|
[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
中国肿瘤医院泌尿肿瘤协作组. 膀胱癌保膀胱治疗多学科诊治协作专家共识(2024版) [J]. 中华肿瘤杂志, 2024, 46(12): 1136-1155.
|
|
[3]
|
Chen, X., Wahafu, W., Shen, Y., Fan, J. and Yao, X. (2024) CACA Guidelines for Holistic Integrative Management of Urothelial Carcinoma. Holistic Integrative Oncology, 3, Article No. 9. [Google Scholar] [CrossRef]
|
|
[4]
|
Alfred Witjes, J., Max Bruins, H., Carrión, A., Cathomas, R., Compérat, E., Efstathiou, J.A., et al. (2024) European Association of Urology Guidelines on Muscle-Invasive and Metastatic Bladder Cancer: Summary of the 2023 Guidelines. European Urology, 85, 17-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Arcangeli, G., Strigari, L. and Arcangeli, S. (2015) Radical Cystectomy versus Organ-Sparing Trimodality Treatment in Muscle-Invasive Bladder Cancer: A Systematic Review of Clinical Trials. Critical Reviews in Oncology/Hematology, 95, 387-396. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Patel, V.G., Oh, W.K. and Galsky, M.D. (2020) Treatment of Muscle‐Invasive and Advanced Bladder Cancer in 2020. CA: A Cancer Journal for Clinicians, 70, 404-423. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Mayerhoefer, M.E., Materka, A., Langs, G., Häggström, I., Szczypiński, P., Gibbs, P., et al. (2020) Introduction to Radiomics. Journal of Nuclear Medicine, 61, 488-495. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wu, S., Hong, G., Xu, A., Zeng, H., Chen, X., Wang, Y., et al. (2023) Artificial Intelligence-Based Model for Lymph Node Metastases Detection on Whole Slide Images in Bladder Cancer: A Retrospective, Multicentre, Diagnostic Study. The Lancet Oncology, 24, 360-370. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Du, Y., Li, H., Sui, Y., Tao, Y., Cao, J., Jiang, X., et al. (2025) Habitat‐Based Radiomic Model for Predicting Muscle Invasion in Bladder Cancer: A Multi‐Center Study Using Enhanced‐CT and Machine Learning. Medical Physics, 52, e18021. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Song, H., Yang, S., Yu, B., Li, N., Huang, Y., Sun, R., et al. (2023) CT-Based Deep Learning Radiomics Nomogram for the Prediction of Pathological Grade in Bladder Cancer: A Multicenter Study. Cancer Imaging, 23, Article No. 89. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lisson, C.G., Gallee, L., Müller, K., Manoj, S., Stöckl, H., Zengerling, F., et al. (2025) Machine Learning-Based Radiomics for Bladder Cancer Staging: Evaluating the Role of Imaging Timing in Differentiating T2 from T3 Disease. Frontiers in Oncology, 15, Article 1591742. [Google Scholar] [CrossRef]
|
|
[12]
|
Qureshi, T.A., Chen, X., Xie, Y., Murakami, K., Sakatani, T., Kita, Y., et al. (2023) MRI/RNA-Seq-Based Radiogenomics and Artificial Intelligence for More Accurate Staging of Muscle-Invasive Bladder Cancer. International Journal of Molecular Sciences, 25, Article 88. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
de Angelis, M., Pellegrino, F., Scilipoti, P., Shariat, S.F., Fujii, Y., Roupret, M., et al. (2025) PD37-06 Real-World Adoption and Impact of Neoadjuvant Chemotherapy on Survival Outcomes in Bladder Cancer: A 20-Year Follow-Up Multi-Center Study. Journal of Urology, 213, e1338. [Google Scholar] [CrossRef]
|
|
[14]
|
Contieri, R., Saita, A., Paciotti, M., Uleri, A., Avolio, P.P., Fasulo, V., et al. (2025) PD12-04 Evaluating Neoadjuvant Intravesical Mitomycin C in NMIBC: A Phase III Randomized Clinical Trial. Journal of Urology, 213, e388. [Google Scholar] [CrossRef]
|
|
[15]
|
Chamie, K., Ballon-Landa, E., Daskivich, T.J., Bassett, J.C., Lai, J., Hanley, J.M., et al. (2015) Treatment and Survival in Patients with Recurrent High-Risk Non-Muscle-Invasive Bladder Cancer. Urologic Oncology: Seminars and Original Investigations, 33, 20.e9-20.e17. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Meng, L., Khorasanchi, A. and Jain, R. (2025) Advancing Bladder Cancer Management: The Role of Neoadjuvant and Adjuvant Therapies and Biomarkers in Muscle Invasive Bladder Cancer. Current Treatment Options in Oncology, 26, 929-942. [Google Scholar] [CrossRef]
|
|
[17]
|
Yu, J., Wu, S., Li, R., Jiang, Y., Zheng, J., Li, Z., et al. (2023) Novel ADCs and Combination Therapy in Urothelial Carcinoma: Latest Updates from the 2023 ASCO-GU Cancers Symposium. Journal of Hematology & Oncology, 16, Article No. 85. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hong, X., Chen, X., Wang, H., Xu, Q., Xiao, K., Zhang, Y., et al. (2023) A HER2‐Targeted Antibody‐Drug Conjugate, RC48‐ADC, Exerted Promising Antitumor Efficacy and Safety with Intravesical Instillation in Preclinical Models of Bladder Cancer. Advanced Science, 10, e2302377. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liu, Z., Xing, L., Zhu, Y., Shi, P. and Deng, G. (2022) Association between TOP2A, RRM1, HER2, ERCC1 Expression and Response to Chemotherapy in Patients with Non-Muscle Invasive Bladder Cancer. Heliyon, 8, e09643. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Park, K.J., Lee, J., Yoon, S., Heo, C., Park, B.W. and Kim, J.K. (2020) Radiomics-Based Prediction Model for Outcomes of PD-1/PD-L1 Immunotherapy in Metastatic Urothelial Carcinoma. European Radiology, 30, 5392-5403. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bai, Z., Osman, M., Brendel, M., Tangen, C.M., Flaig, T.W., Thompson, I.M., et al. (2025) Predicting Response to Neoadjuvant Chemotherapy in Muscle-Invasive Bladder Cancer via Interpretable Multimodal Deep Learning. npj Digital Medicine, 8, Article No. 174. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Patel, A., Garcia, L.F., Mannella, V., Gammon, L., Borg, T., Maffucci, T., et al. (2020) Targeting P63 Upregulation Abrogates Resistance to MAPK Inhibitors in Melanoma. Cancer Research, 80, 2676-2688. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wang, B., Gong, Z., Su, P., Zhen, G., Zeng, T. and Ye, Y. (2025) Multi-Machine Learning Model Based on Radiomics Features to Predict Prognosis of Muscle-Invasive Bladder Cancer. BMC Cancer, 25, Article No. 1116. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Han, X., Guan, J., Guo, L., Jiao, Q., Wang, K., Hou, F., et al. (2025) A CT-Based Interpretable Deep Learning Signature for Predicting PD-L1 Expression in Bladder Cancer: A Two-Center Study. Cancer Imaging, 25, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Cao, Y., Zhu, H., Li, Z., Liu, C. and Ye, J. (2024) CT Image-Based Radiomic Analysis for Detecting PD-L1 Expression Status in Bladder Cancer Patients. Academic Radiology, 31, 3678-3687. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yu, R., Cai, L., Gong, Y., Sun, X., Li, K., Cao, Q., et al. (2024) MRI‐Based Machine Learning Radiomics for Preoperative Assessment of Human Epidermal Growth Factor Receptor 2 Status in Urothelial Bladder Carcinoma. Journal of Magnetic Resonance Imaging, 60, 2694-2704. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Peng, J., Tang, Z., Li, T., Pan, X., Feng, L. and Long, L. (2024) Contrast-Enhanced Computed Tomography-Based Radiomics Nomogram for Predicting HER2 Status in Urothelial Bladder Carcinoma. Frontiers in Oncology, 14, Article 1427122. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Jiao, P., Yang, R., Liu, Y., Fu, S., Weng, X., Chen, Z., et al. (2024) Deep Learning-Based Computed Tomography Urography Image Analysis for Prediction of HER2 Status in Bladder Cancer. Journal of Cancer, 15, 6336-6344. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Arita, Y., Kwee, T.C., Akin, O., Shigeta, K., Paudyal, R., Roest, C., et al. (2025) Multiparametric MRI and Artificial Intelligence in Predicting and Monitoring Treatment Response in Bladder Cancer. Insights into Imaging, 16, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kocak, B., Baessler, B., Bakas, S., Cuocolo, R., Fedorov, A., Maier-Hein, L., et al. (2023) Checklist for Evaluation of Radiomics Research (CLEAR): A Step-by-Step Reporting Guideline for Authors and Reviewers Endorsed by ESR and EuSoMII. Insights into Imaging, 14, Article No. 75. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Whybra, P., Zwanenburg, A., Andrearczyk, V., Schaer, R., Apte, A.P., Ayotte, A., et al. (2024) The Image Biomarker Standardization Initiative: Standardized Convolutional Filters for Reproducible Radiomics and Enhanced Clinical Insights. Radiology, 310, e231319. [Google Scholar] [CrossRef] [PubMed]
|