|
[1]
|
Schwarz, D., Rouphael, Y., Colla, G. and Venema, J.H. (2010) Grafting as a Tool to Improve Tolerance of Vegetables to Abiotic Stresses: Thermal Stress, Water Stress and Organic Pollutants. Scientia Horticulturae, 127, 162-171. [Google Scholar] [CrossRef]
|
|
[2]
|
Kumar, S., Bharti, N. and Saravaiya, S.N. (2018) Vegetable Grafting: A Surgical Approach to Combat Biotic and Abiotic Stresses—A Review. Agricultural Reviews, 38, 1-11. [Google Scholar] [CrossRef]
|
|
[3]
|
Bahadur, A., Singh, P.M., Rai, N., Singh, A.K., Singh, A.K., Karkute, S.G., et al. (2024) Grafting in Vegetables to Improve Abiotic Stress Tolerance, Yield and Quality. The Journal of Horticultural Science and Biotechnology, 99, 385-403. [Google Scholar] [CrossRef]
|
|
[4]
|
Cardarelli, M., Rouphael, Y., Kyriacou, M.C., Colla, G. and Pane, C. (2020) Augmenting the Sustainability of Vegetable Cropping Systems by Configuring Rootstock-Dependent Rhizomicrobiomes that Support Plant Protection. Agronomy, 10, Article 1185. [Google Scholar] [CrossRef]
|
|
[5]
|
Louws, F.J., Rivard, C.L. and Kubota, C. (2010) Grafting Fruiting Vegetables to Manage Soilborne Pathogens, Foliar Pathogens, Arthropods and Weeds. Scientia Horticulturae, 127, 127-146. [Google Scholar] [CrossRef]
|
|
[6]
|
Singathiya, P., Mahala, P., Yadav, L.P., Varotariya, K., Brahmani, G., Sohi, A., et al. (2025) Advanced Grafting Techniques for Mitigating Biotic and Abiotic Stresses in Vegetable Crops: Breeding and Biotechnological Approaches. Biotechnology for the Environment, 2, 1-15. [Google Scholar] [CrossRef]
|
|
[7]
|
黄益鸿, 雷东阳. 不同砧木嫁接番茄抗青枯病效果研究[J]. 江西农业学报, 2013, 25(1): 73-75.
|
|
[8]
|
刘业霞, 姜飞, 张宁, 等. 嫁接辣椒对青枯病的抗性及其与渗透调节物质的关系[J]. 园艺学报, 2011, 38(5): 903-910.
|
|
[9]
|
王岳霞. 茄子青枯病抗感砧穗互作影响嫁接苗抗病性的生理机制研究[D]: [硕士学位论文]. 南宁: 广西大学, 2018.
|
|
[10]
|
Chitwood-Brown, J., Vallad, G.E., Lee, T.G. and Hutton, S.F. (2021) Breeding for Resistance to Fusarium Wilt of Tomato: A Review. Genes, 12, Article 1673. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
闫广艳. 樱桃番茄嫁接育苗栽培防控枯萎病研究初报[J]. 园艺与种苗, 2011(1): 27-28.
|
|
[12]
|
褚新培. 番茄枯萎病抗性砧木筛选及嫁接抗病机理研究[D]: [硕士学位论文]. 保定: 河北农业大学, 2020.
|
|
[13]
|
尤春, 倪玮. 不同砧木品种嫁接对茄子生长的影响[J]. 农业科技通讯, 2015(11): 77-79.
|
|
[14]
|
邹宜静, 王光锋, 任国华, 等. 不同品种砧木抗病性鉴定及嫁接对番茄植株生长和果实品质的影响[J]. 上海农业学报, 2021, 37(6): 108-113.
|
|
[15]
|
缪其松, 王强, 王东升, 等. 四种砧木对黄萎病高发区设施连作茄子产量、品质及发病率的影响[J]. 北方园艺, 2020(1): 50-56.
|
|
[16]
|
邹春蕾, 刘长远, 王丽萍, 等. 辣椒不同砧木嫁接组合的疫病抗性评价及叶片防御酶活性的变化分析[J]. 沈阳农业大学学报, 2015, 46(2): 155-160.
|
|
[17]
|
郑长英, 曹志平, 陈国康, 等. 番茄嫁接防治温室根结线虫病的研究[J]. 中国生态农业学报, 2005(4): 164-166.
|
|
[18]
|
胡永军. 茄子嫁接防治根结线虫效果试验[J]. 西北园艺, 2004(9): 15-16.
|
|
[19]
|
刘德兴, 荆鑫, 焦娟, 等. 嫁接对番茄产量、品质及耐盐性影响的综合评价[J]. 园艺学报, 2017, 44(6): 1094-1104.
|
|
[20]
|
吴雪霞, 查丁石, 朱宗文. NaCl胁迫对嫁接茄子幼苗光合作用和离子含量的影响[J]. 上海农业学报, 2012, 28(3): 13-16.
|
|
[21]
|
胡凤霞, 唐艳领, 刘金, 等. 辣椒砧木的筛选及其耐盐性研究[J]. 北方园艺, 2013(4): 24-27.
|
|
[22]
|
张志焕. 番茄砧木耐旱性鉴定及其嫁接苗对水分胁迫的响应[D]: [硕士学位论文]. 泰安: 山东农业大学, 2016.
|
|
[23]
|
周宝利, 孟兆华, 李娟, 等. 水分胁迫下嫁接对茄子生长及其生理生化指标的影响[J]. 生态学杂志, 2012, 31(11): 2804-2809.
|
|
[24]
|
张帆, 刘博, 石玉, 等. 干旱胁迫下嫁接对辣椒幼苗生长及生理特性的影响[J]. 江苏农业科学, 2024, 52(5): 186-191.
|
|
[25]
|
张娟. 番茄砧木及其嫁接苗抗冷性鉴定与生长发育规律研究[D]: [硕士学位论文]. 泰安: 山东农业大学, 2004.
|
|
[26]
|
刘益勇, 周亚东, 申磊, 等. 嫁接对茄子耐冷性的影响[J]. 安徽农业科学, 2022, 50(13): 52-55+58.
|
|
[27]
|
李紫瑜. 辣椒耐低温砧木筛选及其嫁接苗耐低温能力的研究[D]: [硕士学位论文]. 长沙: 湖南农业大学, 2022.
|
|
[28]
|
Fernández-García, N., Martínez, V., Cerdá, A. and Carvajal, M. (2002) Water and Nutrient Uptake of Grafted Tomato Plants Grown under Saline Conditions. Journal of Plant Physiology, 159, 899-905. [Google Scholar] [CrossRef]
|
|
[29]
|
Davoudi, M., Song, M., Zhang, M., Chen, J. and Lou, Q. (2022) Long-Distance Control of the Scion by the Rootstock under Drought Stress as Revealed by Transcriptome Sequencing and Mobile mRNA Identification. Horticulture Research, 9, 2264-2283. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Gregory, P.J., Atkinson, C.J., Bengough, A.G., Else, M.A., Fernández-Fernández, F., Harrison, R.J., et al. (2013) Contributions of Roots and Rootstocks to Sustainable, Intensified Crop Production. Journal of Experimental Botany, 64, 1209-1222. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Balliu, A., Babaj, I. and Sallaku, G. (2024) Root Morphology Parameters and Nutrient Acquisition Capabilities of Grafted Tomato Plants in Root-Restricted Conditions Are Subject to Salinity and Rootstock Characteristics. International Journal of Vegetable Science, 30, 503-526. [Google Scholar] [CrossRef]
|
|
[32]
|
Liu, Y. (2018) Darwin’s Pangenesis and Graft Hybridization. Advances in Genetics, 102, 27-66.
|
|
[33]
|
邹春蕾, 刘长远, 王丽萍, 等. 嫁接辣椒根际土壤氧化还原酶及水解酶活性与疫病抗性的关系[J]. 东北农业大学学报, 2015, 46(4): 29-35.
|
|
[34]
|
Abbasi, S., Sadeghi, A., Omidvari, M. and Tahan, V. (2021) The Stimulators and Responsive Genes to Induce Systemic Resistance against Pathogens: An Exclusive Focus on Tomato as a Model Plant. Biocatalysis and Agricultural Biotechnology, 33, Article 101993. [Google Scholar] [CrossRef]
|
|
[35]
|
Li, T., Huang, Y., Xu, Z., Wang, F. and Xiong, A. (2019) Salicylic Acid-Induced Differential Resistance to the Tomato Yellow Leaf Curl Virus among Resistant and Susceptible Tomato Cultivars. BMC Plant Biology, 19, Article No. 173. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lu, X., Liu, W., Wang, T., Zhang, J., Li, X. and Zhang, W. (2020) Systemic Long-Distance Signaling and Communication between Rootstock and Scion in Grafted Vegetables. Frontiers in Plant Science, 11, Article ID: 460. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Pant, B.D., Buhtz, A., Kehr, J. and Scheible, W. (2008) MicroRNA399 Is a Long‐Distance Signal for the Regulation of Plant Phosphate Homeostasis. The Plant Journal, 53, 731-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Spanò, R., Mascia, T., Kormelink, R. and Gallitelli, D. (2015) Grafting on a Non-Transgenic Tolerant Tomato Variety Confers Resistance to the Infection of a Sw5-Breaking Strain of Tomato Spotted Wilt Virus via RNA Silencing. PLOS ONE, 10, e0141319. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kundariya, H., Yang, X., Morton, K., Sanchez, R., Axtell, M.J., Hutton, S.F., et al. (2020) Msh1-Induced Heritable Enhanced Growth Vigor through Grafting Is Associated with the RdDM Pathway in Plants. Nature Communications, 11, Article No. 5343. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Wu, R., Wang, X., Lin, Y., Ma, Y., Liu, G., Yu, X., et al. (2013) Inter-Species Grafting Caused Extensive and Heritable Alterations of DNA Methylation in Solanaceae Plants. PLOS ONE, 8, e61995. [Google Scholar] [CrossRef] [PubMed]
|