/β-catenin信号通路,促进成骨细胞分化,在卵巢切除(OVX)诱导的骨质疏松小鼠模型中,佛手柑素有效减轻骨质流失并改善骨量[41],表明其在防治骨质疏松方面具有潜在应用价值。

3.2. 萜类及皂苷类化合物:稳定β-Catenin并激活下游通路

芍药是中医常用于治疗月经不调与痛经的药用植物,具有抗炎、抗痛风及抗色素沉着等多种药理活性。其活性成分白芍素是一种单萜苷类化合物,既往研究显示其具有抗氧化、抗肺部炎症及改善认知功能等作用[42]-[44]。近年来研究发现,白芍素在骨骼系统中可显著促进成骨细胞分化与矿化,其机制涉及两方面:一方面通过增强BMP-2、RUNX2和Osterix蛋白表达,并促进Smad1/5磷酸化,激活BMP-2/Smad信号通路;另一方面,通过上调Wnt10b、β-catenin、LRP5、LRP6、Dvl2及Cyclin D1等关键基因的mRNA表达,激活Wnt/β-catenin信号通路,共同促进骨形成与再生[45]

鸢尾醇是从豨莶草(包括豨莶草、苁蓉和豨莶草)中分离出来的天然化合物,是一种二萜化合物。鸢尾醇具有具有抗氧化、抗炎、抗过敏、抗脂肪生成和抗关节炎等生物活性。通过研究证明鸢尾醇能够促进成骨细胞的分化,增加了成骨细胞ALP活性和矿化能力,其主要机制之一就是鸢尾醇增加了LRP5、DVL2、β-catenin和CCND1基因的mRNA表达,进而上调了Wnt/β-catenin信号通路活性,因此,可以说鸢尾醇通过增加Wnt/β-catenin信号通路的活性来促进成骨细胞的分化[46]

木豆是一种传统中草药,其鲜叶可以治疗包括寄生虫病、氧化损伤和癌症等多种疾病。通过研究发现木豆内酯A是从木豆中所提取到的一种二苯乙烯类化合物,对于成骨细胞分化具有促进作用,主要机制是其可以使Wnt3a、Wnt10b、LRP5、Frizzled 4、β-catenin、Runx2和Osterix的mRNA水平显着上调,表明木豆内酯A通过刺激Wnt/LRP5/β-catenin信号转导促进成骨细胞分化[47]

黄芪作为一种常用中药,具有抗炎、抗氧化、抗肿瘤及改善糖代谢并发症等多种药理作用。值得注意的是,黄芪能够有效抑制卵巢切除(OVX)大鼠的骨质流失[48]。其主要活性成分黄芪皂苷I在成骨分化过程中发挥关键作用。研究表明,黄芪皂苷I可显著促进成骨细胞分化,表现为ALP活性增强及矿化能力提高。在机制层面,该成分通过上调β-catenin与Runx2的蛋白表达,进而激活Wnt/β-catenin信号通路,从而发挥促成骨作用[49]

银杏内酯B是从银杏叶中提取的一种天然活性成分,已知具有抗肿瘤与抗炎作用[50]。近年研究发现,银杏内酯B在骨骼代谢中亦表现出促成骨活性。研究表明,银杏内酯B可显著增强骨髓间充质干细胞及MC3T3-E1细胞的碱性磷酸酶活性与矿化能力,并上调I型胶原、Runx2、Osterix、骨钙素和骨桥蛋白等成骨相关基因的表达。其分子机制在于银杏内酯B通过促进GSK-3β在Ser9位点的磷酸化,稳定并增加β-catenin的表达,进而激活Wnt/β-catenin信号通路,促进成骨细胞分化[51]

3.3. 多肽及提取物类化合物:多组分协同激活通路

鸢尾素是一种由运动诱导产生的肌源性因子[52] [53],在心脏、肝脏、脂肪及神经等多种组织中均有表达。近年研究发现,鸢尾素在维持骨骼稳态中具有重要作用,能够双向调节骨代谢——既促进骨形成,又抑制骨吸收。在模拟微重力条件下,鸢尾素可通过激活Wnt/β-catenin信号通路,上调β-catenin表达,进而增强成骨细胞分化标志基因ALP和ColIα1的表达,有效改善微重力环境所致的成骨分化抑制[54]。这一发现揭示了鸢尾素作为运动相关因子在防治骨质疏松中的潜在价值。

仙麻是常用于治疗骨质萎缩、骨质疏松及肢体麻木等骨骼系统疾病的传统中药[55],其活性成分主要包括多糖、酚苷、诺脂素及萜类化合物[56]。研究发现,从中分离得到的活性成分COP70-1能够显著促进MC3T3-E1成骨细胞分化。在分子机制方面,COP70-1通过诱导GSK-3β磷酸化,增强β-catenin蛋白的稳定性与核内积累,进而激活Wnt/β-catenin信号通路,最终发挥促成骨分化作用[57]

发酵牡蛎提取物富含蛋白质、碳水化合物及以赖氨酸和γ-氨基丁酸为代表的氨基酸等多种营养成分,在促进人体健康与骨骼形成方面具有潜在价值。研究表明,发酵牡蛎提取物可显著促进成骨细胞分化,具体表现为碱性磷酸酶活性增强、矿化能力提高,以及RUNX2、ALP、Col1α1、OCN、OSX和BMP4等成骨特异性标志物表达上调,在机制层面,发酵牡蛎提取物通过增加β-catenin及其核内积累,激活Wnt/β-catenin信号通路[58],进而发挥促进骨形成与维持骨健康的作用。

何首乌多糖是从传统中药何首乌中提取的主要活性成分,具有抗炎及减轻淀粉样蛋白-β诱导神经毒性等多种药理作用。研究发现,何首乌多糖可促进骨髓间充质干细胞向成骨细胞分化,表现为碱性磷酸酶活性增强、矿化能力提高,以及I型胶原(COL I)、ALP、Runx2和骨钙素(OCN)等成骨相关基因表达上调,在分子机制方面,何首乌多糖通过提升β-catenin的表达与活化,促进其核内积累,进而与转录因子TCF/LEF结合,激活Wnt/β-catenin信号通路[59],最终发挥促进成骨细胞形成与功能的作用。

熊果苷是从熊果叶、梨和马郁兰等多种植物中提取到的天然化合物,是一种天然对苯二酚衍生物。熊果苷具有多种生物活性,包括美白、抗炎和保护氧化应激等。研究发现熊果苷对于成骨细胞分化具有促进作用并且增加了ALP活性及其矿化能力,其主要机制是熊果苷显著提高了RunX2和β-catenin的蛋白表达水平,从而通过典型的Wnt/β-catenin途径促进成骨细胞分化[60]

4. 讨论

本文系统阐述了Wnt/β-catenin信号通路调控成骨细胞分化的核心机制,明确了该通路中Wnt蛋白、β-catenin、Fzd受体、LRP5/6等关键分子的功能及调控网络,其异常激活或抑制与骨质疏松等骨骼疾病的发生发展密切相关。同时,全面梳理了鸢尾素、仙麻活性成分COP70-1、银杏内酯B等天然化合物的抗骨质疏松作用,证实这些化合物均通过激活Wnt/β-catenin信号通路,上调通路关键分子表达或增强其活性,进而促进成骨细胞分化、改善骨代谢平衡。本研究为天然化合物靶向Wnt/β-catenin通路治疗骨质疏松提供了系统的理论依据和研究基础,搭建了分子机制与天然药物研发之间的桥梁。

针对多数天然化合物存在的生物利用度低、代谢稳定性差、靶向性不足等问题,需通过结构修饰、纳米载体递送、前药设计等技术手段优化其药代动力学特性并增强在骨骼组织的富集度,同时结合人群基因多态性分析明确不同个体对天然化合物的响应差异,进而开发个性化治疗方案,以提高临床应用的针对性和有效性。

NOTES

*通讯作者。

参考文献

[1] Wang, H., Li, L., Zhang, N. and Ma, Y. (2022) Vitamin K2 Improves Osteogenic Differentiation by Inhibiting STAT1 via the Bcl-6 and IL-6/JAK in C3H10 T1/2 Clone 8 Cells. Nutrients, 14, Article 2934. [Google Scholar] [CrossRef] [PubMed]
[2] Tang, L., Lu, W., Huang, J., Tang, X., Zhang, H. and Liu, S. (2019) miR‑144 Promotes the Proliferation and Differentiation of Bone Mesenchymal Stem Cells by Downregulating the Expression of SFRP1. Molecular Medicine Reports, 20, 270-280. [Google Scholar] [CrossRef] [PubMed]
[3] Wu, X., Wang, T., Zhao, J., Zhang, L., Liu, Z., Chen, Y., et al. (2025) Ultrasound-Responsive Piezoelectric Membrane Promotes Osteoporotic Bone Regeneration via the “Two-Way Regulation” Bone Homeostasis Strategy. Advanced Science, 12, e2504293. [Google Scholar] [CrossRef] [PubMed]
[4] Fu, J. and Zhang, C. (2025) The Research Progress on Radionuclides in Osteoporosis Diagnosis and Drug Efficacy Monitoring. Frontiers in Pharmacology, 16, Article 1594903. [Google Scholar] [CrossRef] [PubMed]
[5] Xiao, Y., Xie, X., Chen, Z., Yin, G., Kong, W. and Zhou, J. (2023) Advances in the Roles of ATF4 in Osteoporosis. Biomedicine & Pharmacotherapy, 169, Article 115864. [Google Scholar] [CrossRef] [PubMed]
[6] Qi, X., Hu, Q., Elghobashi-Meinhardt, N., Long, T., Chen, H. and Li, X. (2023) Molecular Basis of Wnt Biogenesis, Secretion, and Wnt7-Specific Signaling. Cell, 186, 5028-5040. [Google Scholar] [CrossRef] [PubMed]
[7] Ma, S., Wang, D., Ma, C. and Zhang, Y. (2019) MicroRNA-96 Promotes Osteoblast Differentiation and Bone Formation in Ankylosing Spondylitis Mice through Activating the Wnt Signaling Pathway by Binding to Sost. Journal of Cellular Biochemistry, 120, 15429-15442. [Google Scholar] [CrossRef] [PubMed]
[8] Wu, L., Wei, Q., Lv, Y., Xue, J., Zhang, B., Sun, Q., et al. (2019) Wnt/β-Catenin Pathway Is Involved in Cadmium-Induced Inhibition of Osteoblast Differentiation of Bone Marrow Mesenchymal Stem Cells. International Journal of Molecular Sciences, 20, Article 1519. [Google Scholar] [CrossRef] [PubMed]
[9] Luo, C., Xu, W., Tang, X., Liu, X., Cheng, Y., Wu, Y., et al. (2022) Canonical Wnt Signaling Works Downstream of Iron Overload to Prevent Ferroptosis from Damaging Osteoblast Differentiation. Free Radical Biology and Medicine, 188, 337-350. [Google Scholar] [CrossRef] [PubMed]
[10] Lawson, L.Y., Brodt, M.D., Migotsky, N., Chermside-Scabbo, C.J., Palaniappan, R. and Silva, M.J. (2022) Osteoblast-specific Wnt Secretion Is Required for Skeletal Homeostasis and Loading-Induced Bone Formation in Adult Mice. Journal of Bone and Mineral Research, 37, 108-120. [Google Scholar] [CrossRef] [PubMed]
[11] Wang, D., Weng, Y., Guo, S., Zhang, Y., Zhou, T., Zhang, M., et al. (2018) Platelet-Rich Plasma Inhibits Rankl-Induced Osteoclast Differentiation through Activation of Wnt Pathway during Bone Remodeling. International Journal of Molecular Medicine, 41, 729-738. [Google Scholar] [CrossRef] [PubMed]
[12] Lu, C.L., Shyu, J.F., Wu, C.C., Hung, C.F., Liao, M.T., Liu, W.C., et al. (2018) Association of Anabolic Effect of Calcitriol with Osteoclast-Derived Wnt 10b Secretion. Nutrients, 10, Article 1164. [Google Scholar] [CrossRef] [PubMed]
[13] Graham, T.A., Weaver, C., Mao, F., Kimelman, D. and Xu, W. (2000) Crystal Structure of a β-Catenin/Tcf Complex. Cell, 103, 885-896. [Google Scholar] [CrossRef] [PubMed]
[14] Chu, Y., Gao, Y., Yang, Y., Liu, Y., Guo, N., Wang, L., et al. (2020) β-Catenin Mediates Fluoride-Induced Aberrant Osteoblasts Activity and Osteogenesis. Environmental Pollution, 265, Article 114734. [Google Scholar] [CrossRef] [PubMed]
[15] Chen, S., Yang, L., He, S., Yang, J., Liu, D., Bao, Q., et al. (2020) Preactivation of β-Catenin in Osteoblasts Improves the Osteoanabolic Effect of PTH in Type 1 Diabetic Mice. Journal of Cellular Physiology, 235, 1480-1493. [Google Scholar] [CrossRef] [PubMed]
[16] Rybchyn, M.S., Islam, K.S., Brennan-Speranza, T.C., Cheng, Z., Brennan, S.C., Chang, W., et al. (2019) Homer1 Mediates CASR-Dependent Activation of mTOR Complex 2 and Initiates a Novel Pathway for Akt-Dependent β-Catenin Stabilization in Osteoblasts. Journal of Biological Chemistry, 294, 16337-16350. [Google Scholar] [CrossRef] [PubMed]
[17] Gupta, A., Chatree, S., Buo, A.M., Moorer, M.C. and Stains, J.P. (2019) Connexin43 Enhances Wnt and PGE2-Dependent Activation of β-Catenin in Osteoblasts. European Journal of Physiology, 471, 1235-1243. [Google Scholar] [CrossRef] [PubMed]
[18] Dann, C.E., Hsieh, J., Rattner, A., Sharma, D., Nathans, J. and Leahy, D.J. (2001) Insights into Wnt Binding and Signalling from the Structures of Two Frizzled Cysteine-Rich Domains. Nature, 412, 86-90. [Google Scholar] [CrossRef] [PubMed]
[19] Kushwaha, P., Kim, S., Foxa, G.E., Michalski, M.N., Williams, B.O., Tomlinson, R.E., et al. (2020) Frizzled-4 Is Required for Normal Bone Acquisition Despite Compensation by Frizzled-8. Journal of Cellular Physiology, 235, 6673-6683. [Google Scholar] [CrossRef] [PubMed]
[20] Ambrosetti, D., Holmes, G., Mansukhani, A. and Basilico, C. (2008) Fibroblast Growth Factor Signaling Uses Multiple Mechanisms to Inhibit Wnt-Induced Transcription in Osteoblasts. Molecular and Cellular Biology, 28, 4759-4771. [Google Scholar] [CrossRef] [PubMed]
[21] Yu, S., Yerges-Armstrong, L.M., Chu, Y., Zmuda, J.M. and Zhang, Y. (2016) Transcriptional Regulation of Frizzled-1 in Human Osteoblasts by Sp1. PLOS ONE, 11, e0163277. [Google Scholar] [CrossRef] [PubMed]
[22] Wang, J., Xia, Y., Li, J. and Wang, W. (2021) miR-129-5p in Exosomes Inhibits Diabetes-Associated Osteogenesis in the Jaw via Targeting Fzd4. Biochemical and Biophysical Research Communications, 566, 87-93. [Google Scholar] [CrossRef] [PubMed]
[23] Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., et al. (2005) A Dual-Kinase Mechanism for Wnt Co-Receptor Phosphorylation and Activation. Nature, 438, 873-877. [Google Scholar] [CrossRef] [PubMed]
[24] Wu, G., Huang, H., Abreu, J.G. and He, X. (2009) Inhibition of GSK3 Phosphorylation of β-Catenin via Phosphorylated PPPSPXS Motifs of Wnt Coreceptor Lrp6. PLOS ONE, 4, e4926. [Google Scholar] [CrossRef] [PubMed]
[25] Yu, K., Jiang, Z., Miao, X., Yu, Z., Du, X., Lai, K., et al. (2022) CircRNA422 Enhanced Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells during Early Osseointegration through the SP7/LRP5 Axis. Molecular Therapy, 30, 3226-3240. [Google Scholar] [CrossRef] [PubMed]
[26] Moosa, S., Yamamoto, G.L., Garbes, L., Keupp, K., Beleza-Meireles, A., Moreno, C.A., et al. (2019) Autosomal-Recessive Mutations in MESD Cause Osteogenesis Imperfecta. The American Journal of Human Genetics, 105, 836-843. [Google Scholar] [CrossRef] [PubMed]
[27] Sebastian, A., Hum, N.R., Murugesh, D.K., Hatsell, S., Economides, A.N. and Loots, G.G. (2017) Wnt Co-Receptors Lrp5 and Lrp6 Differentially Mediate Wnt3a Signaling in Osteoblasts. PLOS ONE, 12, e0188264. [Google Scholar] [CrossRef] [PubMed]
[28] Riddle, R.C., Diegel, C.R., Leslie, J.M., Van Koevering, K.K., Faugere, M., Clemens, T.L., et al. (2013) Lrp5 and Lrp6 Exert Overlapping Functions in Osteoblasts during Postnatal Bone Acquisition. PLOS ONE, 8, e63323. [Google Scholar] [CrossRef] [PubMed]
[29] Duan, J., Li, H., Wang, C., Yao, J., Jin, Y., Zhao, J., et al. (2023) BMSC-Derived Extracellular Vesicles Promoted Osteogenesis via Axin2 Inhibition by Delivering miR-16-5p. International Immunopharmacology, 120, Article 110319. [Google Scholar] [CrossRef] [PubMed]
[30] Suthon, S., Perkins, R.S., Lin, J., Crockarell, J.R., Miranda-Carboni, G.A. and Krum, S.A. (2022) GATA4 and Estrogen Receptor Alpha Bind at SNPs rs9921222 and rs10794639 to Regulate AXIN1 Expression in Osteoblasts. Human Genetics, 141, 1849-1861. [Google Scholar] [CrossRef] [PubMed]
[31] Matsumoto, Y., La Rose, J., Lim, M., Adissu, H.A., Law, N., Mao, X., et al. (2017) Ubiquitin Ligase RNF146 Coordinates Bone Dynamics and Energy Metabolism. Journal of Clinical Investigation, 127, 2612-2625. [Google Scholar] [CrossRef] [PubMed]
[32] Kimelman, D. and Xu, W. (2006) β-Catenin Destruction Complex: Insights and Questions from a Structural Perspective. Oncogene, 25, 7482-7491. [Google Scholar] [CrossRef] [PubMed]
[33] Miclea, R.L., van der Horst, G., Robanus-Maandag, E.C., Löwik, C.W.G.M., Oostdijk, W., Wit, J.M., et al. (2011) Apc Bridges Wnt/β-Catenin and BMP Signaling during Osteoblast Differentiation of KS483 Cells. Experimental Cell Research, 317, 1411-1421. [Google Scholar] [CrossRef] [PubMed]
[34] Ge, J., Yu, Y.J., Li, J.Y., Li, M.Y., Xia, S.M., Xue, K., et al. (2023) Activating Wnt/β-Catenin Signaling by Autophagic Degradation of APC Contributes to the Osteoblast Differentiation Effect of Soy Isoflavone on Osteoporotic Mesenchymal Stem Cells. Acta Pharmacologica Sinica, 44, 1841-1855. [Google Scholar] [CrossRef] [PubMed]
[35] Gambardella, A., Nagaraju, C.K., O'Shea, P.J., Mohanty, S.T., Kottam, L., Pilling, J., et al. (2011) Glycogen Synthase Kinase-3α/β Inhibition Promotes in Vivo Amplification of Endogenous Mesenchymal Progenitors with Osteogenic and Adipogenic Potential and Their Differentiation to the Osteogenic Lineage. Journal of Bone and Mineral Research, 26, 811-821. [Google Scholar] [CrossRef] [PubMed]
[36] Arioka, M., Takahashi-Yanaga, F., Sasaki, M., Yoshihara, T., Morimoto, S., Hirata, M., et al. (2014) Acceleration of Bone Regeneration by Local Application of Lithium: Wnt Signal-Mediated Osteoblastogenesis and Wnt Signal-Independent Suppression of Osteoclastogenesis. Biochemical Pharmacology, 90, 397-405. [Google Scholar] [CrossRef] [PubMed]
[37] Gan, X.Q., Wang, J.Y., Xi, Y., Wu, Z.L., Li, Y.P. and Li, L. (2008) Nuclear Dvl, C-Jun, Β-Catenin, and TCF Form a Complex Leading to Stabilization of β-Catenin-Tcf Interaction. The Journal of Cell Biology, 180, 1087-1100. [Google Scholar] [CrossRef] [PubMed]
[38] Kim, H.Y., Yoon, J.Y., Yun, J.H., Cho, K.W., Lee, S.H., Rhee, Y.M., et al. (2015) CXXC5 Is a Negative-Feedback Regulator of the Wnt/β-Catenin Pathway Involved in Osteoblast Differentiation. Cell Death & Differentiation, 22, 912-920. [Google Scholar] [CrossRef] [PubMed]
[39] Zhou, F., Li, F., Fang, P., Dai, T., Yang, B., van Dam, H., et al. (2016) Ubiquitin-Specific Protease 4 Antagonizes Osteoblast Differentiation through Dishevelled. Journal of Bone and Mineral Research, 31, 1888-1898. [Google Scholar] [CrossRef] [PubMed]
[40] Yu, F., Liu, Z., Tong, Z., Zhao, Z. and Liang, H. (2015) Soybean Isoflavone Treatment Induces Osteoblast Differentiation and Proliferation by Regulating Analysis of Wnt/β-Catenin Pathway. Gene, 573, 273-277. [Google Scholar] [CrossRef] [PubMed]
[41] Wang, X., Tian, Y., Liang, X., Yin, C., Huai, Y., Zhao, Y., et al. (2022) Bergamottin Promotes Osteoblast Differentiation and Bone Formation via Activating the Wnt/β-Catenin Signaling Pathway. Food & Function, 13, 2913-2924. [Google Scholar] [CrossRef] [PubMed]
[42] Suh, K.S., Choi, E.M., Lee, Y.S. and Kim, Y.S. (2013) Protective Effect of Albiflorin against Oxidative-Stress-Mediated Toxicity in Osteoblast-Like MC3T3-E1 Cells. Fitoterapia, 89, 33-41. [Google Scholar] [CrossRef] [PubMed]
[43] Cai, Z., Liu, J., Bian, H. and Cai, J. (2019) Albiflorin Alleviates Ovalbumin (OVA)-Induced Pulmonary Inflammation in Asthmatic Mice. American Journal of Translational Research, 11, 7300-7309.
[44] Xu, Y.J., Mei, Y., Shi, X.Q., Zhang, Y.F., Wang, X.Y., Guan, L., et al. (2019) Albiflorin Ameliorates Memory Deficits in APP/PS1 Transgenic Mice via Ameliorating Mitochondrial Dysfunction. Brain Research, 1719, 113-123. [Google Scholar] [CrossRef] [PubMed]
[45] Kim, J.H., Kim, M., Hong, S., Kim, E.Y., Lee, H., Jung, H.S., et al. (2021) Albiflorin Promotes Osteoblast Differentiation and Healing of Rat Femoral Fractures through Enhancing BMP-2/Smad and Wnt/β-Catenin Signaling. Frontiers in Pharmacology, 12, Article 690113. [Google Scholar] [CrossRef] [PubMed]
[46] Kim, M.B., Song, Y. and Hwang, J.K. (2014) Kirenol Stimulates Osteoblast Differentiation through Activation of the BMP and Wnt/β-Catenin Signaling Pathways in MC3T3-E1 Cells. Fitoterapia, 98, 59-65. [Google Scholar] [CrossRef] [PubMed]
[47] Liu, S., Luo, Z.H., Ji, G.M., Guo, W., Cai, J.Z., Fu, L.C., et al. (2019) Cajanolactone a from Cajanus Cajan Promoted Osteoblast Differentiation in Human Bone Marrow Mesenchymal Stem Cells via Stimulating Wnt/LRP5/β-Catenin Signaling. Molecules, 24, Article 271. [Google Scholar] [CrossRef] [PubMed]
[48] Xia, B., Xu, B., Sun, Y., Xiao, L., Pan, J., Jin, H., et al. (2014) The Effects of Liuwei Dihuang on Canonical Wnt/β-Catenin Signaling Pathway in Osteoporosis. Journal of Ethnopharmacology, 153, 133-141. [Google Scholar] [CrossRef] [PubMed]
[49] Cheng, X., Wei, B., Sun, L., Hu, X., Liang, J. and Chen, Y. (2016) Astragaloside I Stimulates Osteoblast Differentiation through the Wnt/β-Catenin Signaling Pathway. Phytotherapy Research, 30, 1680-1688. [Google Scholar] [CrossRef] [PubMed]
[50] Yao, B., Liu, B., Shi, L., Li, X., Ren, C., Cai, M., et al. (2017) PAFR Selectively Mediates Radioresistance and Irradiation-Induced Autophagy Suppression in Prostate Cancer Cells. Oncotarget, 8, 13846-13854. [Google Scholar] [CrossRef] [PubMed]
[51] Zhu, B., Xue, F., Zhang, C. and Li, G. (2019) Ginkgolide B Promotes Osteoblast Differentiation via Activation of Canonical Wnt Signalling and Alleviates Osteoporosis through a Bone Anabolic Way. Journal of Cellular and Molecular Medicine, 23, 5782-5793. [Google Scholar] [CrossRef] [PubMed]
[52] Dun, S.L., Lyu, R.M., Chen, Y.H., Chang, J.K., Luo, J.J. and Dun, N.J. (2013) Irisin-Immunoreactivity in Neural and Non-Neural Cells of the Rodent. Neuroscience, 240, 155-162. [Google Scholar] [CrossRef] [PubMed]
[53] Aydin, S., Kuloglu, T., Aydin, S., Kalayci, M., Yilmaz, M., Cakmak, T., et al. (2014) A Comprehensive Immunohistochemical Examination of the Distribution of the Fat-Burning Protein Irisin in Biological Tissues. Peptides, 61, 130-136. [Google Scholar] [CrossRef] [PubMed]
[54] Chen, Z., Zhang, Y., Zhao, F., Yin, C., Yang, C., Wang, X., et al. (2020) Recombinant Irisin Prevents the Reduction of Osteoblast Differentiation Induced by Stimulated Microgravity through Increasing β-Catenin Expression. International Journal of Molecular Sciences, 21, Article 1259. [Google Scholar] [CrossRef] [PubMed]
[55] He, J., Li, X., Wang, Z., Bennett, S., Chen, K., Xiao, Z., et al. (2019) Therapeutic Anabolic and Anticatabolic Benefits of Natural Chinese Medicines for the Treatment of Osteoporosis. Frontiers in Pharmacology, 10, Article 1344. [Google Scholar] [CrossRef] [PubMed]
[56] Wang, Y., Li, J. and Li, N. (2021) Phytochemistry and Pharmacological Activity of Plants of Genus Curculigo: An Updated Review since 2013. Molecules, 26, Article 3396. [Google Scholar] [CrossRef] [PubMed]
[57] Wang, J., Yang, J., Tang, Z., Yu, Y., Chen, H., Yu, Q., et al. (2023) Curculigo Orchioides Polysaccharide COP70-1 Stimulates Osteogenic Differentiation of MC3T3-E1 Cells by Activating the BMP and Wnt Signaling Pathways. International Journal of Biological Macromolecules, 248, Article 125879. [Google Scholar] [CrossRef] [PubMed]
[58] Molagoda, I.M.N., Karunarathne, W.A.H.M., Choi, Y.H., Park, E.K., Jeon, Y., Lee, B., et al. (2019) Fermented Oyster Extract Promotes Osteoblast Differentiation by Activating the Wnt/β-Catenin Signaling Pathway, Leading to Bone Formation. Biomolecules, 9, Article 711. [Google Scholar] [CrossRef] [PubMed]
[59] Du, L., Nong, M.N., Zhao, J.M., et al. (2016) Polygonatum Sibiricum Polysaccharide Inhibits Osteoporosis by Promoting Osteoblast Formation and Blocking Osteoclastogenesis through Wnt/β-Catenin Signalling Pathway. Scientific Reports, 6, Article No. 32261. [Google Scholar] [CrossRef] [PubMed]
[60] Man, X., Yang, L., Liu, S., Yang, L., Li, M. and Fu, Q. (2019) Arbutin Promotes MC3T3‑E1 Mouse Osteoblast Precursor Cell Proliferation and Differentiation via the Wnt/β‑Catenin Signaling Pathway. Molecular Medicine Reports, 19, 4637-4644. [Google Scholar] [CrossRef] [PubMed]