|
[1]
|
Min, W., Cheng, J.-X. and Ozeki, Y. (2025) Theory, Innovations and Applications of Stimulated Raman Scattering Microscopy. Nature Photonics, 19, 803-816. [Google Scholar] [CrossRef]
|
|
[2]
|
赵淑莉, 陈少坤, 于秀豪, 等. 美丽中国建设过程中重点关注的新污染物监测研究[J]. 中国环境科学, 2024, 44(8): 4576-4587.
|
|
[3]
|
焦若男, 刘琨, 孔繁艺, 等. 近海微塑料含量的相干反斯托克斯拉曼光谱成像研究[J]. 光谱学与光谱分析, 2022, 42(4): 1022-1027.
|
|
[4]
|
郑丽娜, 冯子康, 韩臻, 等. 基于显微拉曼光谱的微塑料定量分析研究[J]. 光谱学与光谱分析, 2023, 43(5): 1645-1650.
|
|
[5]
|
张蔚, 冯巍巍, 蔡宗岐, 等. 基于MTF变换的拉曼光谱和卷积神经网络的海水微塑料识别方法研究[J]. 光谱学与光谱分析, 2024, 44(9): 2420-2427.
|
|
[6]
|
洪子衿, 张艺严, 马静, 等. 拉曼光谱与机器学习结合的微塑料精确识别研究[J]. 中国无机分析化学, 2024, 14(8): 1047-1057.
|
|
[7]
|
李静, 张媛, 张莹, 等. 基于GA-GRNN算法和显微拉曼光谱的城市河流微塑料识别方法研究[J]. 光散射学报, 2025, 37(1): 69-76.
|
|
[8]
|
林树燕, 张涵姣, 杨青, 等. “以竹代塑”发展优势与竹资源高效培育面临的挑战[J/OL]. 南京林业大学学报(自然科学版), 2025, 49(4): 1-11. http://kns.cnki.net/kcms/detail/32.1161.S.20250603.1622.002.html, 2025-06-26.
|
|
[9]
|
李卓然, 季民, 赵迎新, 等. 全球微塑料研究现状及热点可视化剖析[J]. 环境化学, 2022, 41(4): 1124-1136.
|
|
[10]
|
郝若男, 史小红, 刘禹, 等. 乌梁素海水体微塑料空间分布规律及影响因素[J]. 中国环境科学, 2022, 42(7): 3316-3324.
|
|
[11]
|
Rhee, H., Jeong, S., Lee, H., Cho, M.G. and Choi, D.S. (2024) Rapid Detection and Identification of Microplastics from Nonchemically Treated Soil with CARS Microspectroscopy. Environmental Pollution, 342, Article ID: 123080. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
贺雨田, 杨颉, 隋海霞, 等. 基于显微光谱法的双壳类海洋生物中微塑料的检测方法研究[J]. 分析测试学报, 2021, 40(7): 1055-1061.
|
|
[13]
|
郭庆伟, 王倩, 张海东, 等. 新污染物检测技术研究进展[J]. 化学通报, 2024, 87(1): 78-85.
|
|
[14]
|
Chen, Q., Wang, J., Yao, F., Zhang, W., Qi, X., Gao, X., et al. (2023) A Review of Recent Progress in the Application of Raman Spectroscopy and SERS Detection of Microplastics and Derivatives. Microchimica Acta, 190, Article No. 59. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zarfl, C. (2019) Promising Techniques and Open Challenges for Microplastic Identification and Quantification in Environmental Matrices. Analytical and Bioanalytical Chemistry, 411, 3743-3756. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hiltunen, A., Huopalainen, J., Mäkilä, E., Häkkilä, S., Damlin, P. and Hänninen, J. (2024) Expanding Sample Volume for Microscopical Detection of Nanoplastics. Marine Environmental Research, 202, Article ID: 106806. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Xie, L., Gong, K., Liu, Y. and Zhang, L. (2022) Strategies and Challenges of Identifying Nanoplastics in Environment by Surface-Enhanced Raman Spectroscopy. Environmental Science & Technology, 57, 25-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wang, J., Dong, J., Tang, M., Yao, J., Li, X., Kong, D., et al. (2023) Identification and Detection of Microplastic Particles in Marine Environment by Using Improved Faster R-CNN Model. Journal of Environmental Management, 345, Article ID: 118802. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Qiu, Y., Zhou, S., Zhang, C., Qin, W., Lv, C. and Zou, M. (2023) Identification of Potentially Contaminated Areas of Soil Microplastic Based on Machine Learning: A Case Study in Taihu Lake Region, China. Science of the Total Environment, 877, Article ID: 162891. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lei, B., Bissonnette, J.R., Hogan, Ú.E., Bec, A.E., Feng, X. and Smith, R.D.L. (2022) Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy. Analytical Chemistry, 94, 17011-17019. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
冯璐, 冷伏海. 共词分析方法理论进展[J]. 中国图书馆学报, 2006(2): 88-92.
|
|
[22]
|
赵蓉英, 许丽敏. 文献计量学发展演进与研究前沿的知识图谱探析[J]. 中国图书馆学报, 2010, 36(5): 60-68.
|
|
[23]
|
Prezgot, D., Chen, M., Leng, Y., Gaburici, L. and Zou, S. (2025) Automated Machine-Learning-Driven Analysis of Microplastics by TGA-FTIR for Enhanced Identification and Quantification. Analytical Chemistry, 97, 8833-8840. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Seidel, M., Hutengs, C., Bauer, J., Schneider, B., Ortner, M., Thiele-Bruhn, S., et al. (2025) Efficient Screening of Microplastics in Soils Using Hyperspectral Imaging in the Short-Wave Infrared Range Coupled with Machine Learning—A Laboratory-Based Experiment. Ecological Indicators, 173, Article ID: 113301. [Google Scholar] [CrossRef]
|
|
[25]
|
Liu, J., Xu, G., Ruan, X., Li, K. and Zhang, L. (2022) V-Shaped Substrate for Surface and Volume Enhanced Raman Spectroscopic Analysis of Microplastics. Frontiers of Environmental Science & Engineering, 16, 213-222. [Google Scholar] [CrossRef]
|
|
[26]
|
Huang, X., Huang, J., Lu, M., Liu, Y., Jiang, G., Chang, M., et al. (2024) In Situ Surface-Enhanced Raman Spectroscopy for the Detection of Nanoplastics: A Novel Approach Inspired by the Aging of Nanoplastics. Science of the Total Environment, 946, Article ID: 174249. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Gao, H., Wang, H., Wang, Y., Lin, Y., Yan, J. and Shen, H. (2024) Identification and Quantification of Microplastics in Salts by Complementary Approaches Using Pyrolysis-Gas Chromatography/Quadrupole-Time of Flight Mass Spectrometry (Py-GC/QTOFMS) and Laser Direct Infrared (LDIR) Chemical Imaging Analysis. Environmental Pollution, 348, Article ID: 123820. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cowger, W., Steinmetz, Z., Gray, A., Munno, K., Lynch, J., Hapich, H., et al. (2021) Microplastic Spectral Classification Needs an Open Source Community: Open Specy to the Rescue! Analytical Chemistry, 93, 7543-7548. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wu, Z., Janssen, S.E., Tate, M.T., Wei, H. and Qin, M. (2024) Adaptable Plasmonic Membrane Sensors for Fast and Reliable Detection of Trace Low-Micrometer Microplastics in Lake Water. Environmental Science & Technology, 58, 20172-20180. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Miller, E., Sedlak, M., Lin, D., Box, C., Holleman, C., Rochman, C.M., et al. (2021) Recommended Best Practices for Collecting, Analyzing, and Reporting Microplastics in Environmental Media: Lessons Learned from Comprehensive Monitoring of San Francisco Bay. Journal of Hazardous Materials, 409, Article ID: 124770. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Jenner, L.C., Rotchell, J.M., Bennett, R.T., Cowen, M., Tentzeris, V. and Sadofsky, L.R. (2022) Detection of Microplastics in Human Lung Tissue Using μF-TIR Spectroscopy. Science of the Total Environment, 831, Article ID: 154907. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ragusa, A., Notarstefano, V., Svelato, A., Belloni, A., Gioacchini, G., Blondeel, C., et al. (2022) Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers, 14, Article No. 2700. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Enfrin, M., Lee, J., Gibert, Y., Basheer, F., Kong, L. and Dumée, L.F. (2020) Release of Hazardous Nanoplastic Contaminants Due to Microplastics Fragmentation under Shear Stress Forces. Journal of Hazardous Materials, 384, Article ID: 121393. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
白润昊, 范瑞琪, 刘琪, 等. 机器学习在微塑料识别与环境风险评估中的应用研究进展[J]. 环境科学, 2024, 45(2): 1185-1195.
|
|
[35]
|
丁钰祥, 张家铭, 张洪伟, 等. 傅里叶变换红外光谱在微塑料检测中的应用[J]. 中国无机分析化学, 2024, 14(8): 1157-1165.
|
|
[36]
|
Hufnagl, B., Stibi, M., Martirosyan, H., Wilczek, U., Möller, J.N., Löder, M.G.J., et al. (2021) Computer-Assisted Analysis of Microplastics in Environmental Samples Based on μFTIR Imaging in Combination with Machine Learning. Environmental Science & Technology Letters, 9, 90-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sukkuea, A., Inpun, J., Cherdsukjai, P. and Akkajit, P. (2025) Automatic Microplastic Classification Using Dual-Modality Spectral and Image Data for Enhanced Accuracy. Marine Pollution Bulletin, 213, Article ID: 117665. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
薄录吉, 李冰, 张凯, 等. 农田土壤微塑料分布、来源和行为特征[J]. 环境科学, 2023, 44(4): 2375-2383.
|